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Zusammenfassung

In dieser Arbeit stellen wir neue Algorithmen für die Berechnung von diskrimina-
tiven Merkmalen von volumetrischen Bildern vor. Die vorgeschlagenen Techniken
vereinfachen die Klassifikation und die Auswertung von volumetrischen biologi-
schen und medizinischen (biomedizinischen) Bildern. Die vorgestellten Algorith-
men sind kovariant bezüglich der Euklidischen Bewegungsgruppe.

Wir behandeln das schwierige Problem der automatisierten Annotation von vo-
lumetrischen biomedizinischen Bildern. Eine Annotation, gefolgt von einer Auswer-
tung von Bildern, ist oft ein unverzichtbarer Bestandteil einer statistischen Analyse
eines wissenschaftlichen Experiments, sei es eine Gruppenstudie in einem medizi-
nischen Experiment, oder die Auswertung von tausenden, unterschiedlich behan-
delten Zellen in einem biologischen Experiment. Eine Annotation von biomedizini-
schen Bildern wird oft manuell durchgeführt. Dies ist nicht nur sehr zeitintensiv,
sondern auch sehr fehleranfällig.

Ein volumetrisches Bild erlaubt die Analyse einer medizinischen oder biologi-
schen Probe in ihrer vollkommenen 3DRepräsentation. Jedoch basieren viele existie-
rende Algorithmen auf 2D Bildern, sodass es wegen der zusätzlichen dritten Dimen-
sion einen Bedarf an geeigneten Algorithmen gibt. Viele Techniken können leicht
von 2D auf 3D erweitert werden. Zum Beispiel ist es einfach isotropisches Glätten,
die Berechnung der kartesischen Ableitungen via zentralen Differenzenquotienten
oder die Fourier Transformation von 2D auf 3D zu erweitern. Dazu ist nur die Be-
trachtung einer weiteren Dimension nötig, am eigentlichen Algorithmus ändert sich
nichts. Komplett anders verhält es sich für die Rotation. Während eine Rotation in
der Bildebene durch einen Winkel beschrieben wird, benötigen wir um eine 3D Ro-
tation zu beschreiben drei Winkel.

Rotationen spielen insbesondere dann eine Rolle, wenn das Ergebnis einer An-
notation von der Orientierung des dargestellten Objektes abhängt. Wir betrachten
eine Abbildung die ein Bild auf ein annotiertes Bild abbildet als einen Filter. Die
Filter die wir vorstellen bestehen aus zwei Komponenten: (1) Im ersten Schritt wer-
den Bildmerkmale aus lokalen Bildausschnitten gewonnen. Als Ergebnis erhalten
wir ein neues Merkmalsbild, in welchem jedes Bildelement die lokalen Bildeigen-
schaften eines Bildpunktes im Eingangsbild beschreibt. (2) Im zweiten Schritt ver-
wenden wir bekannte Techniken des maschinellen Lernens um basierend auf den
Bildmerkmalen eine punktweise Annotation des Bildes zu erhalten. Die Extrakti-
on von Bildmerkmalen kann als ein Vorverarbeitungsschritt verstanden werden, der
Bilder in eine für den Computer leichter zu bearbeitende und auszuwertende Dar-
stellung überführt.

Wir beschäftigen uns in dieser Arbeit hauptsächlich mir der Merkmalsgewinnung
unter Berücksichtigung der 3D Rotation. Wir stellen die theoretischen und prak-
tischen Grundlagen vor um Filter basierend auf der spherischen Tensor Algebra,
ein mathematisches Grundgerüst welches den Umgang mit 3D Rotationen erleich-
tert, zu entwickeln. Dank der spherischen Tensor Algebra können wir die wesentli-
chen Informationen von Bildern in einer rotationsinvarianten Weise darstellen. Dies
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bedeutet, dass alle rotierten Versionen eines Bildes oder eines Bildausschnitts, auf
das selbe Merkmal abgebildet werden. Dies wiederum vereinfacht die automatische
Klassifikation. Basierend auf der spherischen Tensor Algebra stellen wir neue Fil-
ter vor, die bezüglich der Qualität der Ergebnisse und der Laufzeit zu signifikant
besseren Ergebnissen führen als existierende Techniken wie 3D SIFT oder 3D SURF.
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Abstract

In this dissertation we introduce new algorithms for extracting discriminative fea-
tures from volumetric images. The proposed techniques facilitate the classification
and evaluation of volumetric biological and medical (biomedical) images in an SE(3)
covariant manner, where SE(3) is the 3D Euclidean motion group.
We address the challenging problem of the automated annotation of volumetric

biomedical images. The annotation and evaluation of biomedical images is often
an indispensable step for the statistical analysis of scientific experiments, including
group studies in medical experiments, or the evaluation of thousands of cells under
different treatments in biological experiments. The annotation of biomedical images
is often done in a manual manner, but manual annotation is a very time consuming,
tedious and error-prone task.
A big advantage of a volumetric image representation is the fact that it allows an-

alyzing a biological or medical specimen in its full 3D appearance. However, many
existing algorithms rely on 2D images so that with the third dimension coming with
the volumetric image representation, there come new demands for the design of ap-
propriate algorithms. Many algorithms can be extended from 2D to 3D in a straight
forward manner. For instance, it is easy to extend filters like isotropic smoothing fil-
ters, the computation of Cartesian derivatives via central differences or the Fourier
transform from 2D to 3D by simply considering an additional dimension. However,
when rotations are playing a role, the situation becomes completely different. While
a rotation in 2D images can be described by only one rotation angle, we have three
degrees of freedom describing a full 3D rotation.
The consideration of rotations becomes important whenever the orientation of ob-

jects influences the annotation results. In this thesis we regard a mapping of images
to image annotations as a filter. The proposed kinds of filters are actually the re-
sult of concatenation of two filters: (1) a feature extraction step which maps local
image patches to intrinsic signatures. The result is a feature image, where each el-
ement is a signature representing the characteristics of a voxel surrounding in the
input image. (2) A machine learning component utilizes these signatures to solve
the annotation task in a voxel-by-voxel manner. That is, the feature extraction step
transforms images or image patches into representations that are easier for the com-
puter to process, evaluate and classify.
We emphasize on the feature extraction step with a particular focus on the 3D

rotation. We introduce the theoretical and practical basis to form filters based on
spherical tensor algebra, a mathematical framework which facilitates handling of
3D rotation. Thanks to spherical tensor algebra we are capable to extract intrinsic
information from local image patches in a rotation invariant manner. That is, all
rotated version of an image patch are mapped to the same intrinsic signature, which
in turn, facilitates the classification for the machine learning part. We introduce
novel filters based on tensor algebra performing significantly better than existing
approaches, among them filters based on 3D SIFT and 3D SURF features, regarding
quality of the results and computation performance.
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1 Introduction

Volumetric images are, opposed to classical planar images, images of objects in three
physical dimensions. In Fig. 1.1 on the following page we show a common repre-
sentation of volumetric images. Particularly in the life-sciences, volumetric images
have gained in importance during the last decades. Therefore, there is a great in-
terest in having techniques for automatically analyzing such images. However, vol-
umetric images are coming with new challenges that did not occur for classical 2D
images. Hence not all algorithms that perform well for 2D images work for their
volumetric counterparts. The first part of this introduction draws the differences be-
tween classical 2D images, like photographs, and volumetric, biological and medical
(biomedical) images. We further introduce the process of pattern recognition with a
particular focus on image analysis and we concentrate on the challenges occurring
when addressing the problem of detecting and classifying objects and structures in
volumetric images. In this context, we introduce the terminology of covariance and
invariance both playing a major role in this theses. The introduction ends with an
overview of related work.
In this thesis we introduce novel techniques for the computer aided annotation

of biomedical images. The provided solutions are based on mathematical principles
known in the fields of quantummechanics and theoretical chemistry. The main con-
tributions are new algorithms for the extraction of intrinsic features from patterns
within volumetric images. For this, we utilize spherical tensor algebra to extract
features that undergo well defined, predictable transformations under full 3D im-
age translations and rotations. In combination with existing machine learning tech-
niques, the proposed features show a remarkable performance in several object de-
tection and classification tasks, outperforming state-of-the-art features like 3D SIFT
and 3D SURF.

1.1. Volumetric Images

In our modern digital world, the technique of acquiring, storing and processing 2D
images is available for almost everyone. This is mainly because of user friendly dig-
ital cameras and camcorders, cheap computers, the omnipresence of digital storages
as well as the existence of many easy-to-use image processing programs. These tech-
niques are accessible to all of us without requiring being an expert in the field of
digital image processing and image analysis. For instance, modern digital cameras
not only automatically choose the best settings regarding illumination, they also can
make use of face detection algorithms to automatically choose the best settings for
taking a portrait picture. Another example is the usage of image post-processing
techniques. Almost any state-of-the-art image processing tool can do a gamma cor-
rection, a histogram equalization, implements a technique for sharpening or blur-
ring an image or changing the saturation of the image’s colors. The user is not di-
rectly faced with the underlying techniques: he only needs to adjust some parame-
ters via sliders and efficient implementations ensure that the user sees the result in
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1. Introduction
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Figure 1.1.: Volumetric images are often acquired in a slice-by-slice manner. There-
fore, they are often called a z-stack.

real-time. Hence all steps beginning with the image acquisition, to the printing of
the final image can be done in an intuitive manner. However, digital cameras and
camcorders are mimicking the human eye and the human perception of our world.
The resulting image is nothing else than a projection of the real world onto a flat
piece of paper. What we see is always the light reflected from the objects surfaces
and captured by the camera lens.
In contrast to conventional 2D images, there exist techniques like computer to-

mography (CT), magnetic resonance imagining (MRI) or confocal laser scanning mi-
croscopy (CLSM) that allow us to study organisms in-vivo, which means, they allow
capturing images within living organisms. For that reason, these techniques are of
particular importance in biological and medical science. Moreover, these techniques
allow acquiring volumetric images. Volumetric images are often a stitched assembly
of several conventional 2D images that have been recorded in different depths. MRI,
CLSM or CT techniques are usually taking 2D images from a plane lying within a
biological sample that is in focus. For instance, in case of the CLSM, a laser beam
that is steered by mirrors is used to illuminate tiny volumetric fractions within a bi-
ological sample. The detected light originating from such an illuminated focal point
represents one pixel within the final image. The focus point can be moved within
an xy-plane, thus the laser illuminates the specimen in a point-by-point manner. A
2D image is captured pixel-by-pixel (image x-direction) and line-by-line (image y-
direction). In order to acquire a volumetric image the focus plane is slightly moved
perpendicularly to the xy-plane (z-direction) by mechanically moving the specimen.
Since volumetric images are typically recorded in a slice-by-slice manner volumetric
images are sometimes called a z-stack; see Fig. 1.1. The specimen is often coarser
sampled in z-direction than in the focal plane. Hence the voxel size of volumetric
images is not necessarily cubic. A big advantage of the CLSM technique, for ex-
ample, is that specific parts of a biological sample can be marked with fluorescent
molecules so that light is emitted with a specific wave length. With suitable filters
the light of different kinds of markers can be captured separately, allowing for selec-
tively acquiring images of specific parts of a biological sample. An often occurring
problem is that depending on the optical density of the sample, a certain amount of
light is absorbed. This might lead to a decreasing intensity of a recorded volumetric
image in the z-direction. Moreover, light is usually spread in an anisotropic way,
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1.2. Detecting Patterns in Images

that is, the acquired image is blurred in an anisotropic manner. Then, the acquired
image is the result from a convolution of the “true image” of the biological sample
with an (anisotropic) point spread function (PSF), which sometimes makes an initial
deconvolution indispensable (Shaw and Rawlins 1991).
Along with the advent of these new acquisition techniques, there is an upcoming

need for new image processing and image analysis techniques particularly designed
to cope with these special kinds of volumetric data. MRI, CLSM or CT offer us new
ways for studying and analyzing living organisms in their natural constellation, but
at the same time, many parts of the analysis and the evaluation of biomedical im-
ages are still done in a manual or semi-automated manner. For instance, biologists
or pathologists are often facing problems such as counting the occurrence of specific
cells in microscopical images of cell cultures or within tissue sections. This often
includes the classification of cells with respect to cell types and cell state. Consider-
ing the fact that volumetric images of biological samples might contain thousands of
cells it turns out that scientists are often wasting hours on such tedious tasks. Fur-
ther tasks occurring in a medical setting as well as in a biological scenario include
the co-localization of specific structures or landmarks within images of different sub-
jects. For instance, a clinical group study which is comparing the connectivity of the
neuronal fibers within brains of different subjects is only possible if corresponding
points and areas within the brain of different subjects can be found reliably. An-
other biologically related example is the co-localization and comparison of protein
patterns within Zebrafish embryos (Ronneberger et al. 2012).
In this thesis, we propose new techniques for the detection and classification of

structures, landmarks and objects within volumetric images. The whole procedure
mimics a manual evaluation and annotation: given a volumetric image, we obtain
the position and classification of objects within the image in terms of a label image
of the same extent as the input image. In case of cell detection and classification
the voxels of the resulting label image would contain either a label that denotes the
background, or if a voxel coincides with a cell’s center, a label representing the cell
type. If we are only interested in the number of cells of a specific cell type, we just
run over the label image in a voxel-by-voxel manner and count the number of the
corresponding occurring labels. If the position is also of interest, then we can easily
automatically grab the cells positions from the label positions.

1.2. Detecting Patterns in Images

This section briefly introduces the concept of pattern recognition and the role of fea-
tures. For further readings we refer to textbooks covering the fundamentals in pat-
tern recognition and machine learning. The process of assigning labels to patterns is
called pattern recognition and belongs to the research field of machine learning. The
patterns are usually acquired from the real world via an analog image acquisition
technique and are then transformed into a discrete signal that allows further digital
processing steps. Such a discrete representation carrying intrinsic information about
a real world object is called a pattern. The pattern may undergo some further initial
processing steps. In case of a microscopical image, it might be a deconvolution (de-
blurring) or gamma correction. The cascade of such initial manipulations is called
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pre-processing.
The assignment of a label to the pattern can be e.g. categorical, like {“car”, “pedes-

trian”, “unknown”} or just numbers {1,2,3,· · · ,N}. We say each label represents a class
and the patterns are instances of a class. In this case, the space of all possible labels
is discrete and usually finite and the assignment is called a classification. If the space
of labels is continuous, then it is called a regression.
In our scenario, the patterns are images or local image patches within a large im-

age. We illustrate the process in Fig. 1.2 on the facing page: (a) a volumetric im-
age has been acquired via a microscope and (b) has been represented in terms of a
three dimensional discrete voxel grid. We are interested in locally searching in the
volumetric image for specific cells in a voxel-by-voxel manner. (c) Therefore, our
patterns are small image fractions called local patterns. We skip (d) for the moment
and continue with (e): the aim in this example is the assignment of labels to the local
patterns that are either {cell type 1, cell type 2, background}. A background class is
often used for collecting all patterns not belonging to one of the classes that are of
interest. (f) Since this is done in a voxel-by-voxel manner we obtain the classifica-
tion results in terms of a label image. Note that similar to the outcome of a manual
annotation the label image (f) is the result of the automated annotation of all local
input patterns (c) and thus the annotation of the input image (b).
We denote the mapping of patterns to class labels by the function Γ : P → L. The

function Γ is called the classifier. The space P of all patterns is called the pattern space.
The elements of P are usually high dimensional vectors which we denote by bold let-
ters p ∈ P. The space L of all labels is called output space. An assignment (p, l) ∈ P ×L
that we know that is correct is called a ground truth. The function Γ depends on
a model that is created during a learning step. The creation of a model is commonly
done in a data driven way, which is the machine learning part of the pattern recogni-
tion process. Pattern recognition can be dived into two categories depending on the
way a model is obtained: supervised learning and unsupervised learning (It is worth
mentioning that there exists a mixture of both called semi-supervised learning).
Supervised learning is usually performed by providing labeled training data. A

set of training data is called a training set. A training set consists of (often manually)
labeled pairs {(p1, l1), (p2, l2), · · · , (pN , lN )}, (p, l) ∈ P × L and machine learning tech-
niques are used to generate a model that performs as well as possible on the training
set. Since the ground truth is given, the performance of a model can always be
evaluated and optimized. Popular classifiers are decision trees like random forests
(Breiman 2001), naive Bayes classifier (John and Langley 1995), neuronal networks
(Rosenblatt 1958) or support vector machines (Cortes and Vapnik 1995).
In unsupervised learning, the training set is unlabeled. The aim is to find hidden

structures within the training set that allow for grouping the patterns into classes.
A classifier would then map new patterns to one of theses classes. Since no ground
truth is provided a model can hardly be evaluated, which makes an evaluation of
the model difficult. Popular techniques for unsupervised learning are k-means clus-
tering (Seber 1984; Spath 1985) or hierarchical clustering methods (Jain and Dubes
1988; Zahn 1971).
Learning a model is always a trade-off between perfectly matching the training set

and generalization to new, “unseen” data. The effect of perfectly matching the train-
ing set, but not being capable to generalize to new patterns is called over-fitting. This
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Figure 1.2.: Classification of volumetric images in a voxel-by-voxel manner.
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often occurs when the dimension of the pattern space is larger than the number of
instances in the training set. However, in many scenarios we have prior knowledge
about which kind of patterns occur and which features are important for a success-
ful classification. Due to this fact, it is often reasonable to utilize this knowledge
in order to reduce the dimension of the pattern space by extracting intrinsic fea-
tures from patterns so that the dimension of a pattern is reduced to the dimension
of a feature. Features can be regarded as highly discriminative signatures of pat-
terns. Consequently, training and classification becomes “easier“ for the classifier as
regards to number of training samples and computational effort.
This is achieved by introducing an intermediate feature extraction step F : P→ Cn

that maps patterns to intrinsic feature vectors of a feature space Cn; see Fig. 1.2 on
the previous page (d). Hence the classification of patterns becomes a concatenated
function Γ ◦ F : P → L that first maps patterns p ∈ P to features v = F(p),v ∈ Cn and
then the features to labels of the output space L, where l = Γ(F(p)) = Γ(v). While the
creation of the model for Γ stays a machine learning part that builds upon a training
set, the design of F is usually done manually.

1.2.1. Covariant and Invariant Pattern Recognition

Particularly in case of time-dependent or position-dependent patterns, we often ex-
pect that a classification or regression is time- or position-dependent, too. This
means, the output of the classifier transforms according to the input pattern. For
the definitions below we use the same notation as Reisert (2008).
For example, consider the computation of the optical flow of two consecutive

frames in a movie (Horn and Schunck 1981; Lucas, Kanade, et al. 1981). The compu-
tation of an optical flow is a regression problem. We expect that if the image content
in both frames is translated, the resulting optical flow field is translated, too. We say
the function Γ is translation covariant (also called equivariant).

Definition 1.2.1 (Covariance (or Equivariance)). Given a function f : X → Y with an
input space X and an output space Y . Given a transformation group G whose elements we
denote by g. Let τXg and τYg representing the group action of g on X and Y , respectively.
We say a function f is covariant to G, if

∀g ∈ G : f (τXg p) = τ
Y
g f (p) . (1.1)

Let us further consider an example where we aim at classifying cells. Assume
that images each showing a single, centered cell, should be classified into different
cell types. The classification result must not depend on the cell orientation, thus a
model for the classifier has been created accordingly. In this case, the output of the
mapping Γ does not depend on the rotation acting on the input space. We say the
function Γ is rotation invariant.

Definition 1.2.2 (Invariance). Given a function f : X → Y that is covariant to G. We
say f is invariant to G, if τYg is the identity function I Y in Y . That is,

∀g ∈ G : f (τXg p) = τ
Y
g f (p) = I

Y f (p) = f (p) . (1.2)

Hence invariance is a special case of covariance, see Fig. 1.3. Note that we can
make any classifier invariant to a transformation group by making the feature ex-
traction F invariant. The transformation is then just hidden for the classifier Γ.
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Figure 1.3.: a) Covariance, and b) Invariance as a special case of covariance.
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Figure 1.4.: Rotation in 2D is fully describes by one angle ϕ. This includes whole
objects as well as gradients. The rotation angles ϕ is ranging from 0 to
2π.

1.3. Object Detection in Volumetric Images

At a first glance, a volumetric image is just a 2D image with an additional third
dimension. However, regarding detection and classification, there are several im-
portant differences regarding the design of features between biomedical volumetric
images on the one hand and “classical” 2D pictures and photographs on the other
hand.

A big topic in the computer vision community is the detection of objects or per-
sons within photographs. For instance, algorithms for the camera based detection
and classification of pedestrians are of particular importance for the development
of new car assistant systems, as well as for the surveillance of public areas such as
airports or train stations; see e.g. the pedestrian detection benchmark of Dollár et al.
(2009) for a survey on this topic or the survey of Geronimo et al. (2010). One issue
is scale. It is hard to tell from a pure picture how tall a person is. Without involv-
ing nearby objects into our judgment, it is nearly impossible to conclude whether a
person is short or just far away. Therefore, scale space theory gained in importance
(Lindeberg 1993; Lowe 2004). A much bigger issue is occlusion. Occlusions irrevo-
cably remove information that might be indispensable for detecting or classifying an
object. In order to cope with partial occlusions objects are often described in terms of
the appearance and constellation of local and canonical image patches. Such canon-
ical image patches are just small fractions of the image representing e.g. an edge or
corner or a certain type of texture. If it happens that parts of an object are occluded,
then it is still likely to identify an object by the remaining image patches; (Leibe et
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al. 2004; Mikolajczyk et al. 2006). A minor issue is rotation within the image plane.
A rotation in the image plane is just a linear transformation depending on one rota-
tion angle; see Fig. 1.4 on the preceding page. Therefore, a rotation invariant feature
representation can be obtained easily, and such representations facilitated the detec-
tion of structures or objects within photos and images in a variety of applications
(Khotanzad and Hong 1990; Lowe 2004; Morel and Yu 2009; Sheng and Shen 1994).
However, considering photographs of the real world, the rotation of objects in the
image plane is by far not sufficient to model a real world rotation of objects. Just
consider the scenario, where a person is turning around thus a photo is taken first
from their front and then from their backside. Obviously, there is no rotation that
turns the first picture into the second one. This is true for almost any kind of objects,
such as cars or animals. Accordingly, the rotation in the image plane became less im-
portant in many state-of-the-art detection frameworks and algorithms went over to
completely ignore the rotation by just treating a car’s front and a car’s side as two
different kinds of representations of a car (Bourdev and Malik 2009; Felzenszwalb
et al. 2010). Only for specific applications like the analysis of aerial views the con-
sideration of a planar rotation is highly beneficial. Applications are including the
detection of aircrafts, houses or cars (Heitz and Koller 2008; Noronha and Nevatia
1997; Schmidt and Roth 2012; Vedaldi et al. 2011).
This is contrarily to biomedical images. For biomedical images we usually know

the exact size of a voxel. Therefore, we exactly know the size of structures and ob-
jects within an image. Hence scale is often a rich source of information telling us
something about cell growth or allowing us to distinguish between different species.
Occlusions occur always with respect to a certain point of view. Having volumetric
images the problem of occlusion does not exist in a way that it exist in photographs.
However, we can sometimes observe an effect of occlusions in form of absorption
where objects are absorbing light so that objects “behind” are less illuminated. This
is often the case for microscopical images. Moreover, in contrast to 2D images, a 3D
rotation in the real world corresponds to the same 3D rotation acting on the object
within the image. This is also true for 3D translations. Another major point is the
amount of memory necessary for representing a volumetric image. It is noticeably
larger than for a 2D image. Consider the following example: a 128×128 images con-
tains 16,384 pixels. Assuming double precision we would need 0.125 megabyte for
such an image. A volumetric image of size 128×128×128 contains already 2,097,152
voxels which corresponds to 16 megabyte. For 2563 we already have 128 megabyte
in contrast to 2562 where we only need 0.5 megabyte. Note that 0.5 megabyte can be
completely stored in the second level cache of modern CPU’s which is an additional
plus for 2D images. Hence algorithms like the fast Fourier transform which are
extremely fast on 2D images are noticeably slower when working with volumetric
images.

1.3.1. SE(3) Covariant Object Detection in Volumetric Images

The special Euclidean motion group is denoted by SE(n) where n denotes the di-
mension. The group SE(n) is a semidirect product of the n-dimensional translation
group T (n) and the n-dimensional rotation group SO(n). Hence the elements of the
Euclidean motion group are rotations and translations in Euclidean space. For n = 2
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a)

b)

Figure 1.5.: a) Full rotation in 3D in terms of Euler angles (z,x,z - convention), and
b) Rotation of gradients. The rotation angles ψ,ϕ are ranging from 0 to
2π, θ is ranging from 0 to π.

there are three degrees of freedom: Euclidean motion in the image plane consists of
a rotation, parametrized by one angle ϕ (see Fig. 1.4 on page 19) and the translation
in x and y direction, respectively. In case of volumetric images (n = 3), there are
six degrees of freedom: a rotation with respect to the three Euler angles ψ,θ,ϕ, see
Fig. 1.5 and a translation into the x, y and z direction, respectively.
In our scenario, the biomedical images are represented by scalar valued functions

I : R3→ C, mapping from the Cartesian coordinates R3 to the complex numbers (we
consider volumetric images as complex valued despite the fact that most of them are
real valued). Hence our pattern space P is the space of scalar valued functions de-
fined on R3. We define Euclidean motion acting on images in terms of a couple of an
image translation τ

P
t and an image rotation τ

P
θ . With t ∈ R3 we denote a translation

vector. The angle θ is a placeholder for the three Euler rotation angles. We define
the image translation by

(τPt I )(r) := I(r− t) , (1.3)

and the rotation around the origin by

(τPθI )(r) := I(U
T
θ r) . (1.4)

We denote image coordinates by r ∈ R3. With Uθ ∈ R3×3, detUθ = 1 we denote an
ordinary 3D rotation matrix (remember, that the inverse representation of a rotation
is just the transposed matrix). Hence full Euclidean motion acting on an image is
defined by

(τPt τ
P
θI )(r) = I(U

T
θ (r− t)) . (1.5)

Note that τPt τ
P
θI = τ

P
θτ

P
(UT

θ t)
I , that is, the order of rotation and translation can be ex-

changed (identity can be shown by using the substitution rules of image translations
and rotations).
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While for scalar valued images the Euclidean motion can be defined purely by a
coordinate transform, vector- or even tensor valued images (like a gradient field or
a Hessian matrix field) undergo further transformations under rotations: a scalar
valued element of an ordinary image just changes its position under motion. But a
vector (or tensor) of a vector field transforms with respect to both, coordinate and
value. Let f : R3 → Cn, f ∈ X be a vector valued function, where X is the space
of complex vector valued functions defined on R3. They transform under rotations
according to

(τXθ f)(r) := τ
Cn

θ f(UTθ r) , (1.6)

where τC
n

θ is a value transformation. For example, a gradient field f : R3→ C3 trans-
forms according to (τXθ f)(r) = Uθf(U

T
θ r). The inner rotation matrix is acting on the

coordinates, while the outer rotation matrix is rotating the vectors (the values of f)
themselves. Equation (1.6) can be regarded as a generalization of Eq. (1.4) to vec-
tor valued images, where for scalar valued images the value transformation is the
identity function. Another example is an image whose single values do not mix un-
der rotations or whose values are attributes which are not changing under rotations.
This can be e.g. an images with several color channels. Each color component trans-
forms itself like a scalar valued image. In such a case, the value transformation is
the identity transformation, i.e. (τXθ f)(r) = I

Cnf(UTθ r).
The translation of vector valued functions is identical to scalar valued functions

namely (τXt f)(r) = f(r− t).

1.3.1.1. SE(3) Covariant Filters

Labeling a biomedical image can be regarded as a detection problem: we search for
specific structures, landmarks or objects within images and assign labels to them. In
general, we don’t have prior knowledge about their number, location or orientation.
Detecting objects or structures in volumetric images is about as easy as finding

a needle in the haystack. Since we neither know the position, nor the orientation
of objects within an image, there is no alternative but to search for the objects in a
point-by-point manner. Such a detection task is often a quite unbalanced problem:
only aminor part of an image contains the objects that we are looking for. The largest
part of an image is typically considered as background. Therefore, there is a great
demand for efficient algorithms.
The proposed framework can be regarded as an “intelligent saliency detector”. We

are searching structures in images by focusing the search on a local image region: a
window is sliding over the image in a voxel-by-voxel manner and for each region
lying within the window an intrinsic feature vector is extracted. The whole process
works like a filter: the input is a volumetric image I ∈ P, I : R3 → C, the output an
image f : R3→ V containing features extracted from local image regions in a voxel-
by-voxel manner. We call the output image a feature image. Such a feature image
can be regarded as a generalized “saliency map”. The feature image can then be
processed for further analysis, e.g. each voxel can be evaluated via a classifier for the
absence or presence of certain structures or whole objects. In that way, we obtain an
automated annotation of the input image.
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1.3. Object Detection in Volumetric Images

Figure 1.6.: A 2D example: F : P → V̂ is an SE(2) covariant filter mapping images
I ∈ P to feature images F {I } ∈ V̂ (the filter response). The elements
of F {I } are locally extracted (here complex valued) features (above the
real and imaginary components are shown). Since F is covariant to Eu-

clidean motion, it holds that F {τPt τPθI } = τ
V̂
t τ

V̂
θF {I }, where τ

P
t τ

P
θ are

translation and rotation in image space and τ
V̂
t τ

V̂
θ translation and ro-

tation in feature image space, respectively. Note that rotation in feature
image space transforms both coordinates and values. The values (here
real and imaginary components) “mix” under rotations.

In our case, features are complex valued vectors, thus the feature space is V = Cn.
Features are extracted from regions in focus via a function F : P→ Cn, mapping im-
ages I ∈ P to features in a feature space Cn. Possible features are the image gradient,
the gradient magnitude or the Hessian matrix at the image point that is in focus. Al-
ternatively, sophisticated features like local jets (Koenderink and Doorn 1987) build
upon an assemble of local image derivatives are an option. Further examples are de-
scriptors representing the local gradient orientation distribution like the structure
tensor (Förstner 1986; Harris and Stephens 1988), SIFT (Lowe 2004) descriptors or
HOG (Dalal and Triggs 2005) descriptors. A common property of these features is
that they extract a vector valued feature from an image in a rotation covariant man-
ner, that is

F(τPθI ) = τ
Cn

θ F(I ) , (1.7)

i.e. for a rotation in image space exists a corresponding transformation in feature
space. We call the output of F a local feature because it has been extracted from a
certain location in the image and it is used for evaluating the content of an image at
a certain position.
Now suppose we aim at using the local feature extraction F in a sliding window

scenario. The whole process can be regarded as filter mapping images to feature val-
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ued saliency images: the input is a biomedical image, the output is a feature image.
The feature image contains for all voxels the features extracted from within the slid-
ing window. For this, the local feature extraction F is used for extracting intrinsic
features from the regions in focus of a sliding window in a voxel-by-voxel manner.
So technically, we center each voxel r ∈ R3 (which we consider as current center
of the window) with respect to the origin and extract a feature from the centered
image using F. What we obtain is a feature representing the characteristics of the
image around r (because we previously centered the image with respect to r). The
extracted feature is then stored back at position r for further evaluation of the win-
dow content. By continuing in a voxel-by-voxel manner we obtain one feature per
voxel. That is, a new feature valued image, where each voxel from the input image
has its corresponding feature in the output image. Such a feature image might then
be evaluated with help of a classifier in a voxel-by-voxel manner with the purpose
of detecting objects or structures.
We denote the space of vector valued feature images f : R3 → Cn by a bold V̂. A

filter mapping biomedical images I ∈ P to vector valued feature images f : R3→ Cn is
denoted by F : P→ V̂ (F : images→ feature images, which is different from the local
feature extraction F : P → Cn mapping images→ features). The filter is induced by
a local feature extraction F, which we use for extracting features in a voxel-by-voxel
way:

F {I }(r) := F(τP(−r)I ) . (1.8)

That is, we create a new feature valued image F {I } (the filter response) whose ele-
ments are the locally extracted features from I . Such a filter is covariant to Euclidean
motion, i.e. it holds that

F {τPt τPθI } = τ
V̂
t τ

V̂
θF {I } ,

(1.9)

where

(τV̂t τ
V̂
θF {I })(r) = τ

Cn

θ F {I }(UTθ (r− t)) (1.10)

is just the SE(3) covariant transformation of vector valued images. That is, any 3D
rotation covariant local feature extraction F induces an SE(3) covariant filter F ; a
proof can be found in section B.1 on page 195. An SE(3) covariant filter is illustrated
in Fig. 1.6 on the preceding page.
On the other hand, any SE(3) covariant filter F : P→ V̂ induces a rotation covari-

ant local feature extraction F : P→ Cn with

F(I ) := F {I }(0) ⇔ F {I }(r) := F(τP(−r)I ) , (1.11)

that is, F can be fully recovered given F. A proof is given in section B.1 on page 195.
Hence it is only a matter of interpretation: we can either consider feature extrac-

tion as a local problem, where we extract (and process) local features that are co-
variant to SO(3) in a voxel-by-voxel manner, or we consider the feature extraction
as an SE(3) covariant filter mapping images to SE(3) covariant feature images. Both
interpretations are equivalent.
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Figure 1.7.: A 2D example: F : P → V̂ is an SE(2) covariant filter mapping images
I ∈ P to feature images F {I } ∈ V̂ (the filter response). Here the output
of F transforms in the same way as scalar valued images. The features
are locally rotation invariant. Actually, the values of the filter response
coincides with the magnitudes of the complex valued filter response of
the example shown in Fig. 1.6 on page 23.

1.3.1.2. Local SO(3) Invariant Features

In many applications it is beneficial to make local features invariant to local rota-
tions, that is,

F(τPθI ) = I
CnF(I ) = F(I ) . (1.12)

The advantage for our applications is evident: cells or landmarks in biomedical im-
ages might occur in different orientations. Thanks to invariance to local rotations,
a classifier Γ : Cn → L becomes automatically capable to correctly classify cells de-
spite their local orientation. A classifier Γ “inherits” the invariance from F, since
Γ(F(τPθI )) = Γ(F(I )). This facilitates both training and classification.
In this scenario, F induces an SE(3) covariant filter whose output transforms sim-

ilar to scalar valued images. The transformation of F is solely described by a coordi-
nate transform, namely

(τV̂t τ
V̂
θF {I })(r) = I CnF {I }(UTθ (r− t)) = F {I }(UTθ (r− t)) . (1.13)

Hence the different components in the output-space do not mix under rotations.
More precisely, each component of the vector valued output of F transforms like
a scalar valued image; see Eq. (1.5). It is further worth mentioning, that any feature
that is covariant to local rotations can be turned into an invariant feature via group
integration techniques. This is exactly the way we build the features proposed in this
thesis, (1) by building a filter on covariant local features (2) and making the features
invariant to local rotations. Such an SE(3) covariant filter is illustrated in Fig. 1.7.
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1.3.1.3. SE(3) Covariant Detection in Feature Images

A label image (an automatically generated image annotation) is the outcome of an
SE(3) covariant mapping that maps images I ∈ X to label images g : R3 → L, where
L is the set of possible classification results. We denote the set of all label images L̂.
We can turn any SE(3) covariant filter into such a mapping. This is done by concate-
nating a local feature extraction F : P → Cn and a classifier Γ : Cn → L, forming a
“new” SE(3) covariant filter that incorporates the classification, namely

F L{I }(r) := Γ(F(τP(−r)I )) , (1.14)

where F L : P→ L̂.
An issue we must tackle in practice is the large number of negative examples

within an image. Typically, only a few number of voxels count as detections. How-
ever, in practice, features corresponding to nearby voxels within an image are usu-
ally very similar to each other. Consequently, it is very likely that the same class
label is assigned to nearby voxels, although we have prior knowledge that only one
among them can be a correct detection. A solution for achieving a precise detec-
tion is combining a classification with a confidence value, reflecting the confidence
that a classification is correct. The correct detection is found by locating local max-
ima within confidence values of neighboring voxels and count only them as “true”
detections.
Most classifier are providing, in addition to a discrete classification result, a sim-

ple mathematical model that reflects the confidence that a classification is correct. In
case of a simple nearest neighbor classifier, the number of nearest neighbors count-
ing to the class that builds the majority can be regarded as a level of confidence. In
case of a support vector machine, Platt’s probabilities would be an option (Lin et
al. 2007; Platt 1999). For random forests, the number of trees building the majority
would be an alternative.

Example 1.3.1 (LoG Saliency Detector). A rather simple example is a classical saliency
detector searching for blob-like structures based on the Laplace of the Gauss function (LoG
detector). The Laplace of a Gaussian function is a blob like function so that filtering an
image with such a function results in a suitable blob detector. In this scenario, the local
feature extraction is the projection of the image onto the LoG function. Let I : R3→ R be
an image. Then the projection on the LoG is

F(I ) :=

∫

R3
I(r)(△e −x

2

2t )(r)dr, (1.15)

where t ∈ R>0 defines the size of the blob. The Laplace of an isotropic Gauss function is
again an isotropic function. This ensures that F is invariant to local rotations. Therefore,
F induces a filter that transforms like a scalar valued image; see Eq. (1.13). The filter
output is an image representing the blob-lifelikeness for the whole image in a voxel-by-
voxel manner. For the detection of blob like structures, local maxima within the feature
image are detected (the feature image provides the confidence values) and depending on
the magnitude, classified into blob/non-blob structures via thresholding.
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18 points 100 points

Figure 1.8.:Why avoiding sampling the 3D rotation space? This is mainly for two
reasons: (1) in contrast to the 2D case, equidistant sampling of the ori-
entation space is a nontrivial task. Consider the rotation of a gradient:
Discretization of such a rotation is equivalent to distributing points on a
sphere in an equidistant manner. This cannot be computed explicitly for
many point configurations. (2) The number of necessary points required
for sampling the sphere is significantly larger than for the 2D case (For
α = 20◦ we have 18 points on a circle, and 100 points on the sphere).
If we would consider all three Euler angles, then this would result in
100× 18 = 1800 points! This often hinders a fast realization in 3D.

We have seen that we can quite easily create an SE(3) covariant filter via locally
extracted features. However, designing discriminative features which are locally in-
variant to 3D rotations is challenging. We master this challenge by making use of
spherical tensor algebra, an appropriate tool for dealing with full Euclidean motion:

• Tensor operations allow for extracting intrinsic features from local image patches
in an SE(3) covariant manner.

• It is mathematically proven that regarding full, continuous rotations in 3D,
spherical tensor representations are the most sparse and therefore most com-
putational and memory efficient representations for 3D patterns.

• Local features based on spherical tensor representations can always analyti-
cally be turned into features which are invariant to local rotations. This can be
guaranteed for all voxels.

1.4. Related Works

This work is inspired by the work of Ronneberger et al. (2005), and the work of
Reisert and Burkhardt (2009a), both aiming at detecting local structures or objects
in volumetric images in an SE(3) covariant manner.
The proposed framework for SE(3) covariant detection and classification of ob-

jects and structures within images can be regarded as an “intelligent saliency detec-
tor“. However, while locally rotation invariant salient point detectors purely rely on
thresholding very simple features, like the determinate or trace of the structure ten-
sor (Förstner 1986; Harris and Stephens 1988) or the Hessian matrix (Lowe 2004),
the proposed, locally rotation invariant filters are much more discriminative. They
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are suited for detecting complex structures or whole objects in volumetric images.
In the following we focus on related work on the extraction of features that are in-
variant to (local) rotations, because they build the key ingredient for our covariant
filters. For a survey of existing ”classical” saliency detectors we refer to Tuytelaars
and Mikolajczyk (2008).
Designing discriminative features that are invariant to local 3D rotations is chal-

lenging for volumetric images. Hence related work on this specific topic is man-
ageable and we decided that is worth mentioning some specific works on invariants
for 2D rotations, too. Following Burkhardt and Siggelkow (2001), the systematic
generation of invariants can be divided into three kinds of methods: normalization
methods, invariance via group integration, and differential approaches. As far as we
know, the latter one has not been used so far in the context of 3D rotation invariant
features for volumetric images. The reason might be the fact that in practice, the
resulting differential equations are often hard to solve. We will address the details
regarding the generation of invariants in a chapter about 3D rotation invariants in
this thesis. A forth kind of rotation invariant detection is rather based on an in-
variant classifier than on a rotation invariant features extraction. Creating a suited
model for such a classifier requires a training set including rotated versions of pat-
terns which are covering the high dimensional 3D orientation space. This might be
a reason why such methods have not been explored for 3D rotations so far. It is fur-
ther worth mentioning that template matching, including steerable filter and tensor
voting approaches, is also some kind of rotation covariant detection in volumetric
images. However, the aim of pattern matching algorithms is to find exact matches
of existing patterns within images, while our aim is pattern recognition: designing
features providing, in combination with a trainable classifier, reasonable feedback
for all possible kinds of patterns within an image. Pattern matching goes beyond
the scope of this thesis, but it is worth mentioning that the proposed mathematical
frameworks can also be used in a pattern matching context. Related work on spher-
ical tensors in this context is still rare. The interested reader is referred to the work
of Reisert (2007); Reisert and Burkhardt (2008b).

1.4.1. 3D Rotation Invariance via Pose Normalization

The probably most intuitive methods for obtaining rotation invariant features are
methods based on pose-normalization. This means that in case of rotations, local
patterns are first rotated into a canonical representation before intrinsic features are
extracted. The benefits are obvious: once the pattern is turned into its canonical
orientation, rotation invariance is not required for the particular feature extraction
process itself. However, determining the orientation parameters for turning a pat-
tern into it’s canonical orientation is often done in a heuristic manner. In such cases,
rotation invariance cannot be guaranteed. A quite popular approach of this family of
invariants is SIFT (Lowe 2004). It is fair to say that SIFT has revolutionized object de-
tection in 2D, because SIFT and similar techniques are widely used in various state-
of-the-art computer vision and pattern recognition algorithms. SIFT features are
representing the local gradient orientation distribution in a rotation and scale invari-
ant manner. Pose orientation normalization in SIFT is done with respect to the local
gradient main direction. The computation of SIFT includes a pre-selection of salient
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points within the image, which most likely allow for a unique pose-normalization.
That is, extracting a unique gradient main direction. SIFT and similar approaches
like PCA-SIFT (Ke and Sukthankar 2004), ASIFT (Morel and Yu 2009), SURF (Bay
et al. 2006) or DAISY (Tola et al. 2008) have been used in a broad variety of applica-
tions. Applications are ranging from face authentication (Bicego et al. 2006), object
recognition, classification and retrieval (Lampert et al. 2008; Nister and Stewenius
2006), images stitching (Lin et al. 2011), state-of-the-art optical flow algorithms (Liu
et al. 2011a) to action recognition (Scovanner et al. 2007) in the 2D+time domain
and much else.
The wide range of applications of 2D SIFT-like descriptors is opposed to 3D SIFT-

like descriptors, particularly with focus on applications involving biomedical im-
ages. The works on 3D extensions of SIFT are manageable and focused on solving
point matching and registration problems. Cheung and Hamarneh (2007a); Cheung
and Hamarneh (2007b) have proposed the n-D Sift descriptor which has been used
for the co-registration of volumetric medical 3D and 3D+time images. This includes
the 3D-SIFT descriptor of Allaire et al. (2008). The proposed 3D-SIFT descriptors
have also been used for the registration of volumetric spectral OCT1 images of the
retina (Niemeijer et al. 2009) or the co-registration of 3D+time CT-scans of lung
vessel trees (Osada et al. 2008; Paganelli et al. 2012). Recent applications on ob-
ject recognition include the scanning of volumetric CT scans of bags in airports for
security reasons (Flitton et al. 2010) and a voting based classification of objects in
volumetric images (Knopp et al. 2010). Particualarly work on object recognition, de-
tection and classification seems to be very rare in this field. Moreover, recent work
by Liu et al. (2012) and Skibbe et al. (2012) have shown strong evidence that 3D-SIFT
is less suited for such tasks than descriptors where rotation invariance is obtained
via group integration techniques. This is mainly the case because of two facts: (1)
pose-normalization highly relies on dominate structures within patterns and is also
often strongly influenced by noise. Therefore, a unique pose-normalization can-
not be guaranteed for each voxel in the image, particularly when considering the
fact that for 3D pose-normalization two dominant perpendicular directions must be
found. This is contrary to 2D, where it is sufficient and thus much more likely to
find one dominant direction, compare Fig 1.5 on page 21 to Fig 1.4 on page 19. (2)
Therefore, a pre-classification via interest point detection is used for the determi-
nation of stable point candidates. However, a pre-classification of voxels via simple
salient points may lead to the loss of indispensable information so that structures or
objects are just hidden from further detection or classification steps.

1.4.2. 3D Rotation Invariance via Group Integration

Group integration techniques are based on the idea of integrating over all possi-
ble transformation parameters so that a function becomes invariant to that specific
kind of transformation. Via group integration we obtain the best approximation of a
pattern in a subspace that is invariant to a specific transformation (Schulz-Mirbach
1994); a proof can be found in Reisert (2008, p. 29), that is the orthogonal projection
of the pattern onto the invariant subspace. The idea of invariants via group integra-

1Optical Coherence Tomography
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tion goes back to the work of Hurwitz (1897). In general, any feature that transforms
with respect to a finite or at least compact local linear transformation group, can be
turned into a group-invariant feature via group integration. For instance, the rota-
tion group is a compact linear group. Therefore, we can turn any rotation variant
feature into an invariant feature by integrating over all possible rotated version of
that feature. In contrast to pose-normalization, group integration always guarantees
rotation invariance.
The straight forward way to obtain rotation invariant features is to explicitly sam-

ple the orientation space. However, an explicit integration over the whole rotation
group via a sparse sampling of the orientation space is far to computational expen-
sive, see Fig. 1.8 on page 27, particularly when computing features in a point-by-
point manner. Therefore, explicit sampling of the 3D rotation space is rarely used,
see e.g. the work of Schael and Siggelkow (2000) or Ronneberger et al. (2002), where
group integration techniques are used to form invariants for the rotation invariant
recognition of microscopic images of airborne-pollen.
However, it is known that for any compact linear group there exists an irreducible

group representation in terms of group specific Fourier basis functions allowing for
a systematic computation of invariants in an analytical way. Moreover, it is shown
that for these kinds of group invariants (if the expansion coefficients are regular ma-
trices), completeness can be achieved via the Fourier bi-spectrum (Kakarala 1992).
Completeness, as we will discuss later in detail in the chapter about invariants, is a
very strong restriction that guarantees separability of all patterns up to the transfor-
mation.
For instance, for the cyclic translation group, which is a compact group, the irre-

ducible representations are the well known Cartesian Fourier basis functions. More-
over, for discrete n-dimensional signals represented on a discrete Cartesian grid,
there exists the Fast Fourier Transform (FFT, Cooley and Tukey (1965)), which trans-
forms signals into their irreducible counterparts in reasonable time. Translation in-
variants can then easily be obtained via the power- or bi-spectrum.
The biggest challenges within this group integration frameworks are: (1) group

integration is a linear operation. Linear operations are very “simple” operations
and we risk loosing a lot of information during this process. Therefore, it is very
important to create non-linear covariant features before group integration. This is
achieved by combining the group integration with kernel techniques (Haasdonk et
al. 2004; Haasdonk et al. 2005; Schulz-Mirbach 1995a). This is in opposition to the
pose-normalization technique, where features are first turned into a canonical view
before (nonlinear) features are extracted. (2) Group integration often requires much
more mathematical (and at a first glance computational) effort for creating an in-
variant feature extraction process. However, thanks to irreducible representations of
local linear compact groups, group integration is often possible in reasonable com-
putation time.
The irreducible representations of the rotation group allow for analytically per-

forming a group integration over the continuous space of the rotation parameters.
Rotation in the 2D image plane is just a cyclic 1D translation. Therefore, the irre-
ducible representations of 2D rotations are the 1D Fourier basis functions, in this
context often called circular harmonics. Any 2D pattern can be represented in terms
of polar coordinates (ϕ,r), where ϕ is an angle depending parameter and r the dis-
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tance to the center. That is, ordinary Cartesian Fourier analysis including the 1D
Fourier transform can be used within these settings for rotation analysis. For in-
stance, Hsu et al. (1982) realized a fast angular correlation of 2D images based on a
1D FFT using a circular harmonic representation.
There is a broad variety of rotation invariant features for 2D patterns based on

the irreducible representation of the 2D rotation. To mention some, Khotanzad
and Hong (1990) proposed rotation invariant image descriptors based on the power
spectrum of a polar representation of Zernike moments. Sheng and Shen (1994)
endorsed Fourier-Mellin moments for the rotation invariant recognition of 2D pat-
terns. The radial parts of Fourier-Mellin moments are polynomials in the radius
rn of degree n. Yap et al. (2010) proposed the polar harmonics for the rotation in-
variant image representation. Polar harmonics are having a wavy pattern in radial
direction. The radial functions are complex valued waves whose frequency can, de-
pending on the application, either be increased in radial direction, which gives the
function a Chirplet like character (Mann and Haykin 1991) or be decreased; see
also the work on polar harmonics of Hoang (2011); Hoang and Tabbone (2011). A
survey on moments and the creation of invariants in 2D can be found in Flusser
et al. (2009). Recently, invariants build upon the irreducible representations of the
2D rotation group have been used for the generic detection of structures within mi-
croscopic recordings of airborne pollen and fungal spores (Reisert and Burkhardt
2008c; Skibbe and Reisert 2012a) or the detection of motorbikes in images (Liu et
al. 2012). In the recent work of Schmidt and Roth (2012), features are not directly
represented in terms of circular harmonics. However, a rotation covariant feature
representation on a polar grid is transformed into irreducible representations of 2D
translations via a Fourier transformation. Compared to 3D rotation invariant fea-
tures based on pose-normalization, the group integration technique lead to a much
broader range of applications in 3D.
Contrarily to 2D, for 3D rotations, the relation to the Cartesian Fourier basis is

not obvious. But, there exists an angular dependent expansion of the 3D Cartesian
Fourier basis in terms of spherical coordinates (θ,ϕ,r). That is, instead of a Cartesian
parameter vector (x,y,z) we have an angular dependent component (θ,ϕ) and a dis-
tance to the center r. The angular dependent Fourier expansion is a decomposition
of the plane wave into angular dependent spherical harmonic functions represent-
ing the plane-wave in angular direction (θ,ϕ). The radial component r is captured
by the one-dimensional so-called spherical Bessel functions. Similar to the ordinary
Cartesian Fourier basis, spherical harmonics in combination with spherical Bessel
functions decompose a function into basic angular and radial frequency patterns
(the spherical harmonic functions are the ψ-angle independent irreducible repre-
sentations of the 3D rotation group). Due to this fact, while in the Cartesian scenario
the power spectrum of the Fourier transform of a function is translation invariant,
the power spectrum of a spherical harmonic expansion is rotation invariant.
Any volumetric image I : R3 → R can be defined in terms of spherical coordi-

nates I(θ,ϕ,r), that is, instead of a Cartesian parameter vector I(x,y,z) we have an
angular dependent component (θ,ϕ) and a distance to the center r. Hence the an-
gular parametrization of a volumetric image is independent from the Euler angle
ψ. Consequently, the spherical harmonics in combination with a 1D function cap-
turing the signal in radial direction form a suitable basis for representing volumetric
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images with the aim of extracting rotation invariant features. This property of spher-
ical harmonics has been exploited in some recent approaches, which differ mainly
in the way the images are represented in radial direction. The spherical represen-
tation of the Fourier basis itself is used in Wang et al. (2009) to represent single
3D recordings of airborne-pollen in a rotation invariant manner. An extension to
a dense computation of Gabor-like image features has been proposed by Skibbe et
al. (2012). Fourier-like functions have also been used in Skibbe et al. (2009a) for
describing and classifying volumetric objects. Mak et al. (2008) advocate Zernike
polynomials (see also Canterakis (1999)) as suitable radial functions and build ro-
tation invariants for the description and comparison of molecular shapes; see also
the works of Novotni and Klein (2004); Venkatraman et al. (2009). In Kazhdan et al.
(2003) and Fehr (2009); Fehr (2010); Fehr and Burkhardt (2006); Fehr and Burkhardt
(2007); Ronneberger et al. (2005); Skibbe et al. (2009b), a theoretically infinite set
of nested spheres, each expanded in spherical harmonics, is used for the detection
and/or classification of volumetric biological images. Ma et al. (2012) used spheri-
cal harmonic based invariants for the identification of alpha-helices in protein sec-
ondary structures. A detailed survey regarding the state-of-the-art of the dense,
fast computation of invariants based on such pattern representations can be found
in the dissertation of Fehr (2009). Representing the radial component in terms of
Laguerre polynomials leads to the spherical representation of the generic neighbor-
hood operators presented in Koenderink and Doorn (1992). Particularly for the latter
representation, efficient algorithms allow for densely computing features in a voxel-
by-voxel manner in almost linear time (Reisert and Burkhardt 2009a; Skibbe et al.
2012) and have shown remarkable performance in several recent applications in-
cluding the detection of mitotic cancer cells in microscopic images (Schlachter et al.
2010), the detection of landmarks within images of zebra fish embryos with the aim
of the co-registration of protein patterns (Liu et al. 2012; Ronneberger et al. 2012),
or the detection of landmarks and the classification of tissue within diffusion MRI
data of human brains (Skibbe and Reisert 2011; Skibbe and Reisert 2012b; Skibbe
et al. 2011a). Rotation invariant features have also been used by Schnell et al. (2009)
for the tissue classification of diffusion MRI images. However, they only fit the angu-
lar dependent measurement to spherical harmonics without implementing a radial
function. Furthermore, recent works cope with spherical harmonic representations
of SIFT like features thus group integration techniques can be used to obtain rotation
invariants from gradient orientation distributions. A gradient orientation binning
with respect to surface normals of volumetric objects has been used to form invari-
ants for the classification of pollen (Reisert and Burkhardt 2006; Ronneberger 2007;
Ronneberger et al. 2007). Furthermore, HOG-like features have been proposed for
the detection and classification of objects and landmarks within microscopic images
(Liu et al. 2011b; Skibbe et al. 2011b).

1.5. Structure of this Thesis

This thesis is divided into seven chapters, including the introduction and the con-
clusion. To ensure better readability we shifted some examples, lengthly definitions
and proofs, as well as lengthly auxiliary calculations and some figures and plots to
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the appendix. The main chapters are organized as follows:

Chapter 2 (Harmonic Analysis in 3D) This chapter introduces the mathematical
notations, which we use during this thesis. Furthermore, it covers the basic
concepts of group representation theory with focus on the 3D rotation group.
Furthermore, a survey on spherical tensor algebra is provided. Details regard-
ing a fast tensorial harmonic transformation have been presented at a confer-
ence (Skibbe et al. 2009b).

Chapter 3 (Rotation Invariant Features) In this chapter we show how to trans-
form spherical tensor features into locally rotation invariant feature represen-
tations via group integration techniques. One specific topic is the creation
of phase preserving invariants based on the bi-spectrum (Kakarala 1992). We
show that a straight forward computation of the bi-spectrum leads to linear
dependencies and we show how to solve this issue leading to an up to three
times smaller feature representations and hence a three times faster feature
computation. The authors related publications are manifold, covering several
applications where rotation invariant features are used for object detection and
classification (Skibbe and Reisert 2011; Skibbe and Reisert 2012b; Skibbe et al.
2009a; Skibbe et al. 2009b; Skibbe et al. 2010; Skibbe et al. 2011a; Skibbe et al.
2011b; Skibbe et al. 2012; Skibbe et al. April, 2011).

Chapter 4 (Spherical Tensor Derivatives) This chapter covers the theory and im-
plementation details of spherical tensor derivatives. We put the focus on image
processing. Tensor derivatives are playing an indispensable role in extracting
rotation covariant features from local voxel neighborhoods. The authors most
related publications are Skibbe et al. (2010); Skibbe et al. (2012); Skibbe et al.
(April, 2011).

Chapter 5 (SE(3) Covariant Filters) This chapter covers the major contributions of
this thesis, including the theoretical background and the implementation de-
tails. We introduce three SE(3) covariant feature extraction techniques build-
ing the essential covariant filters for mapping volumetric images to covariant
feature images based on spherical harmonic transformations:

Section 5.1 (An SE(3) Covariant Gauss-Laguerre Transform) In this section
we introduce a computational efficient dense spherical harmonic trans-
formation. The transformation is realized in a voxel-by-voxel manner in
almost linear time (apart from one initial convolution). The resulting fea-
tures are a spherical counterpart of the popular local jet-features (Koen-
derink and Doorn 1987). We further show that the provided basis func-
tions are optimal for representing local smooth processes. Furthermore,
the advocated approach is extended from scalar valued images to higher
order tensor valued images. This chapter is based on previous publica-
tions of the author (Skibbe and Reisert 2011; Skibbe and Reisert 2012b;
Skibbe et al. 2011a; Skibbe et al. 2012).

Section 5.2 (An SE(3) Covariant Spherical Gabor Transform) Gabor wavelet
are widely known and used in various applications. We provide a spheri-
cal harmonic based Gabor function and show how to efficiently design an
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SE(3) covariant Gabor filter in a voxel-by-voxel manner via tensor deriva-
tives. Preliminary results on this topic have been published in Skibbe et
al. (2010); Skibbe et al. (2012).

Section 5.3 (SHOG - Spherical Histograms of Oriented Gradients) SHOG, the
spherical histogram of oriented gradients, is a tensor representation of
SIFT- and HOG-like histograms of oriented gradients. We show how to
compute them efficiently via tensor products and show their strong rela-
tion to the popular structure tensor. Preliminary results have been pub-
lished in Skibbe and Reisert (2012a); Skibbe et al. (2011b).

Chapter 6 (Experiments) We conducted three exhaustive experiments on large data
sets consisting of synthetically generated and real microscopic data. We com-
pare the performance of the proposed techniques with state-of-the-art approaches
like 3D SIFT in a scenario where we aim at SE(3) covariant object and land-
mark detection.

The appendices are organized as follows:

Appendix A (Biomedical Applications) We introduce two applications: cell detec-
tion and cell classification in biological images and a voxel-by-voxel parcella-
tion and landmark detection in diffusion MRI images of human brains. The
results have been presented at several conferences and have been published in
two journal papers (Skibbe and Reisert 2011; Skibbe and Reisert 2012b; Skibbe
and Reisert 2013; Skibbe et al. 2010; Skibbe et al. 2011a; Skibbe et al. 2012).

Appendix B (Auxiliary Calculations) We shifted some lengthly auxiliary calcula-
tions to here.

Appendix C (Functions and Formulas) Here we list all relevant definitions of func-
tions and formulas used in this thesis.

Appendix D (Harmonic Filters) A brief introduction on trainable harmonic filters
(Reisert and Burkhardt 2009a).

Appendix E (Experiments: Plots and Figures) To ensure better readability, we shifted
several figures and plots from the experiment chapter to the end of this thesis.
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2.1. Preliminaries

We write vectors v ∈ Cn and matrices M ∈ Cn×m in bold letters. Matrices are always
written in capital letters. Single components are denoted by indexes vi so that v =
(v1, · · · , vn)T . Accordingly, we have two indexes for single matrix elements, that is,
for M ∈ Cm×n: Mi,j ∈ C, 1 ≤ i ≤ m,1 ≤ j ≤ n. For three dimensional vectors we

sometimes use the notation v = (vx, vy , vz)
T , or just x = (x,y,z)T , to emphasize the

relation to the Cartesian coordinate system in 3D. If additional lower indexes are
associated with a vector or matrix (e.g. vm ∈ Cn) we denote single components by
using square brackets, e.g. vm = ([vm]1, · · · , [vm]n)T . For single vectors we use the
letters u,v,w. If the vector denotes a cordinate vector we use r,t,x. Scalar valued
functions are written in small letters, e.g. f : Rn→ C. If f is a volumetric image we
often write I : R3→ C to facilitate interpretation. Vector valued functions are written
in bold small letters, e.g. f : Rn → Cℓ. For vector valued functions we use a vector
representation, thus f can be written as vector f = (f1, · · · , fℓ)T , where fi : R

n → C.
Moreover, if additional lower indexes are associated with a function (e.g. fm : Rn→
Cℓ), then we write f = ([fm]1, · · · , [fm]ℓ)T . If the elements of a vector valued function
can be regarded as some kind of expansion coefficients or covariant features, then
we use the letters a,b,c or d. We denote the complex conjugate of a vector, matrix
or a function by v, M, f and f, respectively. The transpose of a vector or matrix is

written as vT and MT . M∗ is the adjoint of the matrix M with M∗ = M
T
. We denote

the imaginary unit by i. Let a = b + ic, b, c ∈ R be a complex number. Thenℜ(a) =
b and ℑ(a) = c. Depending on the context we express the Cartesian coordinate

Figure 2.1.: Spherical and Cartesian representation of points in a) S2 and b) R3
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2. Harmonic Analysis in 3D

vector r = (x,y,z)T , r ∈ R3 in spherical coordinates (θ,ϕ,r), where θ = arcos(z/‖r‖),
ϕ = atan2(y,x) and r = ‖r‖; see Fig. 2.1. We represent points on the 2-sphere (S2,
the sphere embedded in R3 with radius 1) in terms of the tuple (θ,ϕ) ∈ S2. or,
equivalently use the unit vector n ∈ R3, ‖n‖ = 1, n = (nx,ny ,nz)

T , where θ = arcos(nz),
ϕ = atan2(ny ,nx).

L2(S,µ) is the Hilbert space of the quadratic integrable functions f : S→ C defined
on the domain S with measure µ : S→ R≥0. If we restrict on f : S→ R, then we write
L2(S,R,µ). Square integrable means that the integral of the square of the absolute
value of a function f ∈ L2(S,µ) is finite, that is

∫

S
|f (x)|2dµ(x) <∞ . (2.1)

This is a very important property, because it guarantees that the inner product be-
tween images is finite.
Remember that a Hilbert space H is an inner product space with the following

properties: there exists a Hermitian form that is called the inner product. We denote
the inner product by 〈·, ·〉 : H ×H → C. The inner product induces the norm ‖·‖ :=√
〈·, ·〉. Moreover, the distance between two points in this space is defined by the

norm, where for x,y ∈H : d(x,y) = ‖x − y‖. Furthermore, a Hilbert space is complete,
that is, all Cauchy sequence converge with respect to the norm of H ; see section C.2
in the appendix for details concerning Hilbert spaces. Further information about
vector spaces and Hilbert spaces can be found in almost any book covering the basics
in analysis.
Let f ,g ∈ L2(S,µ), then the inner product is defined by

〈f ,g〉µ :=
∫

S
f (x)g(x)dµ(x) . (2.2)

We use the subscript µ as a reminder indicating that we must take special care of
the measure (in such cases the measurement differs from a constant). In this work
it only occurs when working with polynomials which are orthogonal with respect to
a Gaussian function. In all other scenarios we shortly write L2(S) and neglect the
subscript writing 〈f ,g〉 instead of 〈f ,g〉µ. This inner product induces the norm and
the distance measure on L2(S,µ).

Example 2.1.1 (L2(R
3), the Space of Volumetric Images). This is the basic Hilbert space

we use to represent volumetric images. We often use the letter I for denoting images, that
is I ∈ L2(R3). The inner product is the standard inner product of two images, where for
f : R3→ C and g : R3→ C

〈f ,g〉 =
∫

R3
f (r)g(r)dr . (2.3)

We equivalently make use of spherical coordinates using the measure
µ(θ,ϕ,r) = sin(θ)dθdϕr2dr. In this case the inner product becomes

〈f ,g〉 =
∫ π

θ=0

∫ 2π

ϕ=0

∫ ∞

r=0
f (θ,ϕ,r)g(θ,ϕ,r)sin(θ)dθdϕr2dr . (2.4)
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Note that we freely switch between both representations. The norm and the distance are
then defined in terms of this inner product.

Example 2.1.2 (L2(S2), the Space of Functions on the Sphere). Let f : S2 → C and
g : S2 → C be two square integrable functions on the sphere (S2 denotes the unit-sphere
embedded in R3). The inner product is then

〈f ,g〉 =
∫

S2

f (n)g(n)dn , (where n ∈ R3,‖n‖ = 1)

=

∫ π

θ=0

∫ 2π

ϕ=0
f (θ,ϕ)g(θ,ϕ)sin(θ)dθdϕ . (2.5)

We use both representations in this thesis. The norm and the distance are again defined in
terms of this inner product.

Definition 2.1.3 (Translation of n-dimensional Functions). We denote the translation
group by T (n), where T (n) = SE(n)/SO(n) is the Euclidean motion group of order n with-
out rotations. We parametrize a translation by a translation vector t = (t1, · · · , tn)T ∈ Rn,
where the ti are representing the translation into direction i. We denote the elements of
T (n) by ht. Given a function f ∈ L2(Rn). We define the action of ht on an image in terms
of the coordinate transform

(htf )(r) := f (r− t) . (2.6)

See the example 2.1.14 on page 43 for further details.

Definition 2.1.4 (The Fourier Transformation). Let f ∈ L2(Rn). We denote by F T :
L2(R

n)→ L2(R
n) the n-dimensional Fourier transform acting on images f : Rn→ C. We

further denote by f̃ = F T {f } the Fourier representation of f . The Fourier transform is an
invertible mapping that maps functions into the space spanned by the orthogonal Fourier

basis functions {ω(k)}, ω(r,k) := eikT r. The functions ω(k) : Rn→ C define a plane wave.
We call the vector k ∈ Rn the wave vector, where k = (k1, · · · , kn)T . The wave vector defines
the frequency k = ‖k‖ and the direction n = k

‖k‖ of the plane wave in Rn. The vector r ∈ Rn
is the position (or time) vector, which is a position dependent parameter. The forward
transformation F T is defined in a frequency by frequency manner:

F T {f }(k) := (2π)−n/2〈f ,ω(k)〉 = (2π)−n/2
∫

Rn
f (r)e−ik

T rdr = f̃ (k) . (2.7)

The inverse is defined by

F T −1{f̃ }(r) := (2π)−n/2〈f̃ ,ω(r)〉 = (2π)−n/2
∫

Rn
f (k)eik

T rdk = f (r) . (2.8)

The Fourier transform is unitary and thus preserves the energy (Parseval’s theorem, 〈f ,g〉 =
〈f̃ , g̃〉 with the conclusion that ‖f ‖2 = ‖f̃ ‖2, see e.g. Rudin (2006)).
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Definition 2.1.5 (The Convolution). The convolution is a commutative, linear opera-
tion. Let f ,g ∈ L2(Rn). Then the convolution is defined by

(f ∗ g)(x) :=
∫

Rn
f (r)g(x− r)dr

=

∫

Rn
f (x− r)g(r)dr . (2.9)

The convolution has several important properties. Let h ∈ L2(Rn),α ∈ C. Then

• (f ∗ g) = (g ∗ f ) (commutativity)

• (f ∗ (g ∗ h)) = ((g ∗ g) ∗ h) (associativity)
α(f ∗ g) = (αf ) ∗ g = f ∗ (αg)

• (f ∗ (g + h)) = (f ∗ g) + (f ∗ h) (distributivity)

• (f ∗δn0) = f , where δnx : Rn→ R is the Dirac delta function δnx(r) = δ(x1−r1) · · ·δ(xn−
rn) and

∫
Rn
δnx(r)dr = 1. (multiplicative identity)

• (f ∗ g) = (f ∗ g) (complex conjugation)

• ∂
∂xi

(f ∗ g) = ( ∂f
∂xi
∗ g) = (f ∗ ∂g

∂xi
) (differentiation)

• F T {f ∗ g} = F T {f }F T {g}, (the convolution theorem)

• τx(f ∗ g) = ((τxf ) ∗ g) = (f ∗ (τxg)), (translation invariance)

The Fourier domain and the spatial/time domain are connected in the following
sense: operations that act globally in spatial domain are simple pointwise operations
in Fourier domain and vise versa. Switching between these two worlds often offers
the only way to cope with the proposed techniques in a convenient manner. Particu-
larly the convolution theorem plays an important role in practice. The convolution is
a complex operation. Thanks to efficient algorithms realizing the Fourier transform
for discrete images in reasonable time (The Fast Fourier Transform, shortly FFT, Coo-
ley and Tukey (1965)), convolution is practical for large images (see particularly the
implementation of Frigo and Johnson (2005)). Fourier correspondences used during
this thesis are summarized in the following.

Corollary 2.1.6 (Properties of the Fourier Transform in 3D). We denote a pair of spa-

tial representation and Fourier representation by ❝ s. Hence for a function f and its

Fourier representation f̃ = F T {f } we write f ❝ s̃f . The following correspondences are
used during this work:

f ❝ s f̃ (Fourier Trafo)

w(k′) ❝ s (2π)3/2δ(k′ − k) (Fourier Trafo)
∂
∂xi
f ❝ s iki f̃ (Differentiation)

∆f ❝ s −k2f̃ (Laplace operator)

(f ∗ g) ❝ s f̃ g̃ (Convolution)
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2.1. Preliminaries

That is, partial differentiation corresponds to a point-by-point multiplication in
Fourier domain with the frequency vector projected onto the direction of differenti-
ation. The Laplace operation depends on the magnitude of the frequency, and the
convolution is simply a point-by-point multiplication.

2.1.1. Groups and Group Representations

In this section we introduce the concept of groups and group representations. A
more detailed introduction can be found e.g. in the lecture notes of Miller (1991).

Definition 2.1.7 (Group). We call a set of objects X = {g0,g1,g2,g3, · · · } together with
a binary operation · a group G = (X, ·), if the binary operation (also called the group-
multiplication) fulfills the following requirements:

1. Closure ∀gi ,gj ∈ G : (gi · gj ) ∈ G (or shortly gigj ∈ G)

2. Associativity ∀gi ,gj ,gk ∈ G : (gi ·gj )·gk = gi ·(gj ·gk) (or shortly (gigj )gk = gi(gjgk))

3. Identity Element There exists the (unique) identity element e, such that for all
g ∈ G the equation g · e = e · g = g holds.

4. Inverse element ∀g ∈ G,∃g−1 ∈ G : g · g−1 = g−1 · g = e

Note that it is not necessarily true that ∀gi ,gj ∈ G : gigj = gjgi (gi and gj commute).
In the case where gi and gj commute the group is called an abelian group.

Definition 2.1.8 (Subgroup). A subset Y ⊆ X of a group G = (X, ·) that forms itself a
group H under the group multiplication of G such that H = (Y, ·) is called a subgroup

of G. The (trivial) subgroups (e, ·) and (X, ·) are called improper subgroups, all other
subgroups are called proper subgroups.

Definition 2.1.9 (Group Homomorphism). Given two groups G = (X, ·) andH = (Y,∗).
A group homomorphism from G to H is a function τ : G→H such that

∀gi ,gj ∈ G : τ(gi · gj )
︸   ︷︷   ︸
mult. in G

= τ(gi ) ∗ τ(gj )
︸       ︷︷       ︸
mult. in H

. (2.10)

If the homomorphism is bijective, it is called a group isomorphism.

The groups playing a key role in this theses are listed below.

• With GL(V ) we denote the general linear group of invertible linear maps act-
ing on a vector space V .

• With GL(Rn) we denote the real general linear group of the non-singular (in-
vertible) n × n matrices acting on the vector space Rn (the representations of
invertible linear functions acting on the finite dimensional vector space Rn).

• GL(Cn) is the complex general linear group of the non-singular (invertible)
n×n matrices acting on the vector space Cn.
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2. Harmonic Analysis in 3D

• The group SO(n) represents the special orthogonal groups of dimension n,
where

SO(n) := {A ∈ GL(Rn) : AAT = I ∧detA = 1}. (2.11)

These groups are known as rotation groups, where particularly the 3D rotation
group SO(3) plays a major role in our work.

• The complex valued counterparts of SO(n) are the special unitary groups

SU(n) := {A ∈ GL(Cn) : AA∗ = I ∧detA = 1} . (2.12)

Note that GL(Rn) is a subgroup of GL(Cn), SU(n) a subgroup of GL(Cn) and SO(n) is
a subgroup of SU(n).

Definition 2.1.10 (The Haar1 Integral on SO(n) and SU(n)). For every compact linear
Lie group G (like SO(n) and SU(n) (see Def. C.2.6 on page 213) there exists an (left and
right) invariant integral such that for every integrable complex function f ∈ L2(G) and
for every h ∈ G,

∫

G
f (hg)dg =

∫

G
f (gh)dg =

∫

G
f (g)dg . (2.13)

This integral converges for any bounded function; see Nachbin (1965).

A proof of definition 2.1.10 can be found in the lecture notes by Miller (1991),
chapter 3.3 on page 42.

Definition 2.1.11 (Group Representation). A representation of a group G is a homo-
morphism τ : G→ GL(V ) into the general linear group of invertible mappings acting on
a vector space V .

The dimension of the representation is the dimension of the corresponding vector
space, thus dimτ = dimV . In the following scenarios we almost exclusively deal
with representations of finite dimension, that is, mappings acting on the finite-
dimensional vector space Cn or Rn. Hence we consider a representation as finite
dimensional unless it is explicitly stated contrarily.

Definition 2.1.12 (Finite Dimensional Group Representation). An n-dimensionalma-

trix representation is a homomorphism τ : G→ GL(Cn) that maps elements of the group
G into elements of the general linear group GL(Cn) (the group of the non-singular (invert-
ible) n × n matrices) acting on the representation space Cn. (In case of τ : G→ GL(Rn)
we call it a real matrix representation). Since τ is a group homomorphism (Def. 2.1.9
in the appendix) we can conclude that for g1,g2 ∈ G:

τ(g1)τ(g2) = τ(g1g2), τ(g1
−1) = τ(g1)

−1, and τ(e) = I . (2.14)

1based on theoretical work of Alfréd Haar, a Hungarian mathematician (1885-1933)
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We shortly write τg instead of τ(g). We further denote the matrix elements of τg
by [τg]mn.

Suppose there is a matrix representation τ of a group G mapping to matrices act-
ing on the vector space Cn. Then each change of the basis of Cn induces a new
(we call it an equivalent) matrix representation τ′ : G → GL(Cn): let the rows of
B ∈ GL(Cn) be a basis of Cn (B = [e0, · · · ,en]T , ei ∈ Cn with 〈ei ,ej〉 = δi,j ). Suppose
a basis change is given by a matrix S ∈ GL(Cn) such that the new basis is given by
B′ = SB. Then we can identify equivalent transformations τ′g by

SτgB = SτgS
−1

︸  ︷︷  ︸
=τ′g

SB︸︷︷︸
=B′

= τ
′
gB
′ . (2.15)

Definition 2.1.13. Two n-dimensional (real/complex) matrix representations are equiv-
alent (τ ≈ τ′) if there exists a matrix S ∈ GL(Cn) with the result that

τ
′
g = SτgS

−1 . (2.16)

Each τ induces an equivalence class {τ′ |τ ≈ τ′}.

Example 2.1.14 (The 3D Translation Group T (3)). We denote the 3D translation group
by T (3). The 3D translation group is the 3D Euclidean motion group without rotations,
that is T (3) = SE(3)/SO(3). A translation acting on 3D images I ∈ L2(R3) is commonly
parametrized by a 3D coordinate vector t = (tx, ty , tz)

T that defines the Cartesian transla-
tion in x,y and z direction. The natural representations of the 3D translation group are
the matrices

⇆

T t =




1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



, (2.17)

acting on the vector space R3. Note that we use homogeneous coordinates here. The

identity element is
⇆

T 0 and the inverse of
⇆

T t is just
⇆

T (−t). During this thesis we always
associate the elements of the 3D translation group acting on images with a translation
vector t = (tx, ty , tz)

T . The group elements ht ∈ T (3) are acting on images in the following
way (the following definitions are equivalent) :

(htI )(x) = (I ∗ δt)(x)

= I((
⇆

T t)
−1x)

= I(x− t) . (2.18)

The identity is h0 and the inverse of ht is h(−t).

Furthermore, in case of a compact groupG, such as SO(n) and SU(n) (see Def. C.2.6
on page 213), there always exists for each n-dimensional matrix representations τ an
equivalent unitary matrix representation τ′ with τ′ ≈ τ, such that

∀g ∈ G : τ′g(τ
′
g)
∗ = I . (2.19)
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(A proof can be found in (Miller 1991), page 16, below Theorem 3.1). As a conse-
quence it is sufficient to consider only the class of unitary representations τ : G →
SU(n) (and their real valued counterparts τ : G→ SO(n)) as representatives of their
equivalence classes.

2.1.1.1. Irreducible Representations

In the previous section we have mentioned that for compact groups like SO(n) and
SU(n) it is sufficient to consider only the unitary matrix representations. This is a
very powerful property. In the following we introduce a certain family of (unitary)
matrix representations, the irreducible representations. We obtain irreducible rep-
resentations by decomposing a unitary matrix representation into a direct sum of
lower dimensional matrix representations i.e. an equivalent matrix representation
having block diagonal form. Irreducible means, that there is no further decomposi-
tion possible (maximum sparse block diagonal matrix).

Before considering irreducibility more closely, we first must define invariant sub-
spaces.

Definition 2.1.15 (Invariant Subspace). Given an n-dimensional matrix representation
τ : G→ GL(Cn). We call a subspace U ⊂ Cn invariant under τ if ∀u ∈ U,g ∈ G : τgu ∈
U .

Definition 2.1.16 (Irreducible Subspaces). An n-dimensional matrix representation τ :
G → GL(Cn) is called reducible, if there exists a non-empty (proper) subspace U ⊂ Cn

which is invariant under τ. Otherwise, we call τ irreducible.

If τ is a unitary n-dimensional matrix representation τ : G→ GL(Cn), then we can
decompose τ into irreducible representations τℓ={0,1,··· } in an (almost) uniquemanner
as explained in the following.

Let W be a subspace of an inner product space V . The orthogonal complement
W⊥ of W is the subspace of V , where all vectors are orthogonal to every vectors in
W : W⊥ := {v ∈ V | ∀w ∈ W : 〈w,v〉 = 0}. As a consequence we can uniquely write
each element v ∈ V as sum of two vectors of w ∈W and w′ ∈W⊥, namely v =w+w′.
We say V is the direct sum ofW andW⊥, denoted by V =W ⊕W⊥.

Theorem 2.1.17. Let τ : G → GL(Cn) be a reducible representation of G. Let W be a
proper invariant subspace of Cn under τ. Then W⊥ is also a proper invariant subspace
under τ and we say, τW and τW

⊥
are the unitary restrictions of τ on W and W⊥, re-

spectively. According to Cn =W ⊕W⊥ we write τ = τW ⊕ τW⊥ (τ is the direct sum of τ
and τW ). (A proof can be found in (Miller 1991), page 18, below Theorem 3.2)

Using theorem 2.1.17 we can decompose a unitary n-dimensional reducible ma-
trix representation τ : G → GL(Cn) into irreducible representations τℓ={0,1,··· } in the
following way:
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Algorithm 1 n-dimensional matrix representation→ irreducible representations

input: τ : G→ GL(Cn)
V := Cn

ℓ := 0
while V , ∅ do
letWℓ ⊂ V be the smallest, proper subspace of V , which is invariant under τ
τ(ℓ) = τWℓ

V :=W⊥ℓ
ℓ := ℓ +1

end while
return τ(n) : G→ GL(Wn), n = {0, · · · , (ℓ − 1)} with τ =

⊕
nτ

(n) and V =
⊕

nWn

We denote by
⊕N

n=0 the direct sum

V =
N⊕

n=0

Wn =W0 ⊕ · · · ⊕WN . (2.20)

The subspacesWℓ are not uniquely determined. But the decomposition is “almost

unique”: for two decompositions τ =
⊕N

n=0τ
(n) and τ =

⊕M
m=0τ

′(m) we end up with
the same number of irreducible representations, henceM =N . Furthermore, we can
find a bijective mapping π : {0, · · ·N } → {0, · · ·M} thus ∀n ∈ {0, · · ·N } : τ(n) ≈ τ′(π(n)).
Accordingly the equivalence classes of irreducible representations are unique. We
can uniquely index the equivalence classes in an increasing order and choose one
representative out of each. As a result we can consider the decomposition

τ =
⊕

ℓ

τ
ℓ, τ

ℓ is irreducible, (2.21)

as unique with respect to the index ℓ.
A very important fact is, that two unitary irreducible representations τℓ : G →

GL(Cnℓ ) and τℓ
′
: G→ GL(Cnℓ′ ) are orthogonal according to

∫

G
[τℓg]mn[τ

ℓ′
g ]m′n′dg =

1
ηℓ
δℓ,ℓ′δm,m′δn,n′ , (2.22)

where ηℓ is called the group weight. The representations τℓg form an ONB (orthonor-
mal basis) for square-integrable functions on G. This is known as the Peter-Weyl
Theorem (see also Gaal (1973) and Naı̆mark (1959)).

Theorem 2.1.18. (Peter-Weyl Theorem (Peter and Weyl 1927)). If G is a compact linear
Lie group (like SU(n) and SO(n)), then the countably infinite set of matrix elements
{√ηℓ[τℓg]mn} of the irreducible representations τℓ : G→ GL(Cnℓ ) is an ONB for L2(G).

As a result we can represent each f ∈ L2(G) in terms of {√ηℓ[τℓg]mn} by

f (g) =
∞∑

ℓ=0

√
ηℓ

nℓ∑

m=0

nℓ∑

n=0

Aℓmn[τ
ℓ
g]mn . (2.23)
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The expansion coefficients (Also known as the “generalized Fourier coefficients”)
are computed by orthogonal projection of f into the space spanned by the orthonor-
mal basis {√ηℓ[τℓg]mn}:

Aℓmn = 〈f ,
√
ηℓ[τ

ℓ
g]mn〉

=
√
ηℓ

∫

G
f (g)[τℓg]mndg . (2.24)

If the group weight fully weights the expansion according to

f (g) =
∞∑

ℓ=0

ηℓ

nℓ∑

m=0

nℓ∑

n=0

Aℓmn[τ
ℓ
g]mn and (2.25)

Aℓmn = 〈f , [τℓg]mn〉 , (2.26)

then we call the basis functions “Schmidt semi-normalized”.

Example 2.1.19 (The 2D Rotation Group SO(2)). The natural representations of the 2D
rotation group are the real valued rotation matrices Ug ∈ SO(2), which are parametrized
according to

U(ϕ) :=

(
cosϕ −sinϕ
sinϕ cosϕ

)
, (2.27)

with the angle ϕ ∈ [0,2π); see Fig. 1.4 on page 19. The 2D rotation group is isomorph to
the one dimensional unitary group U(1) := {z ∈ C | |z| = 1} which has a natural parame-
terization in terms of the angle ϕ via

U(1) := {eiϕ | ϕ ∈ [0,2π)} , (2.28)

that is, points on the units circle; see Fig. 1.8 on page 27 for an illustration of the 2D rota-
tion. The irreducible representations τℓg of SO(2) are the periodic Fourier basis functions

Y ℓg defined on the unit circle. They are defined by

Y ℓ(ϕ) := eiℓϕ . (2.29)

With ℓ ∈ N we denote the angular frequency. Note that they coincide with the irreducible
representations of the cyclic 1D translation group (up to scale). Hence the irreducible
representations of the 2D rotation groups are just the ordinary periodic Cartesian Fourier
basis functions. In the context of rotations, they are also known as circular harmonics.
In Fig. 2.2 on page 48 we show two kinds of equivalent representations: (1) in the upper
row in terms of functions on the circle and (2) in terms of a periodic 1D signal. Accord-
ing to the Peter-Weyl theorem, they form an ONB for functions on the unit circle, with
〈Y ℓ1 ,Y ℓ2〉 = 2πδℓ1,ℓ2 . Hence for any square integrable function on the circle f exists the
Fourier expansion

f (ϕ) =
1√
2π

∞∑

ℓ=−∞
aℓY ℓ(ϕ) , (2.30)
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where aℓ = 〈f , 1√
2π
Y ℓ〉 are the Fourier coefficients. Let gθ ∈ SO(2) be a group element

rotating the function f by the angle θ ∈ (0,2π]. The group action is defined by (gθf )(ϕ) :=
f (ϕ − θ). It turns out that if f is represented in terms of the Fourier expansion, the
group action (the rotation) is just a multiplication with the corresponding irreducible
representation:

a
′ℓ = 〈gθf ,

1√
2π
Y ℓ〉 = 1√

2π

∫
f (ϕ −θ)Y ℓ(ϕ)dϕ = 1√

2π

∫
f (ϕ)Y ℓ(ϕ +θ)dϕ =

= Y ℓ(θ) 1√
2π

∫
f (ϕ)Y ℓ(ϕ)dϕ = Y ℓ(θ)〈f , 1√

2π
Y ℓ〉 = Y ℓ(θ)aℓ , (2.31)

where the a′ℓ ∈ C are the new rotated expansion coefficients. Hence a rotation in Fourier
domain acts on the expansion coefficients in a coefficient by coefficient manner in terms
of irreducible representations themselves. In the following we shortly write Y ℓg to indicate
the irreducible representation of an g ∈ S2, thus

(gf )(ϕ)
︸  ︷︷  ︸
rotation

= 1√
2π

∞∑

ℓ=−∞
Y ℓg a

ℓ

︸︷︷︸
=a′ℓ

Y ℓ(ϕ) = 1√
2π

∞∑

ℓ=−∞
a′ℓY ℓ(ϕ) . (2.32)

Consequently, a rotation has the same representation as the basis functions. Such a rep-
resentation has several benefits, where the following is of particular importance for us:
rotation invariants can be formed analytically via simple products of expansion coeffi-

cients. An example is the angular power-spectrum F2(f , ℓ) := ‖aℓ‖
2
= 〈aℓ, aℓ〉. Let {aℓ}

and {a′ℓ} be the expansion coefficients of f and its rotated version f ′ = (gf ), respectively.
The angular power spectrum does not change under rotations:

F2(gf , ℓ) = ‖a′ℓ‖
2
= 〈a′ℓ, a′ℓ〉 = 〈Y ℓg aℓ,Y ℓg aℓ〉

= 〈Y ℓg Y ℓg
︸︷︷︸
=1

aℓ, aℓ〉 = 〈aℓ, aℓ〉 = ‖aℓ‖2 = F2(f , ℓ) . (2.33)

The angular power spectrum is rather a weak invariant. The reason is the fact that the co-
efficients corresponding to different frequencies ℓ are considered separately and thus phase
information is lost. Using higher order spectra overcomes this restriction. In our work
we use the 3D counterpart of the 2D angular bi-spectrum F3(f , ℓ1, ℓ2) := 〈aℓ1+2 , aℓ1aℓ2〉 to
solve these ambiguities. For the 2D example above holds

F3(gf , ℓ1, ℓ2, ℓ3) = 〈a′ℓ1+2 , a′ℓ1a′ℓ2〉 = 〈Y ℓ1+2g aℓ1+2 ,Y
ℓ1
g a

ℓ1Y
ℓ2
g a

ℓ2〉 = 〈Y ℓ1g Y ℓ2g Y ℓ1+2g aℓ1+2 , aℓ1aℓ2〉

= 〈Y ℓ1+2g Y
ℓ1+2
g aℓ1+2 , aℓ1aℓ2〉 = 〈aℓ1+2 , aℓ1aℓ2〉 = F3(f , ℓ1, ℓ2, ℓ3) . (2.34)

The bi-spectrum describes the interrelation of the coefficients in an unique manner: the
bi-spectrum defined on SO(2) yields complete features (Kakarala 1992). See also Fig. 3.3
on page 92.

In the following we introduce the 3D rotation group. The 3D rotation group shows
several similarities to the 2D rotation group. However, because of the two additional
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Figure 2.2.: Circular Harmonics: The Irreducible Representations of SO(2). Top:
representation as function on the unit circle. Bottom: representation as
periodic 1D function.

rotation angles, algorithms on SO(3) tend to have a higher computational complex-
ity. We will show how to represent volumetric images in terms of the irreducible
representations of the 3D rotation group with the goal to make the computation of
local rotation invariant features, such as the power- and the bi-spectrum, computa-
tionally efficient.

2.2. The 3D Rotation Group SO(3)

2.2.1. Rotations in 3D: The Reducible Representations of SO(3)

In this section we introduce the 3D rotation and how it transforms 3D images rep-
resented in Cartesian coordinates. The 3D rotation group is denoted by SO(3). The
ordinary rotation matrices Ug ∈ SO(3) are the natural 3-dimensional matrix repre-
sentations τ : SO(3) → SO(3) of the 3D rotation group SO(3) (see Def. 2.1.12 on
page 42 regarding finite dimensional matrix representations). They are defined by

τ(g) :=Ug . (2.35)

Note that Eq. (2.35) is a group homomorphism into SO(3) itself.
We parametrize the rotation matrices by the three Euler angles ϕ,θ and ψ in the

following way: U(ϕ,θ,ψ) =Uz(ϕ)Ux(θ)Uz(ψ), where

Uz(ϕ) :=




cosϕ −sinϕ 0
sinϕ cosϕ 0
0 0 1



, Uy(ϕ) :=




cosϕ 0 −sinϕ
0 1 0

sinϕ 0 cosϕ



, Ux(ϕ) :=




1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ
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2.2. The 3D Rotation Group SO(3)

are the rotationmatrices, rotating around the z,y and x-axis, respectively. See Fig. 1.5
on page 21 for an example (Uy is not used here).
A rotation acting on a scalar valued image just moves intensity values from their

current position to a new position defined by the rotation. The rotation does not
alter the intensity values themselves. Thus a rotation of a scalar valued image can
be purely defined by a coordinate transform. Given a volumetric image I : R3→ R,
then a rotation of I around the origin is defined by

I ′(x) = I(g(x)) , (2.36)

where I ′ : R3→ R is the rotated image. The mapping

g(x) =UTg x, (2.37)

g : R3 → R3 is a linear, unitary coordinate transform, where Ug ∈ SO(3) is an ordi-
nary rotation matrix. We say a group element g ∈ SO(3) of the 3D rotation group is
acting on an image I by a coordinate transform. This is denoted by

(gI )(x) := I(g(x)) = I(UTg x) . (2.38)

While for scalar valued images the rotation can be purely described in terms of a
coordinate transform, in a vector or even tensor valued field the values undergo a
transformation, too. An example is a gradient field which is the result of differen-
tiation of an image in a point-by-point manner. A rotation of the image induces a
rotation of the gradient field. While the coordinate transform is the same for both
the image and the gradient field, the gradients themselves are rotating according to
the rotation acting on the field, too. A similar transformation behavior is shown by
a Hessian matrix field, which we obtain by pointwise differentiation of the gradient
field.
Scalar valued images as well as all fields derived via pointwise differentiation be-

long to the family of Cartesian tensor fields. Their elements are called Cartesian
tensors. Cartesian tensor fields show a predictable and mathematically well defined
value and coordinate transformation under rotation. Therefore, tensors are an ade-
quate tool for the design of SE(3) covariant filters.

Definition 2.2.1 (Cartesian Tensor Fields). Let Tj : R3→ C3j , j ≥ 0 be a vector valued
function. We call Tj a Cartesian tensor field of rank j ≥ 0, iff for all g ∈ SO(3)

(gTj )(x) :=U3j
g Tj (UTg x) , (2.39)

where U3n
g ∈ SO(3n) are orthogonal rotation matrices transforming the values of a field

under rotation. The index j is called the tensor field rank. The elements Tj (x) ∈ C3j are
called Cartesian tensors.

We can identify the elements of U3n
g ∈ SO(3n) by rewriting the Cartesian tensor

rotation, see Eq. (2.39), in terms of the ordinary rotation matrices Ug ∈ SO(3). We

index the elements of the field Tj in a multidimensional manner: T
j
i0,··· ,ij
ik∈{0,1,2}

(x) ∈ C
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thus we can write the rotation as

(gT
j
i0,··· ,ij )(x) =

∑

n0,··· ,nj
nk∈{0,1,2}

Ug(i0 ,n0)
· · ·Ug(ij ,nj )

︸                      ︷︷                      ︸
value transformation

T
j
n0,··· ,nj (U

T
g x) , (2.40)

see section B.2.1 on page 195 for a derivation.
It is worth mentioning that tensor fields of order 0 are simply ordinary scalar val-

ued images thus the rotation simplifies to a pure coordinate transform. For tensors of
order 1 (like image gradients) and 2 (like image Hessian matrices) we can rewrite Eq.
(2.40) in terms of the following matrix products with the ordinary rotation matrix
Ug ∈ SO(3), leading to widely known representations

(scalar valued) (gT0)(x) =T0(UTg x) , (2.41)

(vector valued) (gT1)(x) =UgT
1(UTg x) and (2.42)

(matrix valued) (gT2)(x) =UgT
2(UTg x)Ug

T . (2.43)

Translation on tensor fields is defined as for vector valued functions. That is, a
translation ht ∈ T (3) is acting on a tensor field by

(htT
j )(r) := Tj (r− t) . (2.44)

Example 2.2.2. [A gradient image is a tensor field of order 1] Let ∇I = ( ∂
∂x
, ∂
∂y
, ∂
∂z
)
T
I be

the gradient image of I . Then the group action of an element g ∈ SO(3) on ∇I is
(g(∇I ))(x) =Ug(∇I )(UTg x) . (2.45)

This is a direct conclusion of Eq. (B.7) in the appendix and by setting T1 = (∇I ).
Example 2.2.3 (Moments of order j are Cartesian tensors of order j). Image moments
are widely used as shape descriptors for the purpose of object detection in images in var-
ious applications (Flusser and Suk 2006; Hu 1962; Li 1992; Reddi 1981; Reiss 1991).
LetMj {I } : R3 → R3n be the jth order moment field of an image I : R3 → R. Its 3n

components are defined by

Mj
i0,··· ,ij
ik∈{0,1,2}

{I }(x) :=
∫

R3
I(r+ x)ri0 · · · rijdr . (2.46)

If a g ∈ SO(3) is acting onMj , then

(gMj
i0,··· ,ij
ik∈{0,1,2}

{I })(x) =Mj
i0,··· ,ij
ik∈{0,1,2}

{gI }(x) =
∫

R3
(gI )(r+ x)ri0 · · · rijdr

=

∫

R3
I(UTg (r+ x))ri0 · · ·rijdr =

∫

R3
I(UTg r+UTg x)ri0 · · · rijdr (r′ =UTg r)

=
∑

n0,··· ,nj
nk∈{0,1,2}

Ug(i0 ,n0)
· · ·Ug(ij ,nj )

∫

R3
r ′n0 · · · r

′
nj
I(r′ +UTg x)dr

′

=
∑

n0,··· ,nj
nk∈{0,1,2}

Ug(i0 ,n0)
· · ·Ug(ij ,nj )

Mj
n0,··· ,nj {I }(UTg x) . (2.47)
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2.2. The 3D Rotation Group SO(3)

Therefore,Mj {I } is a Cartesian tensor field of order j .

Example 2.2.4. [The 3D structure Tensor is a Cartesian tensors of order 2] The structure
tensor represents the distribution of gradient directions within a voxel’s neighborhood
defined by a (usually isotropic) window function w : R3→ R. Such a window function is

often an isotropic Gaussian, with w(r) = e
−r2
2σ2 (We only consider isotropic smoothing here.

For anisotropic smoothing see e.g. the papers by Brox et al. (2006); Reisert and Skibbe
(2012)). The structure tensor is widely used for low-level feature analysis in images; see
particularly the early works of Bigun and Granlund (1987); Förstner (1986); Harris and
Stephens (1988). The structure tensor is highly related to our proposed SHOG features
which are introduced in section 5.3 on page 138. The interested reader might directly
jump to section 5.3.1.3 on page 148, where the relation of SHOG to the structure tensor
is discussed.

Let S{I } : R3→ R9 be the the structure tensor field of an image I . Its nine components
are defined by

Sn,m{I }(x) :=
∫

R3
( ∂
∂xn
I )(x− r)( ∂

∂xm
I )(x− r)w(r)dr , (2.48)

that is, all Gaussian smoothed second order monomials formed from the first order deriva-
tives of I . If a rotation g ∈ SO(3) is acting on S, then (utilizing Eq. (B.5))

(gSn,m{I })(x) = (Sn,m{gI })(x) =
∫

R3
( ∂
∂xn

(gI ))(r− x)( ∂
∂xm

(gI ))(r− x)w(r)dr

=
∑

n0,n1
nk∈{0,1,2}

Ug(n,n0)
Ug(m,n1)

∫

R3
( ∂
∂xn0

I )(UTg x−UTg r)( ∂
∂xn1

I )(UTg x−UTg r)w(r)dr

(since w is isotropic, the rotation has no effect on w)

=
∑

n0,n1
nk∈{0,1,2}

Ug(n,n0)
Ug(m,n1)

∫

R3
( ∂
∂xn0

I )(UTg x− r)( ∂
∂xn1

I )(UTg x− r)w(r)dr

=
∑

n0,n1
nk∈{0,1,2}

Ug(n,n0)
Ug(m,n1)

Sn0,m1
{I }(UTg x) . (2.49)

Therefore, S{I } is a Cartesian tensor field of order 2.

2.2.1.1. Sparse Representations of Cartesian Tensors

We can always represent a Cartesian tensor rotation in terms of amatrix-vector prod-
uct (gTj )(x) = U3n

g Tj (UTg x); see Eq. (2.39). It is obvious that a rotation of a higher
order Cartesian tensor is computationally expensive, particularly when rotating a

whole tensor field. Let U
(3n)
g ∈ SO(3n) be a matrix representation of a rotation acting

on Cartesian tensors of order n. Since the rotation group is a compact group, there
must exist irreducible representations and in fact, they are not the rotation matrices

U
(3n)
g themselves. Consequently, for each matrix representation U

(3n)
g ∈ SO(3n) ex-

ists an equivalent representation that can be turned into a maximum sparse block
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2. Harmonic Analysis in 3D

diagonal matrix via an unitary transformation. With such a transformation comes
a decomposition of the corresponding Cartesian tensor space into irreducible sub-
spaces.

We exemplarily consider a second order tensor field because it eases the usage
of ordinary matrix calculus. The elements of a second order tensor field T2 are re-
ducible with respect to rotation. In order to use commonmatrix calculus we consider
the elements of T2 w.l.o.g as tensors in matrix form. In this case

T2 =




T 2
00 T 2

01 T 2
02

T 2
10 T 2

11 T 2
12

T 2
20 T 2

21 T 2
22




. (2.50)

Any Cartesian second order tensor can be uniquely decomposed into three irre-
ducible components:

T2 = αI3×3 +T2
anti +T2

sym , (2.51)

where T2
anti(x) is an antisymmetric matrix, T2

sym(x) a traceless (traceT
2
sym(x) = 0) sym-

metric matrix and α(x) ∈ C the trace of T2(x); see e.g. the book chapter by Reisert
and Burkhardt (2009b) for further details. For instance, a Hessian matrix of an im-
age is a second order tensor which is a symmetric matrix, thus the antisymmetric
part would be 0 ∈ C3×3.

Consider the 9 × 9 rotation matrices U9
g ∈ SO(9) acting on the Cartesian tensor

fields of order 2. There exists, together with a unitary transformation S ∈ SU(9), a
transformation into a maximum sparse block-diagonal rotation matrix consisting of
irreducible unitary matrices Dℓ

g ∈ SU(2ℓ + 1), ℓ = {0,1,2} representing the rotations

acting on the trace α, the antisymmetric part T2
anti and the symmetric part T2

sym,
respectively. This means, the transform S divides the Cartesian 2nd order tensor
space (the vector space C9) into subspaces C2ℓ+1, ℓ = {0,1,2} which are invariant
under rotation (we consider here matrix multiplications as operations acting on the
tensor field in an element-by-element manner):

SU9
gS
−1ST2 =




S







� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �




︸                 ︷︷                 ︸
=U9

g




S−1







S







T 2
00
T 2
01
T 2
02
T 2
10
T 2
11
T 2
12
T 2
20
T 2
21
T 2
22




︸︷︷︸
=T2

= (2.52)
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=







� 0

0




︸         ︷︷         ︸
=D0

g∈SU(1)

+




� � �

� � � 0
� � �

0




︸           ︷︷           ︸
=D1

g∈SU(3)

+




0

� � � � �

� � � � �

0 � � � � �

� � � � �

� � � � �




︸              ︷︷              ︸
=D2

g∈SU(5)




︸                                                          ︷︷                                                          ︸
=SU9

gS
−1,sparse block-diagonal matrix representing the

rotation acting on α, acting on the antisymmetric part T2
anti

and on the symmetric part T2
sym




−(T00+T11+T22)√
3

1
2 (T20 −T02 + i(T21 −T12))

i√
2
(T10 −T01)

1
2 (T20 −T02 − i(T21 −T12))
1
2 (T00 −T11 + i(T01 +T10))
1
2 ((T02 +T20) + i(T12 +T21))
−1√
6
(T00 +T11 − 2T22)

1
2 (−(T02 +T20) + i(T12 +T21))
1
2 (T00 −T11 − i(T01 +T10))




︸                     ︷︷                     ︸
T2′=ST2

T2′∈C9

=




a0

a1

a2



,

(2.53)

where a0 : R3→ C, a1 : R3→ C3 and a2 : R3→ C5 are the new tensor fields represent-
ing the trace, antisymmetric part and the symmetric part of T2; see section 2.2.3.7 on
page 78 for the exact mapping between Cartesian tensors and their irreducible coun-
terpart. Hence the vector T2′ can be written as a direct sum of these vectors, thus
T2′ = a0 ⊕ a1 ⊕ a2. Such a decomposition exists for all Cartesian tensors (and tensor
fields). It is worth mentioning that tensor fields of rank 0 (images) and 1 (vectors) are
already irreducible. Consequently, regarding computational complexity and mem-
ory storage there exist equivalent irreducible matrix representations that are much
better suited for representing 3D rotations than the Cartesian rotation matrices U3n

g :
the rotations acting on invariant, irreducible subspaces.

We will see in the next section that the irreducible representations Dℓ
g of SO(3)

are the so-called Wigner D-matrices. Similar to ordinary rotation matrices acting
on Cartesian tensors, the Wigner D-matrices are acting on vector spaces whose el-
ements are called spherical tensors. Spherical tensors will be introduced later in
section 2.2.3 on page 61.

2.2.2. The Irreducible Representations of SO(3)

Square-integrable functions on SO(3) have the form f : SO(3)→ C. Following the
Euler angle convention we have the parameterization f (ϕ,θ,ψ). The irreducible uni-
tary representations of SO(3) are the so-called Wigner D-Matrices (Wigner 1931)
which we denote by τℓg =Dℓ

g ∈ SU(2ℓ +1), where

Dℓ
mn(ϕ,θ,ψ) := e

−imϕdℓmn(θ)e
−inψ , −ℓ ≤m,n ≤ ℓ . (2.54)

With dℓ ∈ R(2ℓ+1)×(2ℓ+1) we denote the small Wigner d-matrices (see Eq. C.39 in the
appendix for an explicit expression). As stated in the Peter-Weyl theorem 2.1.18, the

set {
√
2ℓ+1√
8π

Dℓ
mn} is an ONB of L2(SO(3)) (8π2 is the volume of SO(3), see Eq. (C.3) in

the appendix).

We prefer w.l.o.g the Schmidt semi-normalized representation of the basis func-
tions. In this case each function f ∈ L2(SO(3)) can be expanded in the following
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manner:

f (ϕ,θ,ψ) =
∞∑

ℓ=0

(2ℓ+1)
8π2

ℓ∑

m,n=−ℓ
Aℓm,nD

ℓ
mn(ϕ,θ,ψ) . (2.55)

We obtain the expansion coefficients Aℓ ∈ C(2ℓ+1)×(2ℓ+1) via orthogonal projection
onto the unnormalized basis function according to Eq. (2.26).

2.2.2.1. Spherical Harmonic Functions

For our applications, functions that are independent from the angle ψ i.e. f (θ,ϕ) =
f ′(ϕ,θ,ψ), are of particular interest. We use such functions to represent the angular
part of volumetric images in terms of spherical coordinates (θ,ϕ,r). Functions de-
pending only on (θ,ϕ) are functions living on the 2-sphere. The 2-sphere is denoted
by S2. For functions on the 2-sphere, the expansion coefficients Aℓmn = 〈f , [Dℓ

g]mn〉
become 0 for all [Dℓ

g]mn where n , 0. Consequently,

Theorem 2.2.5. The set {[Dℓ
g]m0} builds an orthogonal basis for functions f ∈ L2(S2).

Proof: {[Dℓ
g]m0} is an orthogonal basis for f ∈ L2(S2). It is sufficient to show that the

expansion coefficients associated with a Wigner D-matrices with n = 0 are equal
to 0. Let f ∈ L2(S2) be a function on the 2-sphere, then

Aℓmn = 〈f , [Dℓ
g]mn〉

=

∫

SO(3)
f (g)[Dℓ

g]mndg

=

∫ 2π

ϕ=0

∫ π

θ=0

∫ 2π

ψ=0
f (g)Dℓ

mn(ϕ,θ,ψ)sin(θ)dψdθdϕ

=

∫ 2π

0

∫ π

0

∫ 2π

0
f (g)eimϕdℓmn(θ)e

inψ sin(θ)dψdθdϕ

=

∫ 2π

0

∫ π

0
f (θ,ϕ)eimϕdℓmn(θ)sin(θ)

∫ 2π

0
einψdψ

︸        ︷︷        ︸
=2πδn,0

dθdϕ

= δn,0 2π

∫ 2π

0

∫ π

0
f (θ,ϕ)eimϕdℓmn(θ)sin(θ)dθdϕ

= δn,02π

∫ 2π

0

∫ π

0
f (θ,ϕ) Dℓ

m0(ϕ,θ,0)︸        ︷︷        ︸
according to (2.54)

sin(θ)dθdϕ . (2.56)

The explicit expression of the basis functions [Dℓ
g]m0 is

Dℓ
m0(ϕ,θ,0) =

√
(ℓ −m)!
(ℓ +m)!

Pmℓ (cos(θ))e−imϕ

= Y ℓm(θ,ϕ) , (2.57)

54



2.2. The 3D Rotation Group SO(3)

where the functions Pmℓ : [−1,1]→ R are the orthogonal associated Legendre polyno-
mials. An explicit definition of Pmℓ can be found in Def. C.3.2 in the appendix.

Definition 2.2.6 (Spherical Harmonics). The functions Y ℓm : R3→ C are widely known
as spherical harmonics (we use the Schmidt semi-normalized spherical harmonics),
where

Y ℓm(θ,ϕ) =

√
(ℓ −m)!
(ℓ +m)!

Pmℓ (cos(θ))eimϕ . (2.58)

Apart from the fact that spherical harmonics are functions on the sphere, we consider them
w.l.o.g as functions defined on R3. Thus Y ℓm(r) = Y

ℓ
m(n) = Y

ℓ
m(θ,ϕ), where n = r

‖r‖ . That
is, the value only changes in angular direction and is constant in radial direction.

Note, that we arrange spherical harmonic functions to vector valued functions

Yℓ = (Y ℓ−ℓ, · · · ,Y ℓℓ )
T
, Yℓ : R3 → C2ℓ+1. We say Yℓ is a spherical harmonic of order

ℓ. Then, spherical harmonics coincides with the center column of the Wigner D-
matrix Dℓ(ϕ,θ,0) and a rotation in irreducible representations becomes a matrix-
vector multiplication (we come back to this point immediately below).

The first order spherical harmonic is of particular importance for our applications,
because based on it all remaining spherical harmonic functions can be computed in
a recursive manner. We discuss details concerning this property later in section 2.2.3
on page 61, where we introduce the spherical tensor algebra. The representation of
the first order spherical harmonic in Cartesian coordinates is

Y1(x) =
( 1√

2
(x−iy),z,− 1√

2
(x+iy))

T

‖x‖ ; (2.59)

see (C.10) in the appendix.
Since all unitary matrix representations are orthogonal (Eq. (2.22), the spherical

harmonics as part of the Wigner D-Matrices are orthogonal, too:

〈Y ℓm,Y ℓ
′

m′〉 =
∫

S2

Y ℓm(g)Y
ℓ′
m′ (g)dg

=

∫ π

θ=0

∫ 2π

ϕ=0
Y ℓm(θ,ϕ)Y

ℓ′
m′ (θ,ϕ)sin(θ)dθdϕ

=
4π

(2ℓ +1)
δℓ,ℓ′δm,m′ . (2.60)

Definition 2.2.7. [Rotation of Spherical Harmonics] The group action of an element
g ∈ SO(3), acting on the spherical harmonic functions, is defined by

(gYℓ)(n) :=Dℓ
gY

ℓ(UTg n) = Yℓ(n) ; (2.61)

that is, the spherical harmonics are fix with respect to rotation (We use the notation of
Reisert and Burkhardt (2009b)).

55



2. Harmonic Analysis in 3D

As a result, we have the following identities:

Dℓ
gY

ℓ(n) =Yℓ(Ugn)

⇔ Yℓ(n) =(Dℓ
g)
∗
Yℓ(Ugn)

⇔ Yℓ(n) =Dℓ
gY

ℓ(Ug
Tn) . (2.62)

The spherical harmonics are spanning L2(S2). Hence there exists a representation
of any function f ∈ L2(S2) in terms of spherical harmonics, which is

f (n) =
∞∑

ℓ=0

2ℓ+1
4π

m=ℓ∑

m=−ℓ
vℓmY

ℓ
m(n)

=
∑

ℓ

2ℓ+1
4π (vℓ)

T
Yℓ(n) , (2.63)

where vℓ ∈ C2ℓ+1 are vector valued expansion coefficients. We obtain the expansion
coefficients via projection on all (2ℓ+1) spherical harmonic functions associated with
an angular frequency ℓ in a component-by-component manner:

vℓ = 〈f ,Yℓ〉 =
∫

S2

f (n)Yℓ(n)dn . (2.64)

Theorem 2.2.8 (The Spherical Harmonic Projection is Covariant to 3D Rotations).
Let f ∈ L2(S2). Let further g ∈ SO(3) be a rotation acting on f thus f ′(n) := (gf )(n) =

f (UTg n) is the rotated function. The projection 〈f ,Y ℓm〉 is covariant to 3D rotations in the
sense that

〈(gf ),Yℓ〉 =Dℓ
g〈f ,Yℓ〉 , (2.65)

where Dℓ
g ∈ SU(2ℓ +1) are Wigner D-matrices.

Proof: The Spherical Harmonic Projection is Covariant to 3D Rotations.

〈gf ,Yℓ〉 =
∫

n∈S2
f (UTg n)
︸  ︷︷  ︸

SO(3) group action
on spherical func.

Yℓ(n)dn

=

∫

n∈S2
f (n)Yℓ(Ugn)dn

=

∫

n∈S2
f (n)Dℓ

gY
ℓ(n)dn

=Dℓ
g

∫

n∈S2
f (n)Yℓ(n)dn =Dℓ

g〈f ,Yℓ〉
︸     ︷︷     ︸

SO(3) group action
on projection.

. (2.66)

A direct consequence of Thm. 2.2.8 is the following corollary.
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2.2. The 3D Rotation Group SO(3)

Corollary 2.2.9 (Rotation of a function in the harmonic domain). Let vℓ be the ex-
pansion coefficients of f ∈ L2(S2). Let further g ∈ SO(3) be a rotation acting on f thus
f ′(n) := (gf )(n) = f (UTg n) is the rotated function. Then the corresponding rotation of f

in frequency domain is a rotation of the coefficients vℓ by the Wigner D-matrices, with

(gf )(n) =
∑

ℓ

2ℓ+1
4π (Dℓ

gv
ℓ)
T
Yℓ(n) . (2.67)

(Because 〈(gf ),Yℓ〉 =Dℓ
g〈f ,Yℓ〉 =Dℓ

gv
ℓ )

Proposition 2.2.10 ( Parity of Spherical Harmonics). The spherical harmonics have a
well defined parity regarding reflections about the origin:

Yℓ(−n) = (−1)ℓYℓ(n) . (2.68)

Proof: Parity of Spherical Harmonics. Using the parity of the Legendre polynomials
(Eq. (C.9) in the appendix) we obtain

Yℓ(−n) = Yℓ(θ −π,ϕ +π) =
√

(ℓ−m)!
(ℓ+m)!P

m
ℓ (cos(θ −π))eim(ϕ+π)

=
√

(ℓ−m)!
(ℓ+m)! (−1)

ℓ−mPmℓ (cos(θ))(−1)ℓeimϕ = (−1)ℓYℓ(θ,ϕ) = (−1)ℓYℓ(n) . (2.69)

Proposition 2.2.11 (Symmetry of Spherical Harmonics). The spherical harmonics show
a certain symmetry which is

Y ℓm(n) = (−1)mY ℓ−m(n) . (2.70)

Proof: Symmetry of Spherical Harmonics. Using the definition of the Legendre poly-
nomials for negative m (Eq. (C.7) in the appendix) we get

(−1)mY ℓ−m(n) = (−1)m
√

(ℓ+m)!
(ℓ−m)!P

(−m)
ℓ (cos(θ))e−imϕ

= (−1)m
√

(ℓ+m)!
(ℓ−m)! (−1)

m (l −m)!
(l +m)!

Pmℓ (cos(θ))eimϕ = Y ℓm(n) . (2.71)

2.2.2.2. An SE(3) Covariant Spherical Harmonic Transformation

Any SO(3) covariant local feature extraction F induces an SE(3) covariant filter F
(see Eq. (1.8) on page 24). We have seen that Cartesian tensor fields offer a pre-
dictable transformation under rotation and translation thus tensors are often used
for local feature representation building the ingredients of filters for e.g. corner,
edge or blob detection. However, the rotation of Cartesian tensors is computation-
ally expensive, thus higher order Cartesian tensors are rarely used; particularly in
3D. We have seen that irreducible representations of the 3D rotations offer an al-
ternative to classical 3D rotations guaranteeing the most sparsest representation of
rotations. Spherical harmonic basis functions can be used to connect volumetric
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2. Harmonic Analysis in 3D

Figure 2.3.: “The whole image in a point“: The idea behind the dense spherical har-
monic expansion is that the whole image can be reconstructed from the
coefficients at each voxel. In practice, we restrict the expansion to a
small voxel-neighborhood thus only local image patches are sensed by
the dense harmonic transformation.

images with the irreducible representations of SO(3) with the aim of building ”in-
telligent saliency maps“ that rotate efficiently in a predictable manner.
A solution that allows for using the spherical harmonics framework for volumetric

images is based on extracting local features via projection onto spherical harmonic
functions. The spherical harmonics themselves build a basis for functions on the
sphere. Assume a parameterization of images in spherical coordinates. We introduce
an additional radial component that covers the radial part of the image. Together
with the spherical harmonics covering the angular part we obtain new functions
covering the whole 3D space. A straight forward approach for covering the radial
part is based on nested spheres, each separately represented in terms of spherical
harmonics as proposed in the paper by Kazhdan et al. (2003).

The spherical harmonic functions {
√

(2ℓ+1)
4π Y ℓm} build an ONB of L2(S2) (see Eq.

(2.60) and Eq. (2.22)). Considering a parameterization of a volumetric image in
spherical coordinates I(θ,ϕ,r) instead of Cartesian I(x,y,z), the spherical harmonics
build a suitable basis for covering the angular part. Any image I ∈ L2(R3) can be
projected on spherical harmonics via an ordinary inner product for 3D functions via

〈I ,Yℓδr〉 =
∫

r′∈R3
I(r′)Yℓ(r′) δ(‖r′‖ − r)

︸     ︷︷     ︸
selects a spherical

fraction of the image

dr′ , (2.72)

which is a projection on spherical harmonics in a component-by-component manner
(for m = −ℓ, · · · , ℓ). With ℓ we denote the spherical harmonic order and r ∈ R≥0 is the
radius of the spherical fraction of the image that is projected onto a spherical har-
monic function. Note, that we assume that the Dirac function has been normalized
by 1/r2, thus

∫
r′∈R3 δr(‖r′‖)dr′ =

∫
r′∈R3 δ(‖r′‖ − r)dr′ = 4π is just the area on the unit
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sphere.
We regard a projection onto Yℓ as local feature extraction F : L2(R

3) → C(2ℓ+1),
with

F(I , ℓ, r) := 〈I ,Yℓδr〉 . (2.73)

The features are complex valued vectors which are spherical harmonic expansion
coefficients. This local feature extraction is covariant to 3D rotation.

Theorem 2.2.12 (F(I , ℓ, r) is covariant to SO(3)). F is covariant in the sense that F
transforms via matrix multiplication with the Wigner D-matrices according to

F(gI , ℓ, r) =Dℓ
gF(I , ℓ, r) . (2.74)

(This theorem is a consequence of Thm. 2.2.8. A proof can be found on page 197)

Since any SO(3) covariant local feature extraction induces an SE(3) covariant filter,
we use F(I , ℓ, r) to form an SE(3) covariant filter (see (1.8) on page 24). We denote
this filter by SHℓ (Spherical Harmonic Filter). The filter SHℓ is mapping images
I ∈ L2(R3) to complex vector valued feature images. We denote the feature images
by aℓ(r) : R3→ C(2ℓ+1). The filter is defined by

SHℓ{I , r}(x) := F(h(−x)I , ℓ, r)
= 〈h(−x)I ,Yℓδr〉 . (2.75)

With hx ∈ T (3) we denote a translation acting on volumetric images, see exam-
ple 2.1.14 on page 43. The feature images

aℓ(r) = SHℓ{I , r} (2.76)

are the result of projection of the image onto spherical harmonics in a voxel-by-voxel
manner. Therefore, the elements of aℓ(r) are local expansion coefficients of an image
I . We call aℓ(x, r) ∈ C2ℓ+1 a spherical harmonic expansion coefficient of I with respect
to a center of expansion x ∈ R3 and a distance to the center of expansion r ∈ R≥0.
An image I ∈ L2(R3) can be recovered with respect to any center of expansion

x ∈ R3 via

I(r) = I(θ,ϕ,r) =
∞∑

ℓ=0

2ℓ+1
4π

m=ℓ∑

m=−ℓ
aℓm(x,‖r− x‖)Y ℓm(r− x)

=
∑

ℓ

2ℓ+1
4π (aℓ(x,‖r− x‖))TYℓ(r− x) ; (2.77)

see Fig. 2.3 on the preceding page.
Since F is rotation covariant, the spherical harmonic transformation SH must be

covariant to Euclidean motion; see Eq. (1.9) on page 24.

Theorem 2.2.13 (The Spherical Harmonic Transformation SHℓ is SE(3) Covariant).
The spherical harmonic transform is SE(3) covariant. Let g ∈ SO(3) and ht ∈ T (3)). Then

SHℓ{htgI , r}(x) =Dℓ
gSHℓ{I , r}(UTg (x− t)) . (2.78)

(A proof can be found on page 197)
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2. Harmonic Analysis in 3D

Accordingly we define the action of an element of the Euclidean motion group on
the filter output.

Definition 2.2.14 (Group Action on Filter Output). The filter output is an image of
spherical harmonic expansion coefficients aℓ(r) = SHℓ{I , r}. We define the group action
on the coefficient image according to theorem 2.2.13. Let g ∈ SO(3) and a translation
ht ∈ T (3). Then the coefficient image transforms according to

(htga
ℓ)(x, r) =Dℓ

ga
ℓ(UTg (x− t), r) , (2.79)

(gaℓ)(x, r) =Dℓ
ga
ℓ(UTg x, r) (rot. only). (2.80)

Corollary 2.2.15. [Rotation of a function in the harmonic domain] Let aℓ(x, r) be the
expansion coefficients of I : R3 → C and x ∈ R3 the center of expansion. Let further g ∈
SO(3) be a rotation acting on I thus I ′(r) = (gI )(r) := I(UTg r) is the rotated function. Then
the corresponding rotation of I in frequency domain is just a rotation of the coefficients
aℓ(x, r) by the D-Wigner matrices, with

(gI )(r) =
∑

ℓ

2ℓ+1
4π (Dℓ

ga
ℓ(UTg x,‖r− x‖))

T
Yℓ(r− x)

=
∑

ℓ

2ℓ+1
4π (a′ℓ(UTg x,‖r− x‖))

T
Yℓ(r− x) , (2.81)

where a′ℓ(x, r) are the expansion coefficients of the rotated function.

An SE(3) Covariant Spherical Harmonic Transformation. The filter SH can be
regarded as dense spherical harmonic transform, computing spherical harmonics
expansion coefficients in a voxel-by-voxel manner. Such a transformation has been
introduced by Ronneberger et al. (2005): a straight forward solution for realizing
such a linear filter uses the convolution to make the projection computationally ef-
ficient. The basis functions are sliding over the image, similar to a filter and the
expansion coefficients are computed in a voxel-by-voxel manner. The spherical har-
monic transformation in Eq. (2.76) written as convolution is

aℓm(x, r) = SHℓm{I , r}(x) =
∫

r′∈R3
I(r′ + x)Y ℓm(r

′)δ(‖r′‖ − r)dr′

=

∫

r′∈R3
I(r′)Y ℓm(r

′ − x)δ(‖r′ − x‖ − r)dr′

= (−1)ℓ
∫

r′∈R3
I(r′)Y ℓm(x− r′)δ(‖x− r′‖ − r)dr′ (using SH-parity Eq. (2.68))

= (−1)ℓ(I ∗Y ℓmδr )(x) . (2.82)

In practice, the convolution can be realized using a fast Fourier transform like the
FFTW (Frigo and Johnson 2005), thus the coefficients can be computed inO(N logN ),
where N is the number of the voxels. We shortly write

aℓ(r) = SHℓ{I , r}
= (−1)ℓ(I ∗Yℓδr ). (2.83)
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original

Figure 2.4.: Continuous radial functions are often better suited for image represen-
tation than nested spheres. In the continuous case, a small number of
basis functions is usually sufficient to represent the important character-
istics of an image in a global manner. Here a Fourier like radial profile
is used, where k ∈ N denotes the frequency of the radial basis functions
(Skibbe et al. 2009a).

It is worth mentioning that using nested spheres might be the most intuitive ex-
tension of the spherical harmonic approach to volumetric images, but there exist
alternatives much better suited for representation (see e.g. Fig. 2.4) and efficient
computation. There exist basis functions comprising orthogonal radial basis func-
tions having a certain differential relationship. For instance, in section 5.1 and 5.2
we introduce true 3D functions inheriting all the properties of the spherical harmon-
ics while allowing an efficient computation of the expansion coefficients via finite
differences. Another example computes the local gradient orientation distribution
via spherical harmonics instead of directly using the image’s intensity values. We
introduce such a filter in section 5.3.

2.2.3. Spherical Tensor Algebra

In this section we introduce the spherical tensor algebra utilizing the notations and
definitions proposed by Reisert and Burkhardt (2009b). The available literature cov-
ering this topic is mainly related to physics and theoretical chemistry. To suggest
some resources worth reading: Brown and Carrington (2003); Reisert and Skibbe
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2. Harmonic Analysis in 3D

Figure 2.5.: Key property of •ℓ and Y: higher order spherical harmonics Yℓ+1 can be
obtained by coupling Yℓ with Y1.

(2012); Skibbe and Reisert (2013); Tuszynski (1990) and the lecture notes of Wormer
(„Angular Momentum Theory“).

Definition 2.2.16 (Spherical Tensor Fields). We call a vector valued function fJ : R3→
C2J+1, fJ ∈ TJ a spherical tensor field of rank J ≥ 0, iff for all g ∈ SO(3)

(gfJ )(x) :=DJ
gf
J (UTg x) . (2.84)

We denote by TJ the space of all spherical tensor fields of rank J (compare with Carte-
sian tensor fields, Thm. 2.2.1 on page 49. Here the rotation matrices are the irreducible
representations of SO(3)).

The vectors fJ (x) ∈ C(2J+1) of a spherical tensor field fJ ∈ TJ are called spherical

tensors of order J . With f Jm : R3→ C we denote the single components of fJ such that

fJ = (f J−J , , · · · , f
J
m, · · · , f JJ )

T
.

The following kinds of spherical tensor fields build the connection to volumetric
images and therefore play an important role in this work:

• Any scalar valued volumetric image is a tensor field of order 0 (I ∈ T0).
This is the trivial case where for all g ∈ SO(3) :D0

g = 1:

(gI )(x) = I(UTg x) =D0
gI(U

T
g x) , (2.85)

see Eq. (2.38) on page 49.

• Yℓ is a spherical tensor field of order ℓ.
The definition of the group action of rotations acting on spherical harmonics
coincides with the definition for spherical tensor fields. The group action is
defined by

(gYℓ)(x) =Dℓ
gY

ℓ(UTg x) , (2.86)

see Def. 2.2.7 on page 55. Hence the most natural spherical tensor fields ro-
tating according to Eq. (2.84) are the spherical harmonic functions Yℓ : R3 →
C(2ℓ+1) themselves (Spherical Harmonics: Def. 2.2.6 on page 55).
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• The filter SH is mapping 3D images to spherical tensor fields.
That is, the dense field of spherical harmonic expansion coefficients
aℓ(r) : R3→ C2ℓ+1 of an image I ∈ L2(R3) is a spherical tensor field of order ℓ.
According to theorem 2.2.13, the expansion coefficients transform as

(gaℓ)(x, r) =Dℓ
ga
ℓ(UTg (x), r); (2.87)

see Eq. (2.80) on page 60. That is, the filter SH is connecting 3D images to
spherical tensor fields: any volumetric image I ∈ L2(R3) can be represented in
terms of spherical tensor fields by locally expanding an image in terms of a
spherical harmonic basis. We can write

SHℓ : L2(R3)→Tℓ . (2.88)

Spherical tensor fields are sharing some very basic properties with ordinary vector
valued images.

Corollary 2.2.17 (SE(3) Covariance of Spherical Tensor Fields). The translation of
spherical tensor fields is defined as for ordinary vector valued images, thus Euclidean mo-
tion acts as follows

(htgf
J )(r) = (gfJ )(r− t) =Dℓ

gf
J (UTg (r− t)) . (2.89)

We denote the Fourier representation of a spherical tensor field fJ ∈ TJ by f̃J ∈ TJ .
We obtain the Fourier representation of a spherical tensor field by transforming the
field in a component by component way, where

f̃ Jm = F T {f Jm} . (2.90)

We shortly write f̃J = F T {fJ }.

2.2.3.1. Coupling of Spherical Tensors

The coupling of two Cartesian tensors is a common operation. For instance, gradient
vectors can be coupled using the inner product leading to a tensor of rank 0 (a scalar),
a cross product leads to a tensor of rank 1 (a vector) and an outer product as it occurs
when computing the structure tensor creates a Cartesian tensor of order 2.
In spherical tensor algebra there exists a systematic way for coupling spherical

tensors. Consider the inverse Clebsch-Gordan series2 connecting spherical harmon-
ics of different ranks. It is defined by

∑

m3=m1+m2

〈ℓ1m1, ℓ2m2 | ℓ3m3〉Y ℓ1m1
(n)Y ℓ2m2

(n) = 〈ℓ10, ℓ20 | ℓ30〉Y ℓ3m3
(n). (2.91)

The scalar valued coefficients 〈ℓ1m1, ℓ2m2 | ℓm〉 ∈ R are weighting factors known as
Clebsch-Gordan coefficients and are zero if m1 +m2 , m (see section C.3.9 in the

2Wolfram function site, http://functions.wolfram.com/05.10.23.0008.01
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appendix). The inverse Clebsch-Gordan series tells us how to couple spherical har-
monics of order ℓ1 and ℓ2 to form a spherical harmonic of order ℓ3. Thanks to the
fix-point property of spherical harmonics ((gYℓ)(x) = Dℓ

gY
ℓ(UTg x), see Eq. (2.62)) we

can conclude that the series respects rotations in the sense that

〈ℓ10, ℓ20 | ℓ30〉Y ℓ3m3
(Ugn) =

=
∑

m3=m1+m2

〈ℓ1m1, ℓ2m2 | ℓ3m3〉Y ℓ1m1
(Ugn)Y

ℓ2
m2

(Ugn)

=
∑

m3=m1+m2

〈ℓ1m1, ℓ2m2 | ℓ3m3〉[Dℓ1
g Yℓ1(n)]m1

[Dℓ2
g Yℓ2(n)]m2

= 〈ℓ10, ℓ20 | ℓ30〉[Dℓ1
g Yℓ3(n)]m3

. (2.92)

Moreover, since any spherical tensor rotates with respect to theWigner D-matrices
in the same way, we can build the following definitions upon Eq. (2.91).

Definition 2.2.18 (Tensor Products). For the tensor rank ℓ ∈ N we define the bilinear
forms ◦ℓ : C2ℓ1+1 ×C2ℓ2+1→ C2ℓ+1 for coupling two spherical tensors of rank ℓ1 ≥ 0 and
ℓ2 ≥ 0 to create a new tensor of rank ℓ. The products are defined by

[(v ◦ℓ w)]m :=
∑

m=
m1+m2

〈ℓ1m1, ℓ2m2 | ℓm〉vm1
wm2

, (2.93)

where [(v◦ℓw)]m denotes the m-th component of the spherical tensor (v◦ℓw). These tensor
products only exist for those triples out of ℓ1, ℓ2, ℓ ∈ N that satisfy the triangle inequality
|ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2.

Two tensors are coupled in such a way that the rotation acting on the two tensors is
preserved. This means, if a rotation g ∈ SO(3) is acting on the two tensors v ∈ C2ℓ1+1

of rank ℓ1 andw ∈ C2ℓ2+1 of rank ℓ2, the rotation is also acting on the resulting tensor
(v ◦ℓ w) ∈ C2ℓ+1:

(Dℓ1
g v ◦ℓDℓ2

g w) =Dℓ
g(v ◦ℓ w) . (2.94)

The tensor product obeys the following symmetry:

(v ◦ℓ w) = (−1)ℓ1+ℓ2−ℓ(w ◦ℓ v) (2.95)

(According to the symmetries of Clebsch Gordan coefficients, Eq. C.28 in the ap-
pendix). Hence if ℓ is odd, then (v ◦ℓ v) = 0.

Definition 2.2.19 (Normalized Tensor Products). The normalized tensor Products •ℓ :
C2ℓ1+1 ×C2ℓ2+1 → C2ℓ+1 exist for tensors of rank ℓ1, ℓ2, ℓ ∈ N satisfying the triangle in-
equality |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2 and where additionally the sum ℓ + ℓ1 + ℓ2 is even. The
normalized spherical tensor products are defined by

(v •ℓ w) :=
(v ◦ℓ w)

〈ℓ10, ℓ20 | ℓ0〉
. (2.96)

The spherical tensor products can be used to couple tensor fields of different rank
by coupling in a point-by-point manner.
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Proposition 2.2.20 (Coupling of Tensor Fields). Let fJ1 ∈ TJ1 and fJ2 ∈ TJ2 be two spher-
ical tensor fields of rank J1 and J2, respectively. Let further J be chosen according to the
triangle inequality |J1 − J2| ≤ J ≤ J1 + J2, then

fJ (r) = fJ1(r) ◦J fJ1(r), (2.97)

where fJ ∈ TJ , i.e. fJ is a spherical tensor field of rank J . Accordingly, we can couple tensor
fields with respect to the normalized tensor product •J .

It can easily be verified that for a translation ht ∈ T (3), the following holds:

(htf
J1) ◦ℓ (htfJ2) = ht(f

J1 ◦ℓ fJ2) . (2.98)

Definition 2.2.21 (Tensor Convolution ). Let fJ1 ∈ TJ1 and fJ2 ∈ TJ2 be two spherical
tensor fields of rank J1 and J2, respectively. Let further J be chosen according to the triangle
inequality |J1 − J2| ≤ J ≤ J1 + J2, then we call

(fJ1 ◦̃JfJ2)(x) :=
∫

r∈R3
fJ1(r) ◦J fJ2(x− r)dr

=

∫

r
fJ1(x− r) ◦J fJ2(r)dr (2.99)

the spherical tensor convolution.

The spherical tensor convolution behaves similar to the ordinary convolution for
scalar valued images, where

fJ1 ◦̃ℓ(htfJ2) = (htf
J1 )̃◦ℓfJ2 = ht(f

J1 ◦̃ℓfJ2) . (2.100)

This can easily be verified by using Eq. (2.89). Furthermore, similar to the ordinary
scalar valued convolution we have the following convolution theorem.

Proposition 2.2.22 (Convolution Theorem). The convolution theorem known for scalar
valued functions can be transfered to the tensor convolution. In case of the tensor convo-
lution we have

(fJ1 ◦̃JfJ2)(x) = F T −1{(̃fJ1 ◦J f̃J2)}(x) . (2.101)

That is, a tensor convolution in frequency domain is a point-wise tensor product.
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Proof: Convolution Theorem.

[(fJ1 ◦̃JfJ2)]m(x) = [

∫

r
fJ1(x− r) ◦J fJ2(r)dr]m

=

∫

r

∑

m=
m1+m2

〈ℓ1m1, ℓ2m2 | ℓm〉f J1m1
(x− r)f J2m2

(r)dr

=
∑

m=
m1+m2

〈ℓ1m1, ℓ2m2 | ℓm〉
∫

r
f
J1
m1

(x− r)f J2m2
(r)dr

=
∑

m=
m1+m2

〈ℓ1m1, ℓ2m2 | ℓm〉(f J1m1
∗ f J2m2

)(x)

=
∑

m=
m1+m2

〈ℓ1m1, ℓ2m2 | ℓm〉F T −1(f̃ J1m1
· f̃ J2m2

)(x)

= F T −1


∑

m=
m1+m2

〈ℓ1m1, ℓ2m2 | ℓm〉f̃ J1m1
f̃
J2
m2


(x)

= [F T −1{(̃fJ1 ◦J f̃J2)}]m(x) . (2.102)

Similar to complex conjugation of complex numbers, there exists a similar opera-
tions that acts on spherical tensors. One characteristic of such an operation is that
it is its own inverse, that is, applying it twice leads back to the function’s input.
Such a mapping is called an involution. We call the involution of tensors the tensor
conjugation. The tensor conjugation will play an important role regarding memory
and computation efficient implementation of the proposed algorithms. Similar to
the complex conjugation, which can be used to split the complex numbers into a real
and and imaginary space, the tensor conjugation induces a real and an imaginary
tensor space. In the last section of this chapter we will talk about the details and
will see that when working with ordinary, scalar valued biomedical images, we au-
tomatically work on either this real or imaginary tensor space. Thanks to such a
representation we can save both memory and CPU time.

Definition 2.2.23 (The Spherical Tensor Conjugation). For all spherical tensors vℓ ∈
C2ℓ+1 exits a counterpart

(
vℓ

)‡ ∈ C2ℓ+1 with

(
vℓm

)‡
:= (−1)mvℓ−m . (2.103)

Theorem 2.2.24 (Properties of the Spherical Tensor Conjugation). The spherical ten-
sor conjugation obeys the following equations regarding inversion:

((
vℓ

)‡)‡
= vℓ , (2.104)

and rotation:
(
Dℓ

gv
ℓ
)‡

=Dℓ
g

(
vℓ

)‡
. (2.105)

Consequently, vℓ ∈ C2ℓ+1 and
(
vℓ

)‡ ∈ C2ℓ+1 have the same rotation behavior.
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Proof: Properties of the Spherical Tensor Conjugation. We first show Eq. (2.104) by two
times applying the definition of the tensor conjugation:

((
vℓm

)‡)‡
=

(
(−1)mvℓ−m

)‡
= (−1)2mvℓm = vℓm . (2.106)

For Eq. (2.105) we utilize the parity of the Wigner D-matrices (Eq (C.40) in the
appendix) and consider the m-th component of the tensor. Then we have



∑

n

[Dℓ
g]m,nv

ℓ
n



‡
= (−1)m

∑

n

[Dℓ
g](−m),nv

ℓ
n = (−1)m

∑

n

[Dℓ
g](−m),nv

ℓ
n

= (−1)m
∑

n

(−1)m−n[Dℓ
g]m,(−n)v

ℓ
n =

∑

n

[Dℓ
g]m,n(−1)nvℓ−n =

∑

n

[Dℓ
g]m,n

(
vℓn

)‡
. (2.107)

Corollary 2.2.25 (Tensor Products). Given two spherical tensors vℓ1 ∈ C2ℓ+1 and wℓ2 ∈
C2ℓ+2, we have the following identity

(
(
vℓ1

)‡ ◦ℓ
(
wℓ2

)‡
) = (−1)(ℓ1+ℓ2+ℓ)

(
vℓ1 ◦ℓ wℓ2

)‡
. (2.108)

Proof: Tensor Products.

[(
(
vℓ1

)‡ ◦ℓ
(
wℓ2

)‡
)]m =

∑

m1,m2

(
v
ℓ1
m1

)‡ (
w
ℓ2
m2

)‡
〈ℓ1m1, ℓ2m2 | ℓm〉

=
∑

m1,m2

(−1)m1v
ℓ1−m1

(−1)m2w
ℓ2−m2
〈ℓ1m1, ℓ2m2 | ℓm〉

= (−1)m
∑

m1,m2

v
ℓ1−m1

w
ℓ2−m2
〈ℓ1m1, ℓ2m2 | ℓm〉

= (−1)m(−1)(ℓ1+ℓ2+ℓ)
∑

m1,m2

v
ℓ1
m1
w
ℓ2
m2
〈ℓ1m1, ℓ2m2 | ℓ(−m)〉

= (−1)(ℓ1+ℓ2+ℓ)
(
[vℓ1 ◦ℓ wℓ2]m

)‡
. (2.109)

Corollary 2.2.26 (Tensor Inner Product). Given two spherical tensors vℓ,wℓ ∈ C2ℓ+1.
then we have the following identity

(vℓ •0wℓ) = 〈vℓ,
(
wℓ

)‡〉 , (2.110)

where 〈·, ·〉 denotes the standard inner product of vectors, where 〈vℓ,wℓ〉 = (vℓ)
T
w.

Proof: Tensor Inner Product.

(vℓ •0wℓ) =
∑

m

(−1)mvℓmwℓ(−m) =
∑

m

vℓm
(
wℓm

)‡
= 〈vℓ,

(
wℓ

)‡〉 . (2.111)
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2.2.3.2. The Angular Power- and Bi-Spectrum

The angular power spectrum is the Fourier representation of the auto-correlation of
a functions on SO(3) (see section B.2.3.1 on page 198), where the correlation param-
eters are the three Euler angles. The angular power spectrum represents a signals
power with respect to a given angular frequency ℓ. The angular cross-spectrum is
the Fourier representation of the angular cross-correlation, which is the correlation
between two signals with respect to the three Euler angles. Therefore, it gives us
information about the similarity of two signals with respect to a given angular fre-
quency ℓ. In the following we consider the special case for functions on the sphere.

Theorem 2.2.27 (Angular Power- and Cross-spectrum). Given two functions f 1, f 2 ∈
L2(S2). Then the angular cross- (if f 1 = f 2 power-) spectrum is defined by

cℓ(f1, f2) =
∑

m

vℓmw
ℓ
m = 〈vℓ,wℓ〉 , (2.112)

where vℓ and wℓ are the spherical harmonic expansion coefficients of f 1 and f 2, respec-
tively.

The power spectrum completely looses any phase information of the signal. Hence
in many applications it does not yield sufficient information for successfully analyz-
ing and comparing signals. Therefore, in application where the phase information
contains indispensable information, higher order spectra like the bi-spectrum are
required (Hasselmann and MacDonald 1963; Kim and Powers 1978). The angular
bi-spectrum is the Fourier representation of the angular triple-correlation; see Eq.
(B.15) in the appendix. For our purposes it is important that the angular bi-spectrum
preserves phase information so that it represents significantly more details than the
power-spectrum. Note that for functions on SO(3) whose coefficients are regular
matrices, the angular bi-spectrum allows for completely recovering the function up
to a rotation (complete rotation invariants in 3D); see particularly theorem 3.2.4 in
Kakarala (1992), and for further readings Kakarala (1993); Kakarala (2012); Kondor
(2008).

Theorem 2.2.28 (Angular Bi-Spectrum). Given a function f ∈ L2(S2) with its spherical

harmonic expansion coefficients vℓ. Then the angular bi-spectrum c
ℓ1.ℓ2
m : L2(S2)→ C is

defined by

c
ℓ1.ℓ2
m (f ) =

∑

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2
〈ℓ1m,ℓ2(−m) | ℓ0〉〈vℓ, (vℓ1 ◦ℓ vℓ2)〉 . (2.113)

The derivation of theorem 2.2.27 and 2.2.28 can be found on page 198. For spher-
ical functions, both the angular bi-spectrum as well as the angular power- or cross-
spectrum are rotation invariant. Therefore, both are widely used to form rotation
invariants utilized for detecting volumetric objects and structures in a rotation in-
variant manner; see chapter 3 on page 83 for further details regarding invariants.

2.2.3.3. Properties and Coupling Rules for Tensor Products

For spherical harmonics there exists the following relationship:
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Proposition 2.2.29 (Coupling Spherical Harmonics). The normalized spherical tensor
product can be used for deriving spherical harmonics of order ℓ by coupling two spherical
harmonics of order ℓ1 and ℓ2 with

Yℓ = Yℓ1 •ℓ Yℓ2 . (2.114)

(Concluded from the Clebsch Gordan series Eq. (2.91)).

In Fig. 2.5 on page 62 we illustrate how higher order spherical harmonics can be
computed recursively.
Forming a new tensor of a specific rank based on coupling two spherical tensors is

(despite the trivial change of order) a unique operation. However, in case of coupling
more than two tensors, there often are many ways to form a new tensor of given
rank. Particularly the scenario, where we couple three tensors, plays a key role in
the 3D rotation invariant theory and thus becomes particularly important for our
applications. The triple product is used for computing the bi-spectrum for functions
on the sphere which is known to provide powerful rotation invariant features.
One big issue that has not been addressed so far is the fact that by combining

three tensors in all possible ways we risk extracting information from images in a
redundant manner. More precisely, assume we aim at creating new tensors of order
J based on three given tensors. There are usually a lot of options to combine the three
tensors via tensor products and obtaining a new tensor of rank J . But it turns out
that more than two thirds of them can be created via linear combination of only one
third of the possible products. That is, two third of all possible products form a set
of linearly dependent tensors yielding no further information about the underlying
image structure. This is, regarding computation time and memory usage, a scenario
that is worth avoiding. In the following, we derive the rules which guide us to set of
tensors that guarantees that no information has been missed, but lead to an up to 3
times smaller number of products.

Theorem 2.2.30 (Coupling Three Spherical Tensors). We have the following identity
when coupling three spherical tensors uℓ1 ∈ C2ℓ1+1, vℓ2 ∈ C2ℓ2+1 and wℓ3 ∈ C2ℓ3+1 to form
a tensor of rank J based on an intermediate rank |ℓ1 − ℓ2| ≤ L12 ≤ ℓ1 + ℓ2 :

((uℓ1 ◦L12 v
ℓ2) ◦J wℓ3) = (2.115)

∑

L23

(uℓ1 ◦J (vℓ2 ◦L23 w
ℓ3))

√
(2L12 +1)(2L23 +1)(−1)ℓ1+ℓ2+ℓ3+J

{
ℓ2 ℓ1 L12
J ℓ3 L23

}
.

With

{
ℓ1 ℓ2 ℓ4
J ℓ3 ℓ5

}
∈ R we denote the Wigner 6j-symbol (see section C.3.10 in the

appendix) They are the weighting factors playing a role when coupling three spher-
ical tensors. Theorem 2.2.30 tells us something about symmetries that exist when
coupling three spherical tensors. By exchanging the coupling order of the three
tensors we see that each of the following sets of tensors, {(uℓ1 ◦J (vℓ2 ◦L23 wℓ3))}∀L23 ,
{(wℓ3◦J (uℓ1◦L12vℓ2))}∀L12 and {(vℓ2◦J (uℓ1◦L13wℓ3))}∀L13 , can be formed via linear combi-
nation of tensors of only one of the remaining sets. That is, they are mutually linearly
dependent. This fact is illustrated in Fig. 2.6. That is, regarding the computation
of linearly independent features it is sufficient (and essential) to compute only one
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Figure 2.6.: (Coupling Three Spherical Tensors) The products defined in each third
of this circle are spanning the tensor space of the products of the re-
maining two thirds. This means they are mutually linear dependent
according to theorem 2.2.30.

set of features out of those three linearly dependent sets. We use this property for
computing an linearly independent set of bi-spectrum features in our applications.

Proof. In the following we derive Eq. (2.115). According to Wormer („Angular Mo-
mentum Theory“), page 17, Eq. (90) there exists the recoupling rule

∑

M12

〈ℓ1m1, ℓ2m2 |L12M12〉〈L12M12, ℓ3m3 | JM〉 (2.116)

=
∑

L23,M23

√
(2L12 +1)(2L23 +1)W (ℓ1ℓ2Jℓ3,L12L23)

× 〈ℓ1m1,L23M23 | JM〉〈ℓ2m2, ℓ3m3 |L23M23〉 ,

where W (ℓ1ℓ2Jℓ3,L12L23) ∈ R is a Racah W-coefficient (Racah 1942). Moreover, the
following relation to the Wigner 6j-symbols is known (see e.g. Wormer („Angular
Momentum Theory“), page 17, Eq. (93) and Eq. (94))

{
ℓ3 L12 J
ℓ1 L23 ℓ2

}
= (−1)ℓ1+ℓ2+ℓ3+JW (ℓ1ℓ2Jℓ3,L12L23)

=

{
ℓ2 ℓ1 L12
J ℓ3 L23

}
(using Eq. (C.35) in the appendix) . (2.117)

By writing out the tensor product of three spherical tensors and by substituting Eq.
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(2.117) into Eq. (2.116), we can derive the equation in theorem 2.2.30, namely

[((uℓ1 ◦L12 v
ℓ2) ◦J wℓ3)]M = (2.118)

=
∑

M=M12+m3

〈L12M12, ℓ3m3 | JM〉〈ℓ1m1, ℓ2m2 |L12M12〉uℓ1m1
v
ℓ2
m2
w
ℓ3
m3

=
∑

m3

∑

M12

〈L12M12, ℓ3m3 | JM〉〈ℓ1m1, ℓ2m2 |L12M12〉uℓ1m1
v
ℓ2
m2
w
ℓ3
m3

=
∑

m3

∑

L23M23

∑

L23

√
(2L12 +1)(2L23 +1)(−1)ℓ1+ℓ2+ℓ3+J

×
{
ℓ2 ℓ1 L12
J ℓ3 L23

}
〈ℓ1m1,L23M23 | JM〉〈ℓ2m2, ℓ3m3 |L23M23〉uℓ1m1

v
ℓ2
m2
w
ℓ3
m3

=
∑

L23

∑

m3

∑

M23

〈ℓ1m1,L23M23 | JM〉〈ℓ2m2, ℓ3m3 |L23M23〉uℓ1m1
v
ℓ2
m2
w
ℓ3
m3

×
√
(2L12 +1)(2L23 +1)(−1)ℓ1+ℓ2+ℓ3+J

{
ℓ2 ℓ1 L12
J ℓ3 L23

}

=
∑

L23

[(uℓ1 ◦J (vℓ2 ◦L23 w
ℓ3))]M

√
(2L12 +1)(2L23 +1)(−1)ℓ1+ℓ2+ℓ3+J

{
ℓ2 ℓ1 L12
J ℓ3 L23

}
.

A conclusion that we can draw from the coupling rule in theorem 2.2.30 is that
the spherical tensor products show some kind of associativity.

Corollary 2.2.31 (Associativity of Tensor Products). For the triple tensor products there
exist three fundamental coupling rules. These rules are:

(Upper Bound) If ℓ1, ℓ2, ℓ3 ∈ N, then

((uℓ1 ◦(ℓ1+ℓ2) v
ℓ2) ◦(ℓ1+ℓ2+ℓ3)w

ℓ3)

=((uℓ1 ◦(ℓ1+ℓ3)w
ℓ3) ◦(ℓ1+ℓ2+ℓ3) v

ℓ2)

=((vℓ2 ◦(ℓ2+ℓ3)w
ℓ3) ◦(ℓ1+ℓ2+ℓ3) u

ℓ1) . (2.119)

(Lower Bound) If additionally (ℓ3 − ℓ2 − ℓ1) ≥ 0, then

((wℓ3 ◦(ℓ3−ℓ1) u
ℓ1) ◦(ℓ3−ℓ2−ℓ1) v

ℓ2)

=((wℓ3 ◦(ℓ3−ℓ2) v
ℓ2) ◦(ℓ3−ℓ2−ℓ1) u

ℓ1)

=((uℓ1 ◦(ℓ1+ℓ2) v
ℓ2) ◦(ℓ3−ℓ2−ℓ1)w

ℓ3) . (2.120)

(Scalar) If |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2, then

((uℓ1 ◦ℓ3 v
ℓ2) ◦0wℓ3)

=((wℓ3 ◦ℓ2 u
ℓ1) ◦0 vℓ2)

=((vℓ2 ◦ℓ1 w
ℓ3) ◦0 uℓ1) . (2.121)
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Note, that these cases are only the special cases in Eq. (2.115), where the sum has
only one addend.

Proof. We show all three equalities using the recoupling rule Eq. (2.115). In the first
scenario we have

((uℓ1 ◦(ℓ1+ℓ2) v
ℓ2) ◦(ℓ1+ℓ2+ℓ3)w

ℓ3) = (uℓ1 ◦(ℓ1+ℓ2+ℓ3) (v
ℓ2 ◦(ℓ2+ℓ3)w

ℓ3))

×
√
(2(ℓ1 + ℓ2) + 1)(2(ℓ2 + ℓ3) + 1)

{
ℓ2 ℓ1 (ℓ1 + ℓ2)

(ℓ1 + ℓ2 + ℓ3) ℓ3 (ℓ2 + ℓ3)

}

︸                                                                           ︷︷                                                                           ︸
=1 (According to Eq. (C.36) in the appendix)

(using Eq. (C.28) in the appendix)
= (vℓ2 ◦(ℓ1+ℓ2+ℓ3) (u

ℓ1 ◦ℓ1+ℓ3 w
ℓ3)) , (2.122)

and in the second scenario

((uℓ1 ◦(ℓ1+ℓ2) v
ℓ2) ◦(ℓ3−ℓ2−ℓ1)w

ℓ3) = (uℓ1 ◦(ℓ3−ℓ2−ℓ1) (v
ℓ2 ◦(ℓ3−ℓ2)w

ℓ3))

×
√
(2(ℓ1 + ℓ2) + 1)(2(ℓ3 − ℓ2) + 1)

{
ℓ2 ℓ1 (ℓ1 + ℓ2)

(ℓ3 − ℓ2 − ℓ1) ℓ3 (ℓ3 − ℓ2)

}

︸                                                                           ︷︷                                                                           ︸
=1 (According to Eq. (C.38) in the appendix)

. (2.123)

Similarly, the third case can be shown to be:

((uℓ1 ◦ℓ3 v
ℓ2) ◦0wℓ3) = (uℓ1 ◦0 (vℓ2 ◦ℓ1 w

ℓ3))

× (−1)ℓ1+ℓ2+ℓ3
√
(2ℓ1 +1)(2ℓ3 +1)

{
ℓ2 ℓ1 ℓ3
0 ℓ3 ℓ1

}

︸                                                    ︷︷                                                    ︸
=1 (According to eq. (C.37))

(2.124)

2.2.3.4. Tensorial Harmonic Functions

Spherical harmonic functions are building an orthogonal basis for functions on the
sphere. We have further seen how to utilize spherical harmonics to build an SE(3) co-
variant filter for volumetric images. Similar to spherical harmonic functions, whose
values on the sphere are scalars, there exists an extension to higher order tensor val-
ued basis functions with similar properties. With such basis functions it is possible
to generalize the spherical harmonic framework from simple scalar valued volumet-
ric images to higher order spherical tensor fields. The corresponding basis functions
are called tensorial harmonics (Reisert and Burkhardt 2008b).
Tensorial harmonics are orthogonal functions providing a complete orthogonal

basis for representing spherical tensor fields. Tensorial harmonics can be regarded
as an extension of spherical harmonics to tensor fields of higher rank. Any spherical
tensor field can be expanded in the following manner: given a spherical tensor field
fJ ∈ TJ , then

fJ (r) =
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,jv

ℓ
j (r) ◦J Yℓ(r) , (2.125)
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Figure 2.7.: Vectorial harmonics Z01m
1 for m = 0,1 (negative components are not

shown because of the internal symmetry). The vectorial harmonic asso-
ciated with the spherical harmonic of order 0 consists of vectors aligned
with respect to the Cartesian coordinate axes. Similar to the spherical
harmonic of order 0 representing the mean value within an image, the
first vectorial harmonic represents the mean direction within the vector
field.

Figure 2.8.: Vectorial harmonics Z
1jm
1 for j = −1,0,1 and m = 0, · · · , (j + 1) (negative

components are not shown because of the internal symmetry).
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Figure 2.9.: Vectorial harmonics Z
2jm
1 for j = −1,0,1 and m = 0, · · · , (j + 2) (negative

components are not shown because of the internal symmetry).

where vℓj (r) ∈ C2(ℓ+j)+1 are spherical tensor valued expansion coefficients, for the
proof we refer to Reisert and Burkhardt (2008b).

Under rotations, the expansion coefficients transform similar to ordinary spherical
harmonic expansion coefficients. Assume a rotation g ∈ SO(3) is acting on the tensor
field fJ , then

(gf)(r) = (DJ
gf)(U

T
g r) =

∞∑

ℓ=0

j=J∑

j=−J
Nℓ,jD

ℓ+j
g vℓj (r) ◦J D

ℓ+j
g vℓjY

ℓ(UTg r)

=
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,jD

ℓ+j
g vℓj (r) ◦J Yℓ(r)

︸︷︷︸
fixpoint

; (2.126)

see the book chapter by Reisert and Burkhardt (2009b) for further details. That is, a
rotation is just a transformation of the expansion coefficients via a Wigner D-matrix
multiplication.

By rewriting the expansion Eq. (2.125) we identify the tensorial harmonic func-
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tions Z
ℓjm
J (r) : R3→ C(2J+1).

fJ (r) =
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,jv

ℓ
j (r) ◦J Yℓ(r) (2.127)

=
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
vℓjm(r)e

ℓ+j
m ◦J Yℓ(r)︸        ︷︷        ︸
:=Z

ℓjm
J (r)

=
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
vℓjm(r)Z

ℓjm
J (r) .

With e
ℓ+j
m ∈ C(2ℓ+1) we denote the standard basis, where [e

ℓ+j
m ]n = δm,n. Hence the

tensorial harmonic Z
ℓjm
J : R3→ C2J+1 is defined by

Z
ℓjm
J (r) := e

ℓ+j
m ◦J Yℓ(r) . (2.128)

The single vector components are

Z
ℓjm
JM (r) = Y ℓ(M−m)〈(ℓ + j)m,ℓ(M −m) | JM〉 . (2.129)

The tensorial harmonics with rank J are building an orthogonal basis for spherical
tensor fields of order J . The index ℓ ∈ N is the corresponding spherical harmonic
order, j ∈ N, j ∈ {−J , . . . , J} the tensorial harmonic associated with a certain ℓ and the
indexm ∈ {−(ℓ+ j), . . . , (ℓ+ j)} denotes themth tensorial harmonic associated with ℓ, j .
Similar to spherical harmonics, the index m induces a group of functions represent-

ing a certain kind of local pattern, that is {Zℓj(−(ℓ+j))J , · · · ,Zℓj(ℓ+j)J }. However, a vector
representation like for spherical harmonics is not possible (apart from J = 0) due to
the vector valued image of tensorial harmonics.
For J = 0 the tensorial harmonics are identical (up to a factor) to the spherical

harmonics, because

Zℓ0m0 (n) = eℓm ◦0 Yℓ(n) = (−1)ℓ−m 1√
2ℓ+1

Y ℓ(−m)(n) = (−1)ℓ 1√
2ℓ+1

Y ℓm(n) . (2.130)

The tensorial harmonics corresponding to J = 1 are widely known as vectorial har-
monics or vector spherical harmonics (Fehr et al. 2009; Morse and Feshbach 1953;
Skibbe et al. 2009b). Some vectorial harmonic functions are illustrated in Figs. 2.7,2.8,2.9.
The tensorial harmonics are orthogonal functions on the tensor valued 2-sphere in
the following sense:

〈ZℓjmJ ,Z
ℓ′j ′m′

J 〉 =
J∑

M=−J

∫

S2

Z
ℓjm
JM (n)Z

ℓ′j ′m′

JM (n)dn

=
4π
Nℓ,j

δℓ,ℓ′δj,j ′δm,m′ , (2.131)

where Nℓ,j =
(2ℓ+1)(2(ℓ+j)+1)

2J+1 is a normalization factor.

Proposition 2.2.32 (Symmetry of Tensorial Harmonics). The tensorial harmonics show
a certain symmetry with respect to their order m and tensor componentM which is

Z
ℓjm
JM (n) = (−1)(J+j+M+m)Z

ℓj(−m)
J(−M) (n) . (2.132)
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Proof: Tensorial Harmonic Symmetry. The symmetry is shown using the symmetry of
spherical harmonics and Clebsch Gordan coefficients (Eq. (2.70) and Eq. (C.28) in
the appendix):

Z
ℓjm
JM (n) = Y ℓ(M−m)(n)〈(ℓ + j)m,ℓ(M −m) | JM〉

= (−1)J+j (−1)(M−m)Y ℓ−(M−m)(n)〈(ℓ + j)(−m), ℓ(−(M −m)) | J(−M)〉

= (−1)J+j (−1)(M−m)Z
ℓj(−m)
J(−M) (n) . (2.133)

The expansion coefficients are computed via orthogonal projection onto the tenso-
rial harmonic basis functions. The inner product is the standard vector inner prod-
uct so that the projection is done for all m = −(ℓ + j), · · · , (ℓ + j) components in a
component-by-component manner with

vℓjm := 〈fJ ,ZℓjmJ δr〉 =
J∑

M=−J

∫

R3
f JM (r′)Z

ℓjm
JM (r′)δ(‖r′‖ − r)dr′ . (2.134)

Under rotations, the expansion coefficients of a tensorial harmonic expansion un-
dergo the same predictable transformation as spherical harmonic expansion coeffi-
cients. It is nearby to extend the spherical harmonic filter via tensorial harmonics to
accept arbitrarily ranked spherical tensor fields as input:

2.2.3.5. An SE(3) Covariant Tensorial Harmonic Transformation

Based on the tensorial harmonics, considered as a generalization of spherical har-
monics, we extend the spherical harmonic transform SH : L2(R

3)→Tℓ in such a way
that it accepts tensor valued images as input. We simply replace the spherical har-
monics with tensorial harmonics and consider the case for scalar valued images as
the standard case (because we mostly cope with scalar valued images).
We extend the local feature extraction F(ℓ, r) : T0→ C2ℓ+1 via tensorial harmonics

to F(ℓ, j, r) : TJ → C2(ℓ+j)+1, mapping spherical tensor fields to spherical tensor valued
features. Similar to the spherical harmonic features, the features are expansion coef-
ficients resulting from projecting a tensor field onto a family of tensorial harmonics

{Zℓj(−(ℓ+j))J , · · · ,Zℓj(ℓ+j)J } via

[F(fJ , ℓ, j, r)]m := 〈fJ ,ZℓjmJ δr〉 , (2.135)

where m = −(ℓ+ j), · · · , (ℓ+ j). It holds that F(gfJ , ℓ, j, r) is covariant to rotations in the
sense that for any g ∈ SO(3),

F(gfJ , ℓ, j, r) =D
(ℓ+j)
g F(fJ , ℓ, j, r) . (2.136)

The local feature extraction F(fJ , ℓ, j, r) induces a new SE(3) covariant filter SHℓj :
TJ →T(ℓ+j), where

SHℓj {fJ , r}(x) := F(h(−x)fJ , ℓ, j, r) . (2.137)
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The images

aℓj (r) := SHℓj {fJ , r} , (2.138)

aℓj (r) ∈ T(ℓ+j) are images of local tensorial harmonic expansion coefficients.
Since efficient algorithms based on the convolution (see section 2.2.2.2 on page 57)

and differentiation (see chapter 5 on page 109) exist for the ”classical“ spherical har-
monic transform, it is an important fact that the tensor filter SHℓj : TJ → T(ℓ+j) can
be computed via its scalar valued counterpart SHℓ : L2(R3) → Tℓ. In Skibbe et al.
(2009b) we have shown how to compute the tensorial expansion coefficients in two
steps in terms of an ordinary spherical harmonic transform: first, the expansion co-
efficients aℓj (x, r) ∈ C2(ℓ+j)+1 are computed by projecting a tensor field with its compo-

nents fJ = {f J−J , . . . , f
J
M , · · · , f

J
J } into the space spanned by spherical harmonic functions

in a component-by-component manner. Then, a weighted superposition forms the
coefficients. This leads us to the following theorem.

Theorem 2.2.33 (Tensorial Harmonic Transformation). The tensorial harmonic trans-
formation can be defined in terms of the spherical harmonic transformation, with

SHℓjm {fJ , r} =
J∑

M=−J

ℓ∑

n=−ℓ
SHℓn{f JM , r}︸       ︷︷       ︸

standard SH trafo

〈(ℓ + j)m,ℓn | JM〉
︸                ︷︷                ︸

weights

. (2.139)

A proof can be found in section B.2.3.2 on page 200. An alternative suited for large
images is based on tensor derivatives and will be discussed later in section 5.1.3.1 on
page 125.

2.2.3.6. Solid Harmonic Functions

The (Schmidt semi-normalized) solid harmonics are widely known in physics as so-
lutions of the Laplace equation in spherical coordinates (see e.g. Byerly (2003)). Let
Rℓn ∈ Tℓ−n be a spherical tensor field, whose (2(ℓ−n)+1) components [Rℓn]m are defined
by

[Rℓn]m(r) := r
ℓ+nY ℓ−nm (r) , (2.140)

comprising a radial polynomial rℓ+n : R → R with ℓ,n ∈ N0 and Schmidt semi-
normalized spherical harmonic functions Y ℓ−nm , m ∈ Z, |m| ≤ ℓ −n. We shortly write
Rℓ instead of Rℓ0. The functions R

ℓ are called solid harmonic functions.
Similar to spherical harmonics (See proposition (2.2.29) for the spherical harmonic

case), solid harmonics can be coupled to form solid harmonics of higher or lower
orders. They are coupled by multiplying their radial components, where

(Rℓn •(ℓ+1) R1) =(Yℓ−n •(ℓ+1) Y1)rℓ+nr =Y(ℓ+1)−nr(ℓ+1)+n =Rℓ+1n and (2.141)

(Rℓn •(ℓ−1) R1) =(Yℓ−n •(ℓ−1) Y1)rℓ+nr =Yℓ−(n+1)rℓ+(n+1) =Rℓn+1 . (2.142)

Therefore, we can compute Rℓn by successively coupling R1 in a recursive manner,
where

Rℓn = (R1 •ℓ−n (R1 •ℓ−2 · · · (R1 •ℓ−1 (R1 •ℓ · · · (R1 •2 (R1 •1 R1))))))
︸                                ︷︷                                ︸

=Rℓ

. (2.143)
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2.2.3.7. Connection Between Cartesian and Spherical Tensors

Since the rotations acting on Cartesian tensors are reducible matrix representations
of SO(3), there always exists a decomposition of Cartesian tensors into spherical
counterparts: see end of section 2.2 on page 48. In this section we exemplarily show
the connection between first and second order Cartesian tensors and their spherical
counterparts (a tensor filed of order 0, a scalar valued image, is a Cartesian tensor
field as well as a spherical tensor field). Details regarding this decomposition can be
found in Reisert and Burkhardt (2009b). For a general discussion on this topic see
the books of Rose (1995) or Brink and Satchler (1993).
The solid harmonics (see section 2.2.3.6 on the previous page for their Def.) induce

a natural, unitary coordinate transform S ∈ SU(3), connecting Cartesian coordinates
with spherical coordinates, where

Sx = R1(x) =
1√
2

(
(x − iy),

√
2z,−(x + iy)

)T
. (2.144)

Solving this equations leads to

S =
1√
2




1 −i 0
0 0

√
2

−1 −i 0




. (2.145)

Let T1 and T2 be two Cartesian tensor fields of order 1 and 2, respectively (see Eq.
(2.40) on page 50). The field T1 is already irreducible. Therefore, T1 can directly be
transformed into its spherical counterpart by the coordinate transform S, acting on
T1 in the following manner:

a1(x) = ST1(x) . (2.146)

The second order tensor T2 is reducible. In order to use common matrix calculus we
consider T2 w.l.o.g as tensor in matrix form. In this case

T2(x) =




T 2
00 T 2

01 T 2
02

T 2
10 T 2

11 T 2
12

T 2
20 T 2

21 T 2
22




. (2.147)

There exists a unique decomposition of T2 into three irreducible components:

T2 = αI3×3 +T2
anti +T2

sym , (2.148)

where T2
anti is an antisymmetric matrix, T2

sym a traceless (traceT2
sym = 0) symmetric

matrix and α ∈ R the trace. We get the corresponding three spherical tensors by: (1)
applying the coordinate transform S. We obtain

T′2(x) = ST2(x)S∗ . (2.149)

(2) We then obtain the spherical tensor fields vℓ ∈ Tℓ, ℓ = 0,1,2, corresponding to α,
T2
anti and T2

sym, according to the following spherical decomposition

vℓm(x) =
∑

m=m1+m2

(−1)m1〈1m1,1m2 | ℓm〉T ′2(1−m1),(1+m2)
(x) . (2.150)
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The inverse of this transformation is given by

T ′2(1+m1),(1+m2)
(x) =

2∑

ℓ=0

(−1)m1〈1(−m1),1m2 | ℓm〉vℓm(x) . (2.151)

The explicit representations of vℓ, ℓ = 0,1,2 are (see Skibbe et al. (2009b))

v0 = − (T
2
00+T

2
11+T

2
22)√

3
, (2.152)

v1 =




1
2

(
T 2
20 −T 2

02 + i(T 2
21 −T 2

12)
)

i√
2

(
T 2
10 −T 2

01

)

1
2

(
T 2
20 −T 2

02 − i(T 2
21 −T 2

12)
)




and (2.153)

v2 =




1
2

(
T 2
00 −T 2

11 + i(T 2
01 +T

2
10)

)

1
2

(
(T 2

02 +T
2
20) + i(T 2

12 +T
2
21)

)

−1√
6

(
T 2
00 +T

2
11 − 2T 2

22

)

1
2

(
−(T 2

02 +T
2
20) + i(T 2

12 +T
2
21)

)

1
2

(
T 2
00 −T 2

11 − i(T 2
01 +T

2
10)

)




. (2.154)

2.2.3.8. Implementation: Benefiting from Real Valued Images

The space of complex numbers can be uniquely decomposed into a real part and an
imaginary part which each forms a closed subspace under weighted superposition

with real numbers. That is, if v ∈ C is a complex number, thenℜ(v) = (v+v)
2 , ℜ(v) ∈

R is the real part of v andℑ(v) = (v−v)
2 ,ℑ(v) ∈ R the imaginary part. Consequently,

if our signal is either real or complex valued, it is sufficient to consider only one of
these subspaces unless we restrict multiplications on real numbers. From a compu-
tational point of view, such a consideration is very beneficial: (1) we avoid complex
multiplications which are computationally expensive and (2) we only need half the
size of memory as for true complex numbers. The remaining parts of the complex
signal would be zero anyway.
For spherical tensors there exists a similar consideration in terms of two com-

plementary real and imaginary spherical tensor spaces. Despite the fact that they
are complex valued, they behave similar to the real and imaginary space of com-
plex numbers so that we can consider both as real valued vector spaces. This has
some direct consequences for implementation: (1) the real and imaginary spherical
tensor space needs each only half the amount of memory for storing the data. The
same data structure can be used for both. (2) During this thesis we only work on
real valued volumetric biomedical images whose elements are already part of a real
spherical tensor space. (3) All spherical tensor operations we use during this thesis
are mapping real or imaginary spherical tensors to real or imaginary spherical ten-
sors. Therefore, we only have to track whether we are currently in the real or the
imaginary space to never risk falling back into the full spherical tensor space. (4)
Since we only need to store about half the amount of tensor components, all opera-
tions are almost twice as fast than when using a full spherical tensor representation.
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Definition 2.2.34 (Real and Imaginary Tensor Space). The tensor conjugation induces
a unique decomposition of the spherical tensor spaceC2ℓ+1 into two vector spacesVℓ,V

i
ℓ ⊂

C2ℓ+1. Let vℓ ∈ C2ℓ+1, then

vℓ =
(vℓ +

(
vℓ

)‡
)

2︸        ︷︷        ︸
∈Vℓ

⊕
(vℓ −

(
vℓ

)‡
)

2︸        ︷︷        ︸
∈Vi

ℓ

. (2.155)

Despite the fact that these vector spaces are complex valued we treat them as real valued
vector spaces, because they have closer under weighted superposition for the real numbers.
With this assumption, the spherical tensor space C2ℓ+1 is a direct sum of these two sub-
spaces, that is C2ℓ+1 = Vℓ ⊕Vi

ℓ. For the sake of consistency to standard complex numbers
we call the vector space Vℓ ⊂ C2ℓ+1 the real spherical tensor space and Vi

ℓ ⊂ C2ℓ+1 the
imaginary spherical tensor space, i.e. we can always represent an vℓ ∈ Vi

ℓ in terms of an
iwℓ, where wℓ ∈ Vℓ (and verse visa). For further readings we suggest Brink and Satchler
(1993); Reisert and Burkhardt (2009b); Rose (1995).

Corollary 2.2.35 (Closed under Tensor Conjugation). The tensor conjugation behaves
similar to complex conjugation. If vℓ ∈ Vℓ and wℓ ∈ Vi

ℓ then the tensor conjugation is
closed:

(
vℓ

)‡
= vℓ and (real tensor space)

(
wℓ

)‡
= −wℓ . (imaginary tensor space) (2.156)

(This can easily be shown by evaluating
(
(vℓm +

(
vℓm

)‡
)/2

)‡
)

Theorem 2.2.36 (Basis of Vℓ and Vi
ℓ)). Let the standard basis of the spherical ten-

sor space C2ℓ+1 be denoted by {eℓm}m=−ℓ,··· ,ℓ, where [eℓm]n := δm,n. Then a basis of Vℓ is
{eℓm}m=−ℓ,··· ,ℓ, where

e
ℓ
m = eℓm

(1+i)
2 +

(
eℓm

(1+i)
2

)‡
. (2.157)

The basis of Vi
ℓ is {eℓm (1+i)

2 −
(
eℓm

(1+i)
2

)‡
}.

Proof: Basis of Vℓ. We can easily identify a basis ofVℓ andViℓ, respectively, by setting
vℓ = eℓm(1 + i) thus Eq. (2.155) gives us

eℓm(1 + i) =
(eℓm(1+i)+(eℓm(1+i))

‡
)

2 ⊕ (eℓm(1+i)−(eℓm(1+i))
‡
)

2

= (eℓm(1+i)+(−1)meℓ−m(1−i))
2 ⊕ (eℓm(1+i)−(−1)meℓ−m(1−i))

2

= (eℓm(1+i)+(−1)meℓ−m(1−i))
2︸                   ︷︷                   ︸

=eℓm

⊕ (eℓm(1+i)+(−1)m+1eℓ−m(1−i))
2 . (2.158)

80



2.2. The 3D Rotation Group SO(3)

Corollary 2.2.37 (Symmetry). Let vℓ ∈ Vℓ and wℓ ∈ Vi
ℓ. The tensors vℓ and wℓ have

the following symmetries

vℓm = (−1)mvℓ−m and (real tensor space) (2.159)

wℓm = (−1)m+1wℓ−m . (imaginary tensor space) (2.160)

This is a direct conclusion from the tensor conjugation property.

Corollary 2.2.38 (Closer under Tensor Products). Tensor products of tensors of the
space Vℓ and/or V

i
ℓ are always resulting in tensors of Vℓ and Vi

ℓ. Moreover, Vℓ has closer
under even products and Vi

ℓ has closer under odd products.
Let vℓ1 ∈ Vℓ1 and vℓ2 ∈ Vℓ2 be both real spherical tensors, or vℓ1 ∈ Vi

ℓ1 and vℓ2 ∈ Vi
ℓ2 be

both imaginary spherical tensors. Then

ℓ1 + ℓ2 + ℓ is even ⇒ (vℓ1 ◦ℓ vℓ2) ∈ Vℓ (2.161)

ℓ1 + ℓ2 + ℓ is odd ⇒ (vℓ1 ◦ℓ vℓ2) ∈ Vi
ℓ . (2.162)

(A proof can be found in Reisert and Burkhardt (2009b)) The second scenario is the case
where we mix tensors vℓ1 ∈ Vℓ1 and wℓ

2 ∈ Vi
ℓ2 of both spaces. Then

ℓ1 + ℓ2 + ℓ is even ⇒ (vℓ1 ◦ℓ wℓ2) ∈ Vi
ℓ (2.163)

ℓ1 + ℓ2 + ℓ is odd ⇒ (vℓ1 ◦ℓ wℓ2) ∈ Vℓ . (2.164)

Proof: Tensor Products: Mixed Case. Let vℓ1 ∈ Vℓ1 and wℓ
2 ∈ Vi

ℓ2 . Then

[(vℓ1 ◦ℓ wℓ2)]m =
∑

m1,m2

v
ℓ1
m1
w
ℓ2
m2
〈ℓ1m1, ℓ2m2 | ℓm〉

=
∑

m1,m2

(−1)m1v
ℓ1−m1

(−1)m2+1w
ℓ2−m2
〈ℓ1m1, ℓ2m2 | ℓm〉

= (−1)m+1
∑

m1,m2

v
ℓ1−m1

w
ℓ2−m2
〈ℓ1m1, ℓ2m2 | ℓm〉

= (−1)m+1(−1)(ℓ1+ℓ2+ℓ)
∑

m1,m2

v
ℓ1−m1

w
ℓ2−m2
〈ℓ1(−m1), ℓ2(−m2) | ℓ(−m)〉

= (−1)m+1(−1)(ℓ1+ℓ2+ℓ)
∑

m1,m2

v
ℓ1
m1
w
ℓ2
m2
〈ℓ1m1, ℓ2m2 | ℓ(−m)〉

= (−1)m(−1)(ℓ1+ℓ2+ℓ+1)[(vℓ1 ◦ℓ wℓ1)](−m) . (2.165)

Corollary 2.2.39 (Tensor Inner Product). Let vℓ1 ∈ Vℓ1 and vℓ2 ∈ Vℓ2 . Then the inner
product coincides with the normalized tensor product.

(vℓ •0wℓ) = 〈vℓ,
(
wℓ

)‡〉 = 〈vℓ,wℓ〉 . (2.166)

(using Cor. 2.2.26 on page 67 and Cor. 2.2.35)
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Corollary 2.2.40 (Spherical Harmonics are in Vℓ). The spherical harmonics exist in the
spherical tensor space Vℓ. That is

Yℓ(n) ∈ Vℓ . (2.167)

This is a direct conclusion of the symmetry of spherical harmonics; see Eq. (2.70). They

obey the symmetry of Vℓ: Y
ℓ
m(n) = (−1)mY (n)ℓ−m; see Eq. 2.159.

Corollary 2.2.41 (Biomedical Images are in V0). Let I ∈ L2(R3,R). A direct conse-
quence of Eq. 2.159 is that V0 = R and therefore I ∈ L2(R3,V0).

Corollary 2.2.42 (Spherical Harmonic Expansion Coefficients). Let I ∈ L2(R3,V0) be
a biomedical image. The spherical harmonic expansion coefficients compute as

aℓ(x, r) = 〈h(−x)I ,Yℓδr〉 ; (2.168)

see Eq. (2.73) 59. Since in this case the inner product coincides with the normalized zero
order tensor product (Cor . 2.2.39 on the preceding page) and the tensor product is even,
the expansion coefficients are part of Vℓ, that is, a

ℓ(x, r) ∈ Vℓ.
Corollary 2.2.43 (Tensorial Harmonic Expansion Coefficients). Let fJ ∈ TJ be a spher-
ical tensor field of order J . Let further be fJ : R3→ VJ , that is, the image of fJ is in the real
spherical tensor space. Then, for the tensorial harmonic expansion coefficients we have

(J + j) is even ⇒ aℓj (x, r) ∈ V(ℓ+j) and (2.169)

(J + j) is odd ⇒ aℓj (x, r) ∈ Vi
(ℓ+j) . (2.170)

That is, the tensorial harmonic expansion coefficients may contain both real and imagi-
nary expansion coefficients.

Proof: Tensorial Harmonic Expansion Coefficients. Plugging the symmetric counterpart
of the tensorial harmonics (Eq. (2.132)) into the tensorial harmonic projection (Eq.
(B.18)) and using the interrelation of the real spherical tensor space (Eq. (2.159))
shows that

aℓjm(x, r) = 〈h(−x)fJ ,Z
ℓjm
J δr〉

=
J∑

M=−J

∫

R3
f JM (r′ + x)Z

ℓjm
JM (r′)δ(‖r′‖ − r)dr′

= (−1)(J+j+m)
J∑

M=−J

∫

R3
(−1)M f J(−M)(r

′ + x)(−1)MZℓj(−m)
J(−M) (r

′)δ(‖r′‖ − r)dr′

= (−1)(J+j+m)
J∑

M=−J

∫

R3
f JM (r′ + x)Z

ℓj(−m)
JM (r′)δ(‖r′‖ − r)dr′

= (−1)(J+j+m)〈h(−x)fJ ,Z
ℓj(−m)
J δr〉 = (−1)(J+j)+maℓj(−m)(x, r) . (2.171)

Therefore, depending on J+j , the coefficients fulfill either the symmetry condition of
the real or the imaginary spherical tensor space (see Eq. (2.159) and Eq. (2.160)).
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An SE(3) covariant spherical harmonic transformation maps images to spherical
tensor fields. The elements of such a field are expansion coefficients of local image
patches. As a consequence of translation and/or rotation of the input image, the
elements of the output field are transforming in a mathematically well defined and
predictable manner. However, the features are not locally rotation invariant, that
is, the single tensor elements “mix” under rotations. Our aim is to locally achieve
rotation invariance thus there is no need for a classifier to cope with this issue. So
we now introduce tools for systematically turning the covariant features into locally
rotation invariant features via a technique called group integration.
The rotation invariant features that we propose here are obtained via an estab-

lished group integration framework proposed by Schulz-Mirbach (1995a); see also
Schulz-Mirbach (1996). This framework has explicitly been used in a variety of ap-
plications, ranging from 2D image analysis (Burkhardt and Siggelkow 2001; Schael
2002; Schulz-Mirbach 1995b), to 3D image analysis (Ronneberger et al. 2002; Schael
and Siggelkow 2000). Recent works on 3D feature extraction are incorporating spher-
ical harmonics into this framework, which allows an analytical computation of 3D
rotation invariants. This includes i.e. the works of Reisert and Burkhardt (2006);
Ronneberger (2007); Ronneberger et al. (2005). In this chapter we will see that re-
garding 3D rotations and spherical harmonics, the angular power-, cross- and bi-
spectra can also be regarded as an invariant resulting from group integration. Hence
the works of Fehr (2010); Fehr and Burkhardt (2006); Kazhdan et al. (2003); Liu et al.
(2011b); Schnell et al. (2009); Skibbe et al. (2009b); Skibbe et al. (2010) can also be
classed within this framework.
Before discussing the creation of invariant features, we need some preliminary def-

initions. Invariance is always associated with a transformation group G. Remember,
a function is covariant to a transformation group G, if the output space transforms
according to the input space (Def. 1.2.1 on page 18). We say a function is invariant
to G, if the transformation in the output space is the identity function (Def. 1.2.2
on page 18). In this case, the output of a function is independent of the transfor-
mation acting on the input pattern. We call such an output an invariant feature of
the input pattern, or shortly an invariant. The following definitions and notations
are kept similar to those in previous work on this topic, see i.e. the dissertations of
Fehr (2009); Reisert (2008); Ronneberger (2007); Schulz-Mirbach (1995a); Siggelkow
(2002).
Given a pattern space P and a transformation group G. We call two patterns

p,p′ ∈ P equivalent (p ∼G p′), if there exists a transformation g ∈ G together with
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a representation τP mapping the first pattern into the second one, and verse visa.
That is,

p ∼G p′ ⇔ ∃g ∈ G : p′ = τ
P
g p . (3.1)

The definition of invariance can then be written in terms of equivalence.

Definition 3.0.44 (Invariance). A function F : P→ V is invariant to G, if ∀p,p′ ∈ P:

p ∼G p′ ⇒ F(p′) = F(p) . (3.2)

Each pattern p ∈ P induces an equivalence class called an orbit.

Definition 3.0.45 (Orbits). Each pattern p in a pattern space P induces an equivalece
class called the orbit of p:

OG[p] = {p′ | p ∼G p′} . (3.3)

If F : P → V is invariant to G, then ∀p′ ∈ OG[p] : F(p′) = F(p). That is, all patterns
map to the same point in the feature space V . Similar to orbits, we define the set of
all patterns mapping into the same point in the feature space by OF[p], where

OF[p] = {p′ | F(p) = F(p′)} . (3.4)

A conclusion from Eq. (3.2) is that OF[p] ⊇ OG[p] (and consequently |OF[p]| ≥
|OG[p]|) , so, there might exist patterns that are not equivalent but map to the same
feature. This is illustrated in Fig. 3.1 a). If each orbit can be uniquely identified by a
feature, then F is called complete.

Definition 3.0.46 (Complete). An invariant mapping F is called complete, if

∀p,p′ ∈ P : p ∼G p′ ⇔ F(p′) = F(p) . (3.5)

Consequently, if F is complete, then OF[p] coincides with OG[p], thus |OF[p]| =
|OG[p]|; see Fig. 3.1 b). Completeness is a very strict property that guarantees a
unique, distinctive feature for each orbit. However, completeness is in general hard
to achieve. In practice, it is often sufficient to achieve completeness for a subset of
likely patterns, that is, patterns that we expect to appear within a specific kind of
problem. We say, the patterns are separable with respect to F (we can distinguish the
likely occurring patterns with F).

3.1. Invariance via Group Integration

According to Burkhardt and Siggelkow (2001), the generation of invariants can be
divided into three kinds of approaches: normalization, invariance via group integra-
tion and differentiation. The latter one is rarely used. Moreover, we are not aware
of 3D rotation invariants for volumetric images that have been created via differen-
tiation. The reason might be the fact that the differentiation framework requires the
formulation and solution of differential equations depending on the group’s param-
eters which are often hard to solve. Contrarily, there exist a (small) variety of 3D
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a) Incomplete b)  Completeness

Figure 3.1.: A function F that is invariant to a transformation G maps patterns to
features (here patterns mapping to the same feature are within an ellip-
soid: OF[p] blue(left ellipsoid) and OF[p′] red(right ellipsoid), the two
orbits OG[p] and OG[p′] are depicted as dotted ellipsoids). b) F is com-
plete, if we can conclude the orbit from the feature (here the color) and
verse visa.

rotation invariants that are explicitly, or implicitly making use of the normalization
or group integration frameworks. The idea of normalization is to bring a pattern
into a distinctive pose before extracting features. That is, the creation of invariant
features requires the normalization of patterns of an orbit to one specific represen-
tative, see Fig. 3.2 a). Normalization often depends on dominant features within the
pattern (see. e.g. SIFT (Lowe 2004), where the local gradient main direction is used)
and thus is often sensitive to noise, or only works at specific key-points. For our
features, we recommend the group integration technique for turning the proposed
spherical harmonic features into rotation invariants. See the Related Works section
on page 27 for a survey on related works on these topics with focus on 3D rotations
and volumetric images.
The idea of group integration means that we average over all patterns within an

orbit. The resulting integral is invariant to the transformation spanning the orbit:
given two patterns p,p′ ∈ P. Let G be a compact group and τP be a group repre-
sentation of G acting on the pattern space P. If ∃g ∈ G : p = τPg p

′, then p ∼ p′. We

conclude that OG[p] = OG[p′]. Consequently, integrating over these orbits would
lead in both cases to the same result. Hence the integral

F(p) :=
1

|OG[p]|

∫

OG[p]
p′dp′

(Orbits, Eq. (3.3))
=

1
|G|

∫

G
τ
P
g pdg (3.6)

is invariant to G, see Def. 2.1.10 on page 42. That is, averaging over all patterns
within an orbit; see Fig. 3.2 b). An invariant obtained via Eq. (3.6) is often nei-
ther complete nor separable, because averaging is a simple linear operation. Schulz-
Mirbach (1995a) proposed to overcome this limitation by introducing a (typically
nonlinear) mapping within this framework that first extracts intrinsic features from
patterns before integrating over the transformation group. Such a mapping is called
a kernel.
Let K(ξ) : P → C be a kernel that extracts intrinsic features from a pattern. If G is

a compact group and τP a group representation of G, acting on the pattern space P,

85



3. Rotation Invariant Features

a) b) 

normalization

norm
alization

Figure 3.2.: a) Normalization: patterns are normalized to one specific representative
of the orbit before extracting the feature. b) Group integration: averag-
ing over all patterns in the orbit.

then the integral

F(p,ξ) :=
1
|G|

∫

G
K[τPg p](ξ)dg (3.7)

is invariant to G. ξ is a place-holder denoting additional meta-parameters of the
kernel function.
Our aim is to create SE(3) covariant filters whose output values are locally rotation

invariant. Such a filter is induced by a feature extraction which is rotation invariant;
see Eq. (1.12) in the introduction. That is, fulfilling for all images I ∈ L(R3) and for
all g ∈ SO(3) the equation F(gI ) = F(I ). In the following we consider a specific kind
of rotation invariant features based on spherical harmonic functions. We derive the
features via group integration techniques. Since we always can represent volumet-
ric images in terms of spherical harmonic functions (in combination with a radial
function), we focus on the creation of invariants for functions on the sphere. The
results can then easily transfered to the “full” volumetric images. Moreover, it is
worth mentioning that replacing the spherical harmonics with tensorial harmonics
allows deriving the same kind of invariants for higher order spherical tensor fields.

3.1.1. SO(3) Invariants For Functions on the Sphere

Any function f ∈ L(S2) can be represented as a linear combination of the orthogonal
spherical harmonic basis functions. We derive the expansion coefficients via orthog-
onal projection of the spherical functions onto this basis. We denote the expansion
coefficients by

vℓ := 〈f ,Yℓ〉, (3.8)

where vℓ ∈ C2ℓ+1 is a spherical tensor. The projection is a component-by-component
projection in the sense that

vℓm := 〈f ,Y ℓm〉 (3.9)
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3.1. Invariance via Group Integration

for all m = −ℓ · · ·ℓ. We have seen that the coefficients are obeying a predictable rota-
tion behavior via multiplication with a Wigner D-matrix. That is

Dℓ
gv
ℓ = 〈gf ,Yℓ〉. (3.10)

In our applications we consider two kinds of invariants that we obtain via group
integration techniques: second order invariants and third order invariants. It turns
out that the resulting invariants coincide with the angular power-spectrum and the
angular bi-spectrum.

3.1.1.1. Second Order Spectra Invariants

The first kernel function that we use is based on a second order monomial involving
two spherical harmonic projections. Let f ∈ L(S2) be a function on the sphere. We
define a kernel K(2) : L(S2)→ C according to

K(2)
ℓ1ℓ2
m1m2

(f ) := 〈f ,Y ℓ1m1
〉〈f ,Y ℓ2m2

〉

= vℓ1m1
v
ℓ2
m2
, (3.11)

where the vℓm ∈ C are spherical harmonic expansion coefficients of f . For better
readability we attached the integer valued kernel parameters as subscript and su-
perscript to the function name. The subscript 2 denotes that two spherical harmonic
coefficients are involved. That is, the kernel is a product of two spherical harmonic
projections (the second term is complex conjugated).
Now we plug Eq. (3.11) into Eq. (3.7) and integrate over the rotation group. This

results in a nonlinear feature extraction F2(ℓ1, ℓ2) : L(S2)→ C. The resulting features
are invariant to 3D rotations. F2 is defined by

F2(f , ℓ1, ℓ2,m1,m2) :=

∫

SO(3)
K(2)

ℓ1ℓ2
m1m2

(gf )dg =

∫

SO(3)
〈gf ,Y ℓ1m1

〉〈gf ,Y ℓ2m2
〉

=

∫

SO(3)
[Dℓ1

g vℓ1]m1
[Dℓ2

g vℓ2]m2
dg =

∫

SO(3)

∑

n1,n2

[Dℓ1
g ]m1,n1v

ℓ1
n1[D

ℓ2
g ]m2,n2v

ℓ2
n2dg

=
∑

n1,n2

v
ℓ1
n1v

ℓ2
n2

∫

SO(3)
[Dℓ1

g ]m1,n1[D
ℓ2
g ]m2,n2dg

︸                               ︷︷                               ︸
(orthogonal)

=
∑

n1,n2

v
ℓ1
n1v

ℓ2
n2

8π2

2ℓ1 +1
δℓ1,ℓ2δm1,m2

δn1,n2

=
8π2

2ℓ1 +1
︸  ︷︷  ︸

=|G| ( groupweight)

δℓ1,ℓ2δm1,m2
〈vℓ1 ,vℓ2〉 = 8π2

2ℓ1 +1
δℓ1,ℓ2δm1,m2

‖vℓ1‖2 . (3.12)

The resulting invariant is the energy of a spherical harmonic expansion coefficient,
hence they coincides with the angular power-spectrum; Def. (2.2.27) on page 68. Ac-
cording to this coincidence we call the resulting feature the angular power-spectrum.
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3. Rotation Invariant Features

Definition 3.1.1 (Angular Power-Spectrum Invariants). Let f ∈ L(S2) be a function on
the sphere. Let further be vℓ be the expansion coefficient of f , associated with the spherical
harmonic of order ℓ. Then the angular power spectrum invariants are defined by

F2(f , ℓ) := 〈vℓ,vℓ〉 (3.13)

Note that we omit the group weight here. It represents nothing else than the energy in each
expansion coefficient. The interrelation between coefficients is not preserved.

In a similar way we can derive invariants based on the projection of two different
functions f1, f2 ∈ L(S2), or by using two different kinds of basis functions (varying
the radial component in a 3D image scenario). The resulting invariants are then the
result of the inner product of two expansion coefficients, associated with the same
spherical harmonic order.

3.1.1.2. Third Order Spectra Invariants

The second kernel function that we utilize is based on a third order monomial in-
volving three spherical harmonic projections. Let f ∈ L(S2) be a function on the
sphere. We define a kernel K(3) : L(S2)→ C according to

K(3)
ℓ1ℓ2ℓ3
m1m2m3

(f ) := 〈f ,Y ℓ1m1
〉〈f ,Y ℓ2m2

〉〈f ,Y ℓ3m3
〉

= vℓ1m1
v
ℓ2
m2
v
ℓ3
m3
, (3.14)

where the vℓm ∈ C are spherical harmonic expansion coefficients of f . The subscript 3
denotes that three spherical harmonic coefficients are involved. That is, the kernel is
a triple-product of three spherical harmonic projections (the second two coefficients
are complex conjugated).
In the same way as for the second order invariants we obtain a nonlinear rotation

invariant feature from Eq. (3.14) via usage of Eq. (3.7). This results in a nonlinear
feature extraction F3(ℓ1, ℓ2, ℓ2) : L(S2)→ C. F3 is defined by

F3(f .ℓ1, ℓ2, ℓ3,m1,m2,m3) :=

∫

SO(3)
K(3)

ℓ1ℓ2ℓ3
m1m2m3

(gf )dg =

∫

SO(3)

=

∫

SO(3)
[Dℓ1

g vℓ1]m1
[Dℓ2

g vℓ2]m2
[Dℓ3

g vℓ3]m3
dg

=

∫ ∑

n1,n2,n3

[Dℓ1
g ]m1,n1a

ℓ1
n1[D

ℓ2
g ]m2,n2v

ℓ2
n2[D

ℓ3
g ]m3,n3v

ℓ3
n3dg

=
∑

n1,n2,n3

v
ℓ1
n1v

ℓ2
n2v

ℓ3
n3

∫
[Dℓ1

g ]m1,n1[D
ℓ2
g ]m2,n2[D

ℓ3
g ]m3,n3dg

=
∑

n1,n2,n3

v
ℓ1
n1v

ℓ2
n2v

ℓ3
n3

8π2

2ℓ1 +1
〈ℓ2m2, ℓ3m3 | ℓ1m1〉〈ℓ2n2, ℓ3n3 | ℓ1n1〉

= 8π2

2ℓ1+1︸︷︷︸
=|G| ( groupweight)

〈ℓ2m2, ℓ3m3 | ℓ1m1〉〈vℓ1 , (vℓ2 ◦ℓ1 v
ℓ3)〉 . (3.15)
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3.1. Invariance via Group Integration

The resulting invariant represents the interrelation of three spherical harmonic ex-
pansion coefficients including both magnitude and phase. They coincide with the
angular bi-spectrum; Def. (2.2.28) on page 68.

Definition 3.1.2 (Angular Bi-Spectrum Invariants). Let f ∈ L(S2) be a function on the
sphere. Let further be vℓ be the expansion coefficient of f , associated with the spherical
harmonic of order ℓ. Then the angular bi-spectrum invariants are defined by

F3(f , ℓ1, ℓ2, ℓ3) := 〈vℓ1 , (vℓ2 ◦ℓ1 v
ℓ3)〉 . (3.16)

Note that we omit the weighting factor here.

In a similar way we can derive invariants based on the projection of three differ-
ent functions f1, f2, f3 ∈ L(S2) by multiplying their coefficients (which in biomedical
applications might be different color channels representing different types of stain-
ing). Alternatively we can use different kinds of basis functions (varying the radial
component in a 3D image scenario).
The angular bi-spectrum provides phase and magnitude preserving features. It is

a much more detailed representation than the power-spectrum. But it comes with
a large number of possible products between spherical harmonic expansion coeffi-
cients. Hence we end up with a large number of features. It turns out that if the
input signal is real valued, then the large degree of freedom in combining tensors of
different ranks and forming new tensors of varying ranks brings linear dependencies
into the set of all possible features (similar to the power spectrum of a real valued 1D
signal). This is, keeping memory usage and computation time in mind, a scenario
that is worth avoiding. Regarding bi-spectrum features on SO(3), this issue has not
been addressed so far.
Swapping two multiplicands within a product might only change a products par-

ity; see Eq. (2.95) on page 64. We consider such kinds of linear dependencies as
trivial and will focus on a more specific problem that only occurs for higher order
products involving more than two multiplicands.

Theorem 3.1.3 (Nontrivial Identities of Bi-Spectrum Invariants). Let f ∈ L(S2,R3) be
a real valued function on the sphere. Then we have the following (non-trivial) identities
for the bi-spectrum invariants:

F3(f , ℓ1, ℓ2, ℓ3) =
(−1)ℓ1

√
2ℓ2+1

(−1)ℓ2
√
2ℓ1+1

F3(f , ℓ2, ℓ3, ℓ1) =
(−1)ℓ1

√
2ℓ3+1

(−1)ℓ3
√
2ℓ1+1

F3(f , ℓ3, ℓ1, ℓ2) . (3.17)

That is, it is sufficient to consider only two cases for each tensor coefficient: being
one of the tensors within the inner tensor products or not. All remaining permuta-
tions are either trivial identities (just switching to operands within a product), or one
of the cases shown above. Consequently, if we only count the non-trivial identities,
we save up to three times the number of all possible invariants if we make use of the
equation above!

Proof: Linear Dependencies in SO(3) Bi-Spectra of Real Valued Functions. The inner prod-
uct can be written in terms of a tensor product (Eq. (2.2.26) on page 67). In the
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3. Rotation Invariant Features

resulting term a tensor conjugation appears which can be split up according to Eq.
(2.2.25). Hence the features written as tensor products are

F3(f , ℓ1, ℓ2, ℓ3) = 〈vℓ1 , (vℓ2 ◦ℓ1 v
ℓ3)〉

= (vℓ1 •0
(
vℓ2 ◦ℓ1 v

ℓ3
)‡
)

= (−1)(ℓ1+ℓ2+ℓ3)(vℓ1 •0 (
(
vℓ2

)‡ ◦ℓ1
(
vℓ3

)‡
)) . (3.18)

Consequently, the bi-spectrum features coincide with the tensor product of three
expansion coefficients, where two of them are the tensor conjugated coefficients. Let
f ∈ L(S2,R3) be a real valued function. As a result, the tensor conjugation simplifies

to
(
vℓ

)‡
= vℓ (see Eq. (2.2.35)) and we obtain the following simplification:

F3(f , ℓ1, ℓ2, ℓ3) = 〈vℓ1 , (vℓ2 ◦ℓ1 v
ℓ3)〉

= (vℓ1 •0
(
vℓ2 ◦ℓ1 v

ℓ3
)‡
)

= (−1)(ℓ1+ℓ2+ℓ3)(vℓ1 •0 (
(
vℓ2

)‡ ◦ℓ1
(
vℓ3

)‡
)) = (vℓ1 ◦0 (vℓ2 ◦ℓ1 v

ℓ3)) . (3.19)

We can then show by considering all non-trivial permutations of ℓ1, ℓ2, ℓ3 in com-
bination with the associativity rule of spherical products (Cor. 2.2.31 on page 71)
that

F3(f , ℓ1, ℓ2, ℓ3) = (−1)(ℓ1+ℓ2+ℓ3) (−1)ℓ1√
2ℓ1+1

(vℓ1 ◦0 (vℓ2 ◦ℓ1 v
ℓ3)) (3.20)

= (−1)(ℓ1+ℓ2+ℓ3) (−1)ℓ1√
2ℓ1+1

(vℓ2 ◦0 (vℓ3 ◦ℓ2 v
ℓ1)) = (−1)ℓ1

√
2ℓ2+1

(−1)ℓ2
√
2ℓ1+1

F3(f , ℓ2, ℓ3, ℓ1)

= (−1)(ℓ1+ℓ2+ℓ3) (−1)ℓ1√
2ℓ1+1

(vℓ3 ◦0 (vℓ1 ◦ℓ3 v
ℓ2)) = (−1)ℓ1

√
2ℓ3+1

(−1)ℓ3
√
2ℓ1+1

F3(f , ℓ3, ℓ1, ℓ2) .

3.1.1.3. Distinguishing Reflections

One specific case which is worth further investigation is reflection. Reflection plays
an important role when searching specific landmarks in images of specimens or
structures showing a natural reflection axis. This is e.g. the case for many organisms
of higher forms of life including images of brains, or whole organisms like zebra fish
embryos (Ronneberger et al. 2012). We consider w.l.o.g the reflection about the ori-
gin (reflection about an axis is the result of reflection about the origin, followed by a
rotation). Let f ∈ L2(S2). The function’s expansion coefficients compute according to

vℓ := 〈f ,Yℓ〉; see Eq. (2.64). Let further f ′(n) := f (−n) be the reflected version of f .
The expansion coefficients wℓ of f ′ can be determined to be

wℓ := 〈f ′ ,Yℓ〉

=

∫

S2

f ′(n)Yℓ(n)dn =

∫

S2

f (−n)Yℓ(n)dn

=

∫

S2

f (n)Yℓ(−n)dn = (−1)ℓ
∫

S2

f (n)Yℓ(n)dn (Eq. (2.68))

= (−1)ℓvℓ . (3.21)
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3.1. Invariance via Group Integration

That is, only the expansion coefficients associated with an odd frequency do differ
by their sign. It is obvious that the power spectrum according to Def. 3.1.1 is the
same for both functions, namely

〈wℓ,wℓ〉 = 〈(−1)ℓvℓ, (−1)ℓvℓ〉 = (−1)(2ℓ)〈vℓ,vℓ〉 = 〈vℓ,vℓ〉 . (3.22)

Hence it cannot be used to distinguish between f and f ′. Contrarily, the bi-spectrum
preserves phase information and thus resolves this issue (Kakarala 2012). Consider
the more general triple product (wℓ1 ◦L (wℓ2 ◦J wℓ3)). By substituting wℓ with (−1)ℓvℓ
we obtain the following equation

(wℓ1 ◦L (wℓ2 ◦J wℓ3)) = ((−1)ℓ1vℓ1 ◦L ((−1)ℓ2vℓ2 ◦J (−1)ℓ3vℓ3))
= (−1)(ℓ1+ℓ2+ℓ3)(vℓ1 ◦L (vℓ2 ◦J vℓ3)) . (3.23)

Hence only the triple products where (−1)(ℓ1+ℓ2+ℓ3) is odd can distinguish between a
reflected and the original version of a function.
Moreover, it turns out that for the invariant case (L = 0), only a few number of odd

products differ from the zero tensor, namely those where ℓ1 , ℓ2 , ℓ3.

Proof. Due to the symmetry of the products it is sufficient to consider the case where
(wℓ1 ◦0 (wℓ2 ◦ℓ1 wℓ3)). Assume ℓ2 = ℓ3. If ℓ2 + ℓ3 + ℓ1 is odd, then (wℓ2 ◦ℓ1 wℓ3) = 0 and
thus the whole product (see Eq. (2.95)).

Definition 3.1.4 (Even and Odd Invariants). We call the bi-spectrum invariants where
(ℓ1 + ℓ2 + ℓ3) is even “even bi-spectrum invariants” and the invariants where (ℓ1 + ℓ2 + ℓ3)
is odd “odd bi-spectrum invariants”.

3.1.2. Power-spectrum versus Bi-Spectrum

The power-spectrum provides intrinsic information about the amount of a certain
angular frequency within a pattern. However, we loose any phase information so
that information about the interrelation of different frequency components is lost.
Consider the 2D example illustrated in Fig. 3.3 on the following page: in 2D the an-
gular harmonic functions are the so-called circular harmonics (see the example on
on page 46). Figure 3.3 shows four different functions resulting from a linear com-
bination of the same three circular harmonic functions (only the real part is shown).
For all three cases the frequencies and amplitudes of the basis functions are not al-
tered. But they are rotated (cyclic shifted) differently. Fig. 3.3 a) is the reference
pattern. Fig. 3.3 b) a rotated version (all basis waves are rotated in an identical
manner). In the cases shown in figures c) and d), one basis wave has been rotated
differently thus the resulting patterns are not a rotated version of a) any more. Now
assume we compute the power spectrum as feature. The angular power spectrum
represents the power in each angular frequency within a pattern in a separate man-
ner. Consequently, the angular power spectrum is the same for all four patterns,
despite the fact that c) and d) are different to a) and b). The loss of phase infor-
mation means we cannot conclude the relative orientation of different frequencies
from the invariant feature. A solution is provided by the so-called (here angular)
bi-spectrum. The bi-spectrum combines three expansion coefficients in a non-linear
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Figure 3.3.: The first and the second columns show the three basis functions form-
ing the functions in the third and forth columns. We depict two kinds of
representations, one as periodic function, the other one as function on
the circle. Computing the power spectrum for all four functions would
lead to the same result. This is because all four functions are the result
of superimposing basis functions of the same frequency and magnitude.
They are just shifted (rotated) differently. The bi-spectrum represents
the interrelation of each triple of (phase)shifts andmagnitudes of the ba-
sis functions such that the first two functions have the same bi-spectrum
(they are just rotated versions of each other), but each spectrum of the
remaining two functions would differ from all other three spectra.

way preserving the interrelation of the coefficients. For compact groups with regular
expansion coefficients, like SO(2), the resulting features are even complete (Kakarala
1992), that is, the function can be recovered up to the rotation acting on the func-
tion. For the example in Fig. 3.3 the functions a) and b) would result in the same
bi-spectrum, while each of the spectra for c) and d) would be dissimilar to the bi-
spectra of the remaining three functions. Note that for functions on the 2-sphere
the bi-spectrum preserves phase information, too. Hence it provides a much richer
description than the power-spectrum. However, the bi-spectrum is incomplete for
functions on the sphere: remember that in this case the expansion coefficients of the
Wigner D-matrices are irregular matrices (see Eq. (2.56)).
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3.2. SE(3) Covariant Filters For Rotation Invariant Detection

The SE(3) covariant spherical harmonic transformation has been introduced as a
tool for mapping images onto spherical tensor fields. The elements of the result-
ing tensor fields are local spherical harmonic expansion coefficients. The expansion
coefficients are representing both, the appearance and orientation of a local image
pattern. The big benefit of such a filter is the fact that the output image transforms in
a predictable manner under full Euclidean motion. However, in many applications
we are rather interested in the presence or absence of objects than in determining
their orientation. Assume the scenario where a biologist is annotating an image with
cells. The cells should be labeled according to their cell state. In such a scenario
the cell orientation is not influencing its classification. For this example and similar
scenarios it is worth making use of the proposed rotation invariant features to form
an SE(3) covariant filter which output transforms like a scalar valued image. That
is, a rotation and translation of the input image leads to a pure coordinate trans-
form of the output image. The values themselves are behaving like intensity values
of an image, but representing intrinsic information of the underlying input pattern
including its local neighborhood. Such a filter output can be regarded as an “intel-
ligent saliency map” which, thanks to local rotation invariance, facilitates detection
of objects and structures.
Such a filter can be created easily. We first extend the kernel function Eq. (3.11) to

volumetric images. For this we just replace the spherical harmonic projection with
the projection for volumetric images by introducing an additional radial component.
Hence for an image I ∈ L(R3) we get

K(2)
ℓ1ℓ2
m1m2

(I , r) := 〈I ,Y ℓ1m1
δr〉〈I ,Y ℓ2m2

δr〉

= vℓ1m1
(r)vℓ2m2

(r) , (3.24)

where vℓm(r) are expansion coefficients of I . The rest can be derived in the same way
as for functions on the sphere. Thus the resulting invariants are

F2(I , ℓ, r) := 〈vℓ(r),vℓ(r)〉 (and) (3.25)

F3(I , ℓ1.ℓ2, ℓ3, r) := 〈vℓ1(r), (vℓ2(r) ◦ℓ1 v
ℓ3(r))〉 . (3.26)

The additional parameter r is the radius parameter stemming from the spherical
transformation for images. Later we introduce further spherical harmonic transfor-
mations introducing different kinds of radial functions. For these alternatives the
radial parameter will vary. However, the radial parameters are not angular depen-
dent so that features can be computed in the same manner. Since the features Eq.
(3.25) and Eq. (3.26) are rotation covariant (or even rotation invariant), they induce
an SE(3) covariant filter F2{ℓ, r} : L2(R3)→ L2(R

3) with

F2{I , ℓ, r}(x) := F2(h(−x)I , ℓ, r) (3.27)
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and F3{ℓ1.ℓ2, ℓ3, r} : L2(R3)→ L2(R
3) with

F3{I , ℓ1.ℓ2, ℓ3, r}(x) := F3(h(−x)I , ℓ1.ℓ2, ℓ3, r) . (3.28)

Since the features are rotation invariant, both filters are covariant to Euclidean
motion in the sense that

F2{htgI , ℓ, r}(x) = F2{I , ℓ, r}(Ug(x− t)) and (3.29)

F3{htgI , ℓ1.ℓ2, ℓ3, r}(x) = F3{I , ℓ1.ℓ2, ℓ3, r}(Ug(x− t)) . (3.30)

That is, they transform like scalar valued images. Hence, together with a trainable
classifier, the pure spherical harmonic transformation turns into an appropriate tool
for generic object detection in volumetric images. There is no need for the classifier
to cope with local object rotations thus such a system is predestined for automated
biomedical image annotation. Examples of such feature images are shown in Fig. 3.4
on the next page.
For the detection of complex objects a single scalar valued image of local rotation

invariant features is by far not sufficient. Therefore, the output of several filters is
combined to form a vector valued feature image. The single components of such a
vector transform like scalar valued images so that elements of such a feature vec-
tor do not “mix” under rotation. We call such a feature vector a rotation invariant
descriptor.

Definition 3.2.1 (Descriptor Images). We use a spherical harmonic transform in com-
bination with the angular power spectrum, as well as the angular bi-spectrum for creating
a new image filter. The proposed filter maps images to multidimensional saliency maps,
which can be considered as a vector valued feature image. Since the single vector com-
ponents of such a filter output transform like scalar valued images, the feature vectors
components do not mix under rotations. We call such feature vectors rotation invariant
descriptors. Accordingly, we call descriptor valued images descriptor images.

3.2.1. Implementation

A descriptor image can be computed in two steps. We first use one of the proposed
SE(3) covariant spherical harmonic transformations to map input images to images
containing the spherical harmonic expansion coefficients. In a second step, we use
the expansion coefficients to form invariants in a voxel-by-voxel manner using the
products in Eq. (3.25) and Eq. (3.26). This is often the only possible way for realiz-
ing the proposed filters, because only then we can benefit from a fast dense spheri-
cal harmonic transform allowing for simultaneously computing thousands, or even
millions of spherical harmonic transformations in a voxel-by-voxel manner in rea-
sonable time.
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power-

spectrum

bi-spectrum (even)

bi-spectrum (odd)

Figure 3.4.: The angular power-spectrum and the bi-spectrum of a volumetric image showing a human
shaped model. The bi-spectrum is divided into its even and odd components. We only show the center
slice. Note that the odd bi-spectrum resolves the reflection symmetry. (we also show a version of the
features where the image has been rotated; red is highest, blue lowest value). We took the square root
from the power-spectrum and third root from the bi-spectrum (sign(f ) |f |1/3).
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In Cartesian tensor calculus we have differential operators like the gradient oper-
ator acting on images I ∈ L2(R3). The resulting functions are describing character-
istics of the initial function in an analytical manner. For instance, when applying
the gradient operator ∇ = (∂x,∂y ,∂z)

T to I we get the gradient image, a field with
tensor rank 1. The gradients are pointing into the greatest rate of increase of I . The
gradient magnitude is the rate of increase. The gradient field can be used e.g. for
edge and corner detection (Canny 1986; Harris and Stephens 1988). Note that an
image itself can be regarded as tensor fields of order 0; see Eq. (2.41) on page 50.
Applying the gradient operator twice coincides with the Hessian matrix H = ∇∇T of
I and we get a Cartesian tensor field of order two. The eigenvalues of the Hessian
matrices are proportional to the function’s curvature. The largest eigenvector of the
Hessian matrix is pointing into the direction of largest curvature, while the smallest
eigenvector is pointing into the direction of smallest curvature. Therefore, the ra-
tio of eigenvalues is widely used for blob detection; see e.g. Lowe (2004), where it
is used for accurate key-point localization. Another example is the Laplace operator
∆ = trace(H) = ∂2x+∂

2
y+∂

2
z . The application of the Laplace operation leaves the tensor

rank unchanged.
In spherical tensor algebra we have similar operators which we call the spheri-

cal (tensor) derivatives. Spherical derivatives are strongly related to the spherical
tensor gradient operator playing an important role in theoretical chemistry (see e.g.
Weniger (2005)). The following introduction of spherical tensor derivatives uses the
notation proposed in Reisert and Burkhardt (2009b).

We denote by ∇S2 the spherical gradient operator, the spherical counterpart of the
gradient operator ∇. We obtain ∇S2 by a unitary coordinate transform induced by
the solid harmonics Rℓ, where

∇S2 := R1(∇) = (
1√
2
(∂x − i∂y),∂z,−

1√
2
(∂x + i∂y))

T

; (4.1)

see section 2.2.3.6 on page 77 for the definition of solid harmonics. Consequently,
the spherical gradient operator ∇S2 inherits the rotation properties of the solid har-
monics and rotates in the harmonic domain according to (see. Eq. (2.2.2) on page
50)

D1
g((∇S2I )(UTg x)) = R1(Ug(∇I )(UTg x)) , (4.2)

i.e. ∇S2 can be regarded as spherical tensor of order 1. The derivative of I ∈ L2(R3)
in Fourier domain is just a point-wise multiplication of Ĩ with the frequency vector
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4. Spherical Tensor Derivatives

k ∈ R3 (see corollary 2.1.6). Utilizing the Fourier correspondence ∇̃I = ∇̃Ĩ = ikĨ , we
obtain the Fourier correspondence of ∇S2 , namely

∇̃S2 = R1(∇̃) = iR1(k) . (4.3)

We denote by ∂
ℓ = Rℓ(∇) the higher order spherical gradient operator. The single

components are denoted by ∂
ℓ = (∂ℓ−ℓ, · · · ,∂ℓℓ)

T
. The higher order spherical gradient

inherits the recursive relationship from the solid harmonics, thus

∂
1 := R1(∇) = ∇S2 and

∂
ℓ+1 := (Rℓ(∇) •ℓ+1 R1(∇)) = (∂ℓ •ℓ+1 ∇S2) . (4.4)

Then its counterpart in Fourier domain is defined by

∂̃
1
:= ∇̃S2 and

∂̃
ℓ+1

:= (̃∂
ℓ •ℓ+1 ∇̃S2) = (iℓRℓ(k) •ℓ+1 iR(k)) = iℓ+1Rℓ+1(k) . (4.5)

Due to Eq. (4.1) (symmetry of spherical harmonics) we have

∂
ℓ
m = (−1)m∂ℓ−m , (4.6)

i.e. ∂ℓ shows the properties of a tensor in Vℓ (see section 2.2.3.8 on page 79). Based
on ∂

ℓ we define the spherical tensor derivative operators.

Definition 4.0.2 (Spherical Derivatives). Let f ∈ Tℓ be a tensor-field of order ℓ. The
rank increasing spherical up-derivative ∇1 : Tℓ → Tℓ+1 and for ℓ > 0 the rank decreasing
spherical down-derivative ∇1 : Tℓ→Tℓ−1 are defined by

∇
1f :=∂1 •ℓ+1 f and

∇1f :=∂
1 •ℓ−1 f . (4.7)

With ∇
1
and ∇1 we denote the complex conjugate operator, where ∇

1
f := ∂

1 •ℓ+1 f.
The complex conjugated spherical down-derivatives are defined accordingly.
Similarly to their Cartesian counterparts, spherical derivatives can change the

rank of tensor fields. The meaning of the spherical tensor fields changes with re-
spect to the differential operation acting on the field. For instance, given a scalar
valued field, applying the spherical up-derivative operator transforms the field to
a spherical tensor field of order one, the spherical counterpart of a gradient vector
field. When applying the same operator twice we obtain a spherical tensor field of
order two, corresponding to a traceless Hessian matrix.

In the same way we can define the spherical tensor differentiation in Fourier do-
main.

Definition 4.0.3 (Spherical Derivatives (Fourier Domain)). The rank increasing spher-

ical up-derivative ∇̃
1
: Tℓ → Tℓ+1 and the rank decreasing spherical down-derivative

∇̃1 : Tℓ→Tℓ−1 are defined by

∇̃
1̃
f :=iR1(k) •ℓ+1 f̃ and

∇̃1̃f :=iR
1(k) •ℓ−1 f̃ . (4.8)
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We often consecutively apply the up-derivatives followed by a consecutive appli-
cation of the down-derivatives. Given a field f ∈ TJ . When applying ℓ times the
spherical up-derivatives followed by n times (n ≤ ℓ) the spherical down-derivatives
we write ∇n∇

ℓ, or in short notation ∇ℓn, with

∇
ℓ
nf := (∂1 •J+(ℓ−n) ..(∂1•J+(ℓ−1)

︸                       ︷︷                       ︸
n times ∇1

(∂1 •J+ℓ ..(∂1 •J+1 f)))))︸                      ︷︷                      ︸
ℓ times ∇1

(4.9)

= (∂n •J+(ℓ−n) (∂ℓ •J+ℓ f)) .

∇̃
ℓ
ñf := (iR1(k) •J+(ℓ−n) ..(iR1(k) •J+(ℓ−1) (iR1(k) •J+ℓ ..(iR1(k) •J+1 f̃)))))

= iℓ+nRℓn(k) •J+(ℓ−n) f̃ (according to Eq. (2.143)) . (4.10)

For scalar valued fields f0 ∈ T0, the up-down-derivatives are related to the Laplace
operator ∆. From ∆̃f = −k2f̃ (see corollary 2.1.6), we can conclude that

∇̃
ℓ
nf̃

0 = iℓ+nRℓn(k) •ℓ−n f̃0

= iℓ−nR(ℓ−n)(k)(ik)2nf̃0

= iℓ−nR(ℓ−n)(k)
︸         ︷︷         ︸

=∇̃
ℓ−n

( −k2︸︷︷︸
=∆̃n

)nf̃0 . (4.11)

As a result we get

Proposition 4.0.4 (Spherical Up-Down Derivatives). If f0 ∈ T0, then we can write ∇ℓnf
0

in terms of the Laplace operator:

∇
ℓ
nf

0 = ∇ℓ−n∆nf0 . (4.12)

Proposition 4.0.5 (Commutativity under Convolutions). Let fJ1 ∈ TJ1 and fJ2 ∈ TJ2 be
two spherical tensor fields, then

(∇ℓfJ1 )̃•(J2−(J1+ℓ))f
J2 = fJ1 •̃(J2−(J1+ℓ))(∇ℓf

J2) and (4.13)

(∇ℓfJ1 )̃•(J1+ℓ+J2)f
J2 = fJ1 •̃(J1+ℓ+J2)(∇

ℓfJ2) , (4.14)

which can be proved by considering the convolution in Fourier domain including
the Fourier representation of the derivatives and using the associativity rules 2.2.31
on page 71.

4.1. Polar Representation of Spherical Tensor Derivatives

Deriving an analytical solution of the spherical derivatives of spherical tensor fields
is in general a nontrivial cumbersome task. However, we can derive very simple dif-
ferentiation rules for tensor fields fℓ ∈ Tℓ having the form fℓ(r) = Yℓ(r)f ℓ(r), where
f ℓ : R→ C is just a 1D function representing the radial profile. Note that all scalar
valued (ℓ = 0), isotropic functions like the isotropic Gaussian belong to this group of
functions. This allows us to easily derive the analytical form of their tensor deriva-
tives. Such functions are e.g. the spherical derivatives of the
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4. Spherical Tensor Derivatives

• Gaussian windowed solid harmonics fℓ(r) := Rℓ(r)e−r
T r/2 = Yℓ(r)rℓe−r

T r/2
︸   ︷︷   ︸
=f ℓ(r)

(which is for ℓ = 0 the pure isotropic 3D Gaussian (Reisert and Burkhardt
2009a))

• Spherical Bessel functions fℓ(r, k) := Yℓ(r)jℓ(kr)︸︷︷︸
=f ℓ(r)

• Gauss-Laguerre functions fℓn(r) := Yℓ−n(r)rℓ−nL
(ℓ−n)+ 1

2
n ( r

2

2 )e
−rT r/2

︸                      ︷︷                      ︸
=f ℓn (r)

All these functions will be studied in detail in section 5.1 on page 110 and sec-
tion 5.2 on page 128. The results of the current subsection have been partially pub-
lished in Skibbe and Reisert (2013) and in the appendix of Skibbe et al. (2012).

Lemma 4.1.1. Given a spherical tensor field fℓ ∈ Tℓ whose angular and radial compo-
nents are separable such that fℓ(r) = Yℓ(r)f ℓ(r), where f ℓ : R→ C denotes the function
representing the radial component of fℓ. Then the spherical up- and down-derivatives of
fℓ have the form

(∇1fℓ)(r) =Yℓ+1(r)rℓ
∂

∂r

1

rℓ
f ℓ(r) and (4.15)

(∇1f
ℓ)(r) =Yℓ−1(r)

1

rℓ+1
∂

∂r
rℓ+1f ℓ(r) , (4.16)

respectively.

Proof. In order to prove lemma 4.1.1 we compute the Fourier correspondence of fℓ

component-by-component utilizing the spherical expansion of the plane wave (Eq.
(C.18)). Then we compute the derivatives of fℓ in frequency domain and transform
back the results into spatial domain. We finally show that the results are identical to
the results we obtain when applying the differentiation rules stated in lemma 4.1.1
in spatial domain.
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4.1. Polar Representation of Spherical Tensor Derivatives

First the Fourier transform of fℓ:

f̃ ℓm(k) = (2π)−3/2〈f ℓm, eik
T r〉 =

=
y

Y ℓm(r)f
ℓ(r)

∑

ℓ′

(−i)ℓ′ (2ℓ′ +1)jℓ′ (kr)Y
ℓ′ (r) •0 Yℓ

′
(k)r2 sinθ

√
2
π

1
4π

︸ ︷︷ ︸
=(2π)−3/2

dθdϕdr

=
√

2
π

∑

ℓ′

∫
f ℓ(r)(−i)ℓ′ (2ℓ′ +1)jℓ′ (kr)r

2dr 1
4π

x
Yℓ
′
(r) •0 Yℓ

′
(k)Y ℓm(r)sinθdθdϕ

=
√

2
π

∑

ℓ′

∫
f ℓ(r)(−i)ℓ′ (2ℓ′ +1)jℓ′ (kr)r

2dr
m′=−ℓ∑

m′=−ℓ′
Y ℓ

′
m′ (k)

1
4π

x
Y ℓ

′
m′ (r)Y

ℓ
m(r)dΩ

︸                 ︷︷                 ︸
= 4π

2ℓ+1δℓ′ℓδm′m

= Y ℓm(k)(−i)ℓ
√

2
π

∫
f ℓ(r)jℓ(kr)r

2dr

︸                      ︷︷                      ︸
=αℓ(k)

= Y ℓm(k)(−i)ℓαℓ(k) . (4.17)

With α(k) ∈ C we denote the expansion coefficients of the Hankel transform of the
radial component f ℓ (see. Eq. (C.16)). After transforming component-by-component
we get the identity

f̃ℓ(k) = 〈fℓ, eikT r〉 = Yℓ(k)(−i)ℓαℓ(k) . (4.18)

Having the Fourier transform f̃ℓ of fℓ we can compute the spherical up-derivative

and down-derivative of f̃ℓ in frequency domain. Using the Fourier representation of
the spherical derivatives (Eq. (4.8)) we get

�
∇1fℓ = (4.19)

iR1(k) •ℓ+1 f̃ℓ = iR1(k) •ℓ+1 Yℓ(k)(−i)ℓαℓ(k) = ikYℓ+1(k)(−i)ℓαℓ(k) and

�
∇1f

ℓ = (4.20)

iR1(k) •ℓ−1 f̃ℓ = iR1(k) •ℓ−1 Yℓ(k)(−i)ℓαℓ(k) = ikYℓ−1(k)(−i)ℓαℓ(k) .

Transforming back Eq. (4.19) and Eq. (4.20) into spatial domain we separately obtain
the angular part and the radial part of the spherical derivatives of fℓ. Again, we
transform component-by-component. For the up-derivatives we get

(2π)−3/2〈ikY ℓ+1m (k)(−i)ℓαℓ(k), e−ik
T r〉 = Y ℓ+1m (r)(−1)

√
2
π

∫
kαℓ(k)jℓ+1(kr)k

2dk

= Y ℓ+1m (r)
√

2
π

∫
αℓ+1(k)jℓ+1(kr)k

2dk

︸                            ︷︷                            ︸
=f ℓ+1(r)

,

where f ℓ+1 is the Hankel transform of the radial component of ∇1fℓ with expansion
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4. Spherical Tensor Derivatives

coefficients αℓ+1(k) = −kαℓ(k). It follows that

∇
1fℓ(r) = Yℓ+1(r)

√
2
π

∫
αℓ+1(k)jℓ+1(kr)k

2dk

︸                            ︷︷                            ︸
=f ℓ+1(r)

. (4.21)

Now we show that differentiation in spatial domain using Eq. (4.15) leads to the
same result. For this we represent f ℓ by its Hankel transform (consider Eq. (C.17)

and Eq. (4.18)). That is f ℓ(r) =
√

2
π

∫ ∞
0
αℓ(k)jℓ(rk)k

2dk. Utilizing the differential

relation of the Bessel functions (Eq. (C.14)) we can show that (we only consider the
radial component here)

rℓ
∂

∂r

1

rℓ
f ℓ(r) = rℓ

∂

∂r

1

rℓ

√
2
π

∫ ∞

0
αℓ(k)jℓ(rk)k

2dk

=
√

2
π

∫ ∞

0
α(k)

(
rℓ
∂

∂r

1

rℓ
jℓ(kr)

)
k2dk

=
√

2
π

∫ ∞

0
α(k) (−kjℓ+1(kr))k2dk

=
√

2
π

∫ ∞

0
(−kα(k))
︸    ︷︷    ︸
=αℓ+1(k)

jℓ+1(kr)k
2dk = f ℓ+1(r) , (4.22)

which proves Eq. (4.15).
In a similar way we can prove Eq. (4.16). Transforming back Eq. (4.20) into spatial

domain we get the Hankel expansion of the radial component:

∇1f
ℓ(r) = Yℓ−1(r)

√
2
π

∫
kαℓ(k)︸ ︷︷ ︸
=αℓ−1(k)

jℓ−1(kr)k
2dk .

= Yℓ−1(r)
√

2
π

∫
αℓ−1(k)jℓ−1(kr)k

2dk

︸                            ︷︷                            ︸
=f ℓ−1(r)

. (4.23)

Utilizing the differential relation of the Bessel functions (Eq. (C.15)) we can show
that (we again only consider the radial component here)

1

rℓ+1
∂

∂r
rℓ+1f ℓ(r) =

1

rℓ+1
∂

∂r
rℓ+1

√
2
π

∫ ∞

0
αℓ(k)jℓ(rk)k

2dk

=
√

2
π

∫ ∞

0
α(k)

(
1

rℓ+1
∂

∂r
rℓ+1jℓ(kr)

)
k2dk

=
√

2
π

∫ ∞

0
α(k) (kjℓ−1(kr))k

2dk

=
√

2
π

∫ ∞

0
(kα(k))
︸  ︷︷  ︸
=αℓ−1(k)

jℓ−1(kr)k
2dk = f ℓ−1(r) , (4.24)

which proves Eq. (4.16).
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4.2. Discrete Spherical Tensor Derivatives

Discrete versions of the spherical derivative operators can be obtained by discretiz-

ing the spherical gradient operator ∇S2 = ( 1√
2
(∂x − i∂y),∂z,− 1√

2
(∂x + i∂y))

T
(Eq. (4.1)).

This requires a discretization of the ordinary partial derivatives ∂x,∂y ,∂z in the
Cartesian image coordinate system. Regarding computational efficiency we found
that simple finite difference schemes yield sufficient accuracy for our applications.
Figure 4.1 shows several alternatives that we have evaluated in an experiment (re-
sults are following later in this section). In Farid and Simoncelli (2004), one can find
a survey of further possible alternatives.
Consequently, the spherical derivative operators ∇1 and ∇1 are weighted superpo-

sitions of ordinary Cartesian finite differences. A crucial point is the computation of
the weights based on the Clebsch-Gordan coefficients. They can be computed once
in advance, before applying the operators to an image in a voxel-by-voxel manner.
The computation scheme can easily be derived from Eq. (4.7) and Eq. (C.31), Eq.
(C.32) in the appendix.
Given a tensor field fℓ ∈ Tℓ. We can compute its up-derivative component-by-

component in the following way (Note, that we assume that f ℓm = 0 for all |m| > ℓ):

[∇1fℓ]m =[(∇S2 •ℓ+1 fℓ)]m
=

1√
2
(∂x − i∂y)f ℓ(m+1)

〈1(−1),ℓ(m+1) | (ℓ+1)m〉√
2〈10,ℓ0 | (ℓ+1)0〉

+∂zf
ℓ
m
〈10,ℓ(m) | (ℓ+1)m〉
〈10,ℓ0 | (ℓ+1)0〉

− 1√
2
(∂x + i∂y)f

ℓ
(m−1)

〈11,ℓ(m−1) | (ℓ+1)m〉√
2〈10,ℓ0 | (ℓ+1)0〉

=
√
(ℓ−m)(1+ℓ−m)

2(ℓ+1) (∂x − i∂y)f ℓ(m+1)

+
√
(ℓ+m+1)(ℓ−m+1)

ℓ+1 ∂zf
ℓ
m

−
√
(ℓ+m)(1+ℓ+m)

2(ℓ+1) (∂x + i∂y)f
ℓ
(m−1) .

(4.25)

This gives us algorithm 2 on page 223 for computing the spherical up-derivatives.
For the down-derivatives we get

[∇1f
ℓ]m =[(∇S2 •ℓ−1 fℓ)]m

=
√
(ℓ+m)(1+ℓ−m)

2(ℓ−1) (∂x − i∂y)f ℓ(m+1)

+
√
(ℓ+m)(ℓ−m)
(ℓ−1) ∂zf

ℓ
m

−
√
(ℓ−m)(1+ℓ+m)

2(ℓ−1) (∂x + i∂y)f
ℓ
(m−1) ,

(4.26)

leading to algorithm 3 on page 223.
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Figure 4.1.: Scheme a) and b) are the ordinary 2nd order central and forward-
backward differences. Scheme c) is a 4th order central finite difference
scheme. Scheme d) is a 4th order ball shaped scheme which is the most
accurate scheme in our experiments.

4.2.1. Experiment: Comparison of Finite Differences Schemes

In an experiment we compare four finite difference schemes with respect to accu-
racy and computation time. Spherical tensor derivatives in the context of image
processing have been used first by (Reisert and Burkhardt 2009a). They used ordi-
nary central differences as shown in Fig. 4.1 a) for computing the spherical gradient.
We compare the existing discrete tensor derivative operators to three further alterna-
tives showing that more accurate finite difference schemes improve the accuracy of
the tensor derivatives significantly while keeping the computation time comparable.

In our experiment we computed the derivatives in two manners. We first analyti-
cally derived the derivatives of a scalar valued spherical tensor field using Lemma 4.1.1
on page 100. Based on the analytical equation we rendered the derivatives into a
voxel grid. In the second scenario we rendered the scalar valued function into a
voxel grid and consecutively applied the discrete spherical tensor derivative opera-
tor to compute the derivatives numerically (algorithm 2). We then compared the two
results using the normalized cross correlation.

Figure 4.1 shows the finite difference schemes. Scheme a) and b) are the ordinary
2nd order central and forward-backward differences. Scheme c) is a 4th order cen-
tral finite difference scheme. We further use central differences based on the deriva-
tives of a 4th order polynomial which we fit into a ball-shaped voxel neighborhood
(scheme d) ).

The two functions we used for evaluation are the derivatives of the 3D Gaussian
(using σ = 6) and a high frequency spherical Bessel function (using σ = 6, k = 2π
and s = π). For both functions we know the analytical expression of their derivatives
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Figure 4.2.: Comparison of accuracy and computation time of several differential op-
erators based on finite differences.

(Details concerning the functions can be found in section 5.1 and section 5.2). We
represented both functions in a (2ℓ +1)× 128× 128× 128 complex valued voxel grid
(where ℓ is the tensor rank).

Figure 4.6 exemplarily shows centered slices of one component of the discretized
analytical solution (using the GSL, Galassi et al. (2003)) together with the numerical
solution based on the discrete tensor derivatives. Figure 4.2 shows the similarity of
both approaches with respect to the normalized cross correlation. The curve shows
that accuracy drops with the tensor order of the function. In Fig. 4.2(c) we depict
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4. Spherical Tensor Derivatives
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Figure 4.3.: a) The standard Laplace operator and b) the proposed Laplace operator.

the computation time for the different differentiation schemes.
We observe that regarding the trade-off between computational efficiency and dis-

cretization accuracy the simple central difference of 2nd order accuracy (Fig. 4.1 a))
yields sufficient accuracy for derivatives up to order ℓ ≤ 7. The forward-backward
scheme performs slightly better than the 2nd order central difference but comes with
two major drawbacks: when using a forward-backward scheme we must deal with
the alternating one-pixel shift. Furthermore, the computation time is comparable to
the 4th order central differences and regarding accuracy the 4th order scheme is the
favorable choice.
Very high order derivatives lead to artifacts when using only 2nd order finite dif-

ferences. These artifacts can be avoided by using more accurate discrete differen-
tiation schemes like the 4th order finite difference in Fig. 4.1 c) and d). Here the
“ball-shaped” operator d) leads to the most accurate results. But compared to op-
erator c) the accuracy doesn’t differ significantly. Hence operator c) yields sufficient
accuracy for derivatives up to order ℓ ≤ 15 while the computation time is comparable
(about a factor of 2) to the much less accurate 2nd order central differences.

An Alternative to the Standard Laplace Operator. We made the observation
that the ordinary Laplace operator (Fig. 4.3 a)) leads quite fast to numerical blow-
up-effects when it is consecutively applied to an image (see Fig. 4.5 on the facing
page). The Laplace operator always computes 2nd order derivatives based on a very
small neighborhood operator. Therefore, after applying the operator more than eight
times, we destroy the image due to numerical reasons. We propose to use a slightly
larger neighborhood according to Fig. 4.3 b). As a result we can benefit from more
stability while the computation time stays comparable; see Fig. 4.4.
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Figure 4.4.:With a bit more computation time we achieve a higher accuracy using
the proposed Laplace operator; see also Fig. 4.5.
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Figure 4.5.: a) Results when using the standard Laplace operator and b) when using
the proposed operator; see also Fig. 4.4. The first row shows explicitly
computed results.
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Figure 4.6.: Comparison of different finite difference schemes. Themost outer tensor
component for a tensor field of increasing order is shown. Upper image:
derivatives of a higher frequency Gauss-Bessel kernel. Lower image: the
spherical Gaussian derivatives. GT (ground truth): We analytically de-
rived the derivatives and rendered them into a voxel grid. a-d) Numeri-
cally computed derivatives based on different finite difference schemes.
a) 2nd order central differences, b) 2nd order forward/backward scheme,
c) 4th order central differences and d) 4th order ball shaped scheme. Note
that the functions are presented in a cubic image with an edge length of
128. The images have been cropped for this figure to 96 and 112 voxels,
respectively.
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The following chapter advocates three different kinds of SE(3) covariant filters as
an alternative to the “classical” dense spherical harmonic transformation SHℓj (r) :
TJ → T(ℓ+j); see Eq. (2.83) on page 60. The first three sections are covering the
theoretical details of the transformations. A forth section will discuss important
implementation details. The three transformations are

• (LT ℓj {n} : TJ → T(ℓ+j−n), An SE(3) Covariant Gauss-Laguerre Transform is in-
troduced in section 5.1 on the next page) The Gauss-Laguerre transformation
extracts wavelet-like features based on spherical Gaussian derivatives. It ex-
tents the idea of “local jets” (Koenderink and Doorn 1987) to spherical tensor
representations. A local jet is a feature vector of local derivatives. The parame-
ter n ∈ N represents the polynomial degree of the radial Laguerre polynomial.
We show how to efficiently design a filter for ordinary scalar valued images
and extend it to tensor valued images.

• (GT ℓ{k} : T0 → Tℓ, An SE(3) Covariant Spherical Gabor Transform is intro-
duced in section 5.2 on page 128)We further introduce a novel spherical Gabor
transformation that allows for local frequency analysis. Similar to the Gauss-
Laguerre transform, the proposed features can be computed efficiently via fi-
nite differences. The parameter k ∈ R represents the frequency of the radial
wave function. The proposed filter maps scalar valued images to tensor fields.
However, it is worth mentioning that the filter can easily be extended to tensor
valued images, too.

• (SHOGℓw : T0 → Tℓ, SHOG - Spherical Histograms of Oriented Gradients.
SHOG is introduced in section 5.3 on page 138) The SHOG transformation ex-
tents the idea of the structure tensor to higher order spherical tensors. While
the ordinary structure tensor is a pure second order tensor, SHOG is repre-
sented by higher order tensors, too. Thanks to the higher order representation,
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5. SE(3) Covariant Filters

a local gradient orientation distribution can be represented more precisely and
allows for extracting discriminant features from volumetric images. The sub-
script w is an isotropic window function like a Gaussian function or Gaussian
smoothed sphere.

5.1. An SE(3) Covariant Gauss-Laguerre Transform

In the following section we introduce a Gauss-Laguerre transform which is efficient
regarding computation time and memory usage. In our applications we use this
transformation for representing local image patches of volumetric images in the
Gauss-Laguerre domain. From such a representation we can analytically compute
local rotation invariant features, such as the power-spectrum or the bi-spectrum,
which can be used for object detection, object classification and image segmentation
tasks. We show that the Gauss-Laguerre domain is optimal for representing local
smooth Gaussian distributed volumetric images. We further show how the Gauss-
Laguerre transformation can be extended to tensor valued images. This allows a fast
transformation into the harmonic domain for tensor valued image modalities, too.
Results of this section have partially been published in Skibbe et al. (2012).
The Gauss-Laguerre transform has explicitly been used for analyzing local struc-

tures in images in applications ranging from key-point detection (Sorgi et al. 2006)
to advanced image filters (Reisert and Burkhardt 2008a). A theoretical discussion
on this kind of functions regarding image processing can be found in the paper by
Koenderink and Doorn (1992). We show that the basis functions which are spanning
the Gauss-Laguerre domain, the Gauss-Laguerre functions, are the (spherical) up-
and down-derivatives of the 3D Gaussian function. A subspace of the 3D Gauss-
Laguerre domain is spanned by the spherical Gaussian (up-)derivatives (Reisert and
Burkhardt 2009a). Their 3D applications include generic object detection (Liu et
al. 2012; Reisert and Burkhardt 2009a; Schlachter et al. 2010; Skibbe and Reis-
ert 2012b), image filtering (Reisert and Burkhardt 2009a), or object segmentation
(Skibbe and Reisert 2011; Skibbe et al. 2011a). Moreover, the projections of local
image patches onto these basis functions, i.e. the Gauss-Laguerre expansion coeffi-
cients, can be considered as the spherical counterpart to a “local jet” (Koenderink
and Doorn 1987), a vector containing the local Cartesian derivatives of a Gaussian
smoothed image. Applications involving local jets are ranging from interest point
detection (Knapek et al. 2000) and image feature detection (Lillholm and Peder-
sen 2004), to image retrieval tasks based on local image patches (Schmid and Mohr
1997). Local rotation invariants can be formed from local jets by using tensor con-
traction leading to a vector containing (among others) the local average intensity
value, the squared gradient magnitude, the trace (the Laplacian) and determinant of
the Hessian matrix (Florack et al. 1994; Haar Romeny et al. 1992; Koenderink and
Doorn 1987; Lindeberg 1993; Schmid andMohr 1997). The images are often initially
convolved with Gaussian functions of different sizes allowing for analyzing images
in different scales (see particularly the paper by Lindeberg (1990)).
We propose an SE(3) covariant filter that is based on the Gauss-Laguerre transfor-

mation: we use the 3D convolution to project local image pages onto the spherical
Gauss-Laguerre basis functions in a voxel-by-voxel manner. Furthermore, we make
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Figure 5.1.: Hermite polynomials with polynomial degree n = 0,1,2,3.

use of the fact that the Gauss-Laguerre basis functions are the spherical derivatives
of the 3D Gaussian function. Since the convolution and spherical differentiation are
both linear operations, we can compute the local expansion coefficients efficiently by
first smoothing the image with a Gaussian function and then locally computing the
derivatives.
The 1D counterparts of the Gauss-Laguerre polynomials are the Hermite poly-

nomials (see e.g. Koenderink and Doorn (1992)). Therefore, we use a simplified
1D scenario as an introduction to illustrate the idea behind the fast Gauss-Laguerre
transform:

5.1.1. A Fast Hermite Transform for Discrete 1D Signals

Let f ∈ L2(R) be a continuous, differentiable function. The derivatives of f are dis-
criminative features, because they are analytically describing the local characteris-
tics of f . Moreover, we know from the Taylor expansion that f can be completely
recovered by only considering the derivatives at an arbitrary point of expansion.
Furthermore, from scale space theory we know that f can be studied in different
granularities by initially smoothing f with an appropriate Gaussian function. The
smaller the Gaussian width, the richer the local details covered by the lower order
derivatives of f .
Let

an(x) =
∂n

∂nx

∫ ∞

−∞
f (r)e−(x−r)

2
dr

︸                 ︷︷                 ︸
=(f ∗G)(x)

(5.1)

be the nth derivative of the Gaussian smoothed function f , evaluated at the position
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5. SE(3) Covariant Filters

x (For brevity we assume w.l.o.g a Gaussian function with G(r) := e−r
2
). Then

(f ∗G)(r) =
∞∑

n=0

an(x)
(r − x)n
n!

(5.2)

is the Taylor expansion of the smoothed function. The vector (a0(x), a1(x), · · · , aN (x))T
is also known as a (scale dependent) local jet of f at position x. Because of the
linearity of convolution and differentiation, we can obtain the same Taylor expansion
coefficients by computing the derivatives of the Gaussian and convolving the initial
function with the Gaussian derivatives, namely

an(x) =
∂n

∂nx

∫ ∞

−∞
f (r)e−(x−r)

2
dr =

∫ ∞

−∞
f (r)

∂n

∂nx
e−(x−r)

2

︸       ︷︷       ︸
=Hn(x−r)e−(x−r)2

dr (5.3)

=

∫ ∞

−∞
f (r)Hn(x − r)e−(x−r)

2
dr = (f ∗ (Hn ·G))(x).

The Gaussian derivatives are known as the Gaussian weighted Hermite polynomials.
We denote the Hermite polynomial by Hn : R→ R. With (Hn ·G)(r) = Hn(r)e−(r)

2
we

denote the point-by-point multiplication of a Hermite polynomial and the Gaussian
function. The Hermite polynomials can be defined in a recursive manner, where

Hn+1(r)e
−r2 =

∂

∂r
Hn(r)e

−r2 , (5.4)

with H0 := 1. The first four Hermite polynomials are {1,2r,4r2 − 2,8r3 − 12r, . . . } (see
Fig. 5.1 on the preceding page). For reflections about the origin we have Hn(x) =
(−1)nHn(−x) (see e.g. Abramowitz and Stegun (1964) for further details regarding
Hermite polynomials). The Hermite polynomials Hn : R→ R are a set of orthogonal
polynomials, building an orthogonal basis for L2(R,µ). The subscript n ∈ N denotes
the degree. The polynomials are orthogonal in the range (−∞,∞) with respect to the
Gaussian weighting function e−r

2
. This is formally expressed by

〈Hm,Hn〉µ =
∫ ∞

−∞
Hm(r)Hn(r)e

−r2dr = δm,n2
nn!
√
π. (5.5)

By δm,n we denote the Kronecker delta (equals 1 iff m = n, else 0). By orthogonal
projection of f into the space spanned by the Gaussian weighted polynomials Hn we
obtain the representation of f in terms of expansion coefficients

an(x) := 〈h(−x)f ,Hn〉µ =
∫ ∞

−∞
f (r + x)Hn(r)e

−r2dr = (−1)n
∫ ∞

−∞
f (r)Hn(x − r)e−(x−r)

2
dr,

(5.6)

where x is the center of expansion. In Fig. 5.2 we show the Gaussian weighted
Hermite polynomials. Due to the orthogonality of the polynomials it holds that

f (r)=
∞∑

n=0

1

2nn!
√
π
an(x)Hn(r − x) . (5.7)
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Consequently, the derivatives of a Gaussian smoothed function f are both the Tay-
lor expansion coefficients of (f ∗G) and the expansion coefficients of a polynomial
Hermite expansion of f (compare Eq. (5.2) with Eq. (5.7)).
Suppose we aim at implementing a Hermite transformation for discrete 1D sig-

nals. Furthermore, suppose we aim at computing the coefficients in a point-by-point
manner (computing an(x) for all x) so that we can analytically locally analyze the sig-
nal by its local expansion coefficients. In this scenario we can highly benefit from the
differential relationship of the Hermite polynomials: for a discrete signal f , we can
realize a point-wise expansion in terms of Hn by only one initial smoothing realized
via a FFT, followed by a consecutive computation of point-wise finite differences,
namely

an(x) = 〈hxf ,Hn〉µ
= (−1)n(f ∗ (Hn ·G))(x)
= (−1)n(f ∗ ∂n

∂nx
G)(x)

= (−1)n ∂n

∂nx
(f ∗G)(x). (5.8)

The resulting scheme for computing the expansion coefficients is illustrated in the
following:

∂
∂x
. . . ∂

∂x
(f ∗G)(x)
︸     ︷︷     ︸

=a0(x)︸        ︷︷        ︸
=−a1(x)︸               ︷︷               ︸

=(−1)nan(x)

. (5.9)
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Figure 5.3.: a) Numerically evaluated Hermite polynomials using Matlab . b) We
used central differences to consecutively derive the functions from the
Gaussian (blue curve). Discretization steps: 0.1.

Figure 5.3 shows results when choosing as f the delta function.
In the same way as shown for the 1D scenario we can utilize the spherical deriva-

tive operator to expand a volumetric image voxel-by-voxel in terms of Gaussian
weighted spherical functions having a differential relationship with respect to the
spherical derivative operator ∇.
The initial Gaussian smoothing gives us two further advantages. First, the convo-

lution with a Gaussian (or generally a Gaussian weighted continuously differentiable
function) with a discrete signal ensures that the resulting signal itself is continu-
ously differentiable. Furthermore, the Gaussian window allows for performing a
local multi-scale analysis of the signal by utilizing kernels of different scale.

5.1.2. A Spherical Gauss Laguerre Transform for Discrete Images

Similarly to the example in the introduction where the Hermite polynomials arise
from the Gaussian by differentiation, we obtain the orthogonal spherical Laguerre
polynomials by successively applying the spherical derivative operators to the 3D
Gaussian function. We will see that the angular parts of the spherical Gaussian
derivatives are the spherical harmonic functions while the radial parts are Gaus-
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5.1. An SE(3) Covariant Gauss-Laguerre Transform

sian windowed Laguerre polynomials. These functions are highly related to the 2D
complex derivatives of the 2D Gaussian (Reisert and Burkhardt 2008a), where the
Gaussian windowed Laguerre polynomials arise from the Gaussian, too. The only
differences to the 3D functions are that in 2D the angular functions are the circular
harmonics and the Laguerre functions are parametrized accordingly.
The 3D Gaussian derivatives are widely known as Laguerre Gaussian-type func-

tions in the field of theoretical chemistry (Chow Chiu L.-Y. 2001; Matsuoka 1998).
In the image processing community they are used for scale and orientation analy-
sis of images, see particularly the work of Koenderink and Doorn (1992) and have
been used in a variety of applications like detection and/or classification (Liu et al.
2011b; Liu et al. 2012; Reisert and Burkhardt 2009a; Schlachter et al. 2010; Skibbe
and Reisert 2011; Skibbe and Reisert 2012b; Skibbe et al. 2011a)).
Similarly to the Hermite expansion, changing the order of convolution and dif-

ferentiation also works for the spherical Laguerre polynomials. Using the spherical
Laguerre basis function we design a new SE(3) covariant spherical harmonic based
filter. The proposed filter implements an efficient spherical harmonic transform of
volumetric images with almost linear complexity.

Definition 5.1.1 (Spherical Laguerre Polynomials). The 3D spherical Laguerre poly-
nomials Lℓn : R

3 ×R→ C2(ℓ−n)+1 of polynomial degree ℓ +n are defined by

L
ℓ
n(r, t) := Yℓ−n(r)rℓ−nL

(ℓ−n)+ 1
2

n ( r
2

2t )

= Rℓ−n(r)L
(ℓ−n)+ 1

2
n ( r

2

2t ), (5.10)

where ℓ,n ∈ N0, r = (x,y,z)T and r2 = rT r.

We denote by Lαn : R → R the Laguerre polynomial of order n associated with
α ∈ R≥0 (see Eq. (8) in the appendix). The parameter t ∈ R>0 corresponds to the scale
or with σ =

√
t to the standard deviation. We often neglect the second parameter,

write Lℓn(r) and consider t w.o.l.g. to be constant. For details related to scale-space
theory we refer to Lindeberg (1990). With [Lℓn]m : L2(R

3), |m| ≤ (ℓ − n) we denote the
single components of Lℓn. The polynomial degree of Lℓn(r) is ℓ + n; on page 202 you
can find a derivation for that fact.
The polynomials [Lℓn]m : R3 → C are orthogonal with respect to the Gaussian

weighting function e−
r2

2t spanning L2(R
3,µ), whereas

〈[Lℓn]m, [Lℓ
′
n′ ]m′〉µ = t(ℓ−n)

(2πt)
3
2 (2ℓ +1)!!

2nn!(2(ℓ −n) + 1)
︸                       ︷︷                       ︸

= 1
α(ℓ,n,t)

δℓ,ℓ′δm,m′δn,n′ =
δℓ,ℓ′δm,m′δn,n′

α(ℓ,n, t)
. (5.11)

With α(ℓ,n, t) ∈ Rwe denote the normalization factor, by 〈·, ·〉µ the Gaussian weighted
inner product and !! denotes the double factorial. A proof of Eq. (5.11) can be found
in section B.3.1 on page 202.

5.1.2.1. The Spherical Gauss Laguerre Transform

Projecting an image into the space spanned by the Gaussian windowed Laguerre
polynomials is known as Gauss-Laguerre transform (see e.g. Koenderink and Doorn
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(1992), or Lue-Yung Chow Chiu (1999)).
Given an image I ∈ L2(R3). We consider w.o.l.g. this image being a spherical tensor

field I ∈ T0 of rank 0. Since the basis functions Lℓn are spanning the function space of
volumetric images, we can represent any 3D image I in terms of a linear combination
of the basis functionsLℓn. Note that the literature distinguishes between two kinds of
transformations which can be considered as equivalent (we will see that there exists
an invertible mapping between both representations).

Half-weighted Transformation. If the Gaussian weight e−
r2

2t is equally split so
that it equally weights the forward transformation and the backward transforma-

tion ( e−
r2

2t = e−
r2

4t e−
r2

4t ) we call the transformation the half-weighted transformation
(see particularly Koenderink and Doorn (1992) for image processing purposes). The
functions together with the half Gaussian weight are known as orthogonal Laguerre
functions. They are defined by

Lℓn(r, t) := L
ℓ
n(r, t)e

− r24t . (5.12)

Note that 〈[Lℓn]m, [Lℓ
′
n′ ]m′〉 = 〈[Lℓn]m, [Lℓ

′
n′ ]m′〉µ. In this scenario the forward transforma-

tion is given by

vℓn := 〈I ,α
1
2 (ℓ,n, t)Lℓn〉 = α

1
2 (ℓ,n, t)

∫

r∈R3
I(r)Lℓn(r)dr . (5.13)

With vℓn ∈ C2(ℓ−n)+1 we denote the spherical harmonic expansion coefficients of the
half-weighted transformation. The expansion is given by

I(r) =
∑

n≤ℓ
α

1
2 (ℓ,n, t)(vℓn)

T
Lℓn(r) . (5.14)

Fully-weighted Transformation. In our applications we aim at forming invariant
descriptors from the expansion coefficients. Hence we are particularly interested in
a fast and efficient transformation of local image patches into the Gauss-Laguerre
domain. Such a transformation exists for the fully Gaussian weighted transforma-
tion (details concerning the fast transformation are following later in this section).
The back transformation plays a minor role in our context.
We propose a fully weighted transformation, where the full Gaussian weights the

forward transformation while the Gaussian vanishes in the back transformation. In
this scenario an image can be expanded in terms of the spherical Laguerre polyno-
mials Lℓn according to

I(r) =
∑

n≤ℓ
α

1
2 (ℓ,n, t)(wℓ

n)
T
L
ℓ
n(r) . (5.15)

The expansion coefficients wℓ
n ∈ C2(ℓ−n)+1 of the fully-weighted transformation can

be computed via the (fully) Gaussian weighted inner product of the image and the
basis functions:

wℓ
n := 〈I ,α

1
2 (ℓ,n, t)Lℓn〉µ = α

1
2 (ℓ,n, t)

∫

r∈R3
I(r)Lℓn(r)e

−r2
2t dr . (5.16)
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Figure 5.4.: The radial profiles of the Gauss-Laguerre functions Lℓ+ii (r, t2 ) on the left
hand side are just a linear combination of the Gaussian weighted La-

guerre polynomials Lℓ+ii (r, t)e−
r2

2t on the right hand side (and vice versa).
They are spanning the same function space.
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5. SE(3) Covariant Filters

Theorem 5.1.2. The basis functions {Lℓ+ii (r, t2 )}i={0,··· ,m} and {Lℓ+ii (r, t)e−
r2

2t }i={0,··· ,m},m ≤
ℓ, are spanning the same function space.

Hence if the Gaussian width is identical for both transformations, then the result
of a truncated expansion with respect to the polynomial degree (ℓ + n) ≤ N is the
same for both expansions Eq. (5.15) and Eq. (5.14). That is,

Î(r) =
∑

n≤ℓ
(n+ℓ≤N )

α
1
2 (ℓ,n, t)(vℓn)

T
Lℓn(r, t/2)

=
∑

n≤ℓ
(n+ℓ≤N )

α
1
2 (ℓ,n, t)(wℓ

n)
T
L
ℓ
n(r, t) . (5.17)

Consequently, the Mean-Square Error E(‖Î − I‖2) is identical for both types of trun-
cated transformations.

Proof. There exists an invertible linear mapping between the expansion coefficients
corresponding to spherical harmonic order ℓ of the half-weighted Laguerre trans-
form to their fully-weighted counterparts: we can always express the expansion co-

efficients {v(ℓ+i)i }i={0,··· ,m}, v
(ℓ+i)
i ∈ C2ℓ+1 in terms of the coefficients {w(ℓ+i)

i }i={0,··· ,m} ,
w

(ℓ+i)
i ∈ C2ℓ+1 and verse visa, where m ≤ ℓ. Since spherical harmonics of different or-

der are orthogonal, we only need to consider coefficients sharing the same spherical
harmonic order. We can show that all coefficients up to a radial polynomial degreem
of the half-weighted transformation do only depend on the radial polynomials of up
to order i ≤m of the fully-weighted transformation (and verse visa). The connection
between the coefficients is given by a linear invertible mappingM , where

[
v2ℓℓ ,v

2ℓ−1
ℓ−1 , · · · ,vℓ0

]T
=M

[
w2ℓ
ℓ ,w

2ℓ−1
ℓ−1 , · · · ,wℓ

0

]T
. (5.18)

The matrix

M =




(
2ℓ + 1

2
ℓ

)
(−2)0

(
2ℓ + 1

2
ℓ − 1

)
(−2)1 . . .

(
2ℓ + 1

2
0

)
(−2)ℓ

0
(
(2ℓ − 1) + 1

2
ℓ − 1

)
(−2)0 . . .

(
(2ℓ − 1) + 1

2
0

)
(−2)(ℓ−1)

. . .
. . .

. . .
. . .

0 0 . . .
(
ℓ + 1

2
0

)
(−2)0



ℓ×ℓ




(−1)ℓ 0 . . . 0
0 (−1)(ℓ−1) . . . 0
. . .

. . .
. . .

0 0
. . . 1



ℓ×ℓ

. (5.19)

is an invertible upper triangle matrix. Note that the transformation is not unitary.
We derive the mapping by using the existing relation between the half-weighted

and the fully-weighted Laguerre polynomials, which is

Lℓ+nn (r, t2 ) = (−1)n
n∑

i=0

(
ℓ +n+ 1

2
n− i

)
(−2)iLℓ+ii (r, t)e−

r2

2t . (5.20)

We obtain Eq. (5.20) by using Eq. (C.26) in the appendix and multiplying both sides

with r(ℓ−n)Y(ℓ−n)(r)e−
r2

2t and choosing the indexes accordingly.
Consequently, the set of functions with increasing radial polynomial degree hav-

ing the same spherical harmonic order, namely {Lℓ+ii (r, t2 )}i={0,··· ,m} and
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5.1. An SE(3) Covariant Gauss-Laguerre Transform

{Lℓ+ii (r, t)e−
r2

2t }i={0,··· ,m},m ≤ ℓ, are spanning the same function space. By plugging Eq.
(5.20) into the half-weighted forward transformation Eq. (5.13) we can express the

expansion coefficients vℓ+nn in terms of the coefficients {w(ℓ+i)
i }i={0,··· ,n} (and verse visa

wℓ+n
n via {v(ℓ+i)i }i={0,··· ,n}):

vℓ+nn = (−1)n
n∑

i=0

(
ℓ +n+ 1

2
n− i

)
(−2)iwℓ+i

i . (5.21)

Theorem 5.1.3. The Gauss-Laguerre transform (Theorem 5.1.2.1 on page 115) is optimal
for local smooth processes.

Proof. We prove theorem 5.1.3 by showing that the Gauss-Laguerre functions Lℓn (Eq.
(5.12)) are diagonalizing the covariance function of a local smooth process. This is
sufficient for concluding that the fully-weighted transformation is optimal, too (see
Eq. (5.17)). Optimal means that the resulting expansion of the original signal in
terms of the optimal basis minimizes the total Mean-Square Error resulting from its
truncation (with respect to the expansion coefficients we can say that the optimal
transformation compacts the energy).
We simplify our proof by utilizing the fact that there exists a unitary transforma-

tion that maps the Gauss-Laguerre functions Lℓn to the Gaussian windowed 3D Her-
mite polynomials (see Koenderink and Doorn (1992)). The 3D Gaussian windowed
Hermite polynomials again are a separable product of three 1D Gaussian windowed
Hermite polynomials with respect to the Cartesian coordinates x,y and z. Hence it
is sufficient to show that the 1D Gaussian windowed Hermite polynomials are opti-
mal for representing local smooth 1D processes in order to conclude that the Gauss-
Laguerre functions are optimal for representing local smooth 3D processes. Note
that the current proof also offers an alternative to the proof in Reisert and Burkhardt
(2008a) because we can draw the same conclusions for the 2D Gaussian windowed
Laguerre polynomials (see also Koenderink and Doorn (1992) for the relationship
between the 2D Gaussian windowed Laguerre polynomials and Gaussian windowed
Hermite polynomials).
The structure of our proof is inspired by Reisert and Burkhardt (2008a). For our

proof we consider the smooth and local stochastic process of random signals g : R→
R that is designed in the following manner: suppose there exist a white process of
signals f : R→ R whose values are independently Gaussian distributed i.e. f (x) ∼
N (0,1) (For brevity we assume zero mean and a variance of 1 because the mean has
now influence on the corresponding covariance function and altering the variance
just scales the covariance function). The covariance function of the white process is
then given by cf (x,y) = δ(x − y). We then construct the smooth and local stochastic
process of random signals g by convolving the signals f with a Gaussian of width
σs followed by windowing the result with a Gaussian of width σw. Hence g has the
form

g(y) := e
− y2

2σ2w

∫

x
e
− (y−x)2

2σ2s f (x)dx . (5.22)
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A basis for optimally representing a stochastic process is formed by the eigenfunc-
tion of the covariance function of the process. The transformation into the new basis
system is known as the Karhunen-Loéve transformation. Hence we must show that
the Hermite polynomials are eigenfunctions of a smooth and local stochastic process:
The covariance function cg of the smooth and local stochastic process of random

signals g is given by

cg (x,y) = e
− x2

2σ2w e
− (x−y)2

4σ2s e
− y2

2σ2w ; (5.23)

for details see Eq. (B.27) on page 203. Let further t = σ2
s be the width of the window

function and let σ2
w = (t2 − 1)/t be the width of the smoothing. Then we can use the

following identity (see auxiliary calculation Eq. (B.28) on page 204)

(1+t)√
π4t
cg (x,y) =

∞∑

n=0

Hn(x)Hn(y)√
πn!2n

( t−1t+1 )
ne−

(x2+y2)
2 (5.24)

to show that the Gaussian windowed Hermite polynomials Hm(y)e
− x22 are the eigen-

functions with eigenvalues ( t−1t+1 )
m of the covariance function cg (x,y), namely

(1+t)√
π4t

∫

x
cg (x,y)Hm(x)e

− x22 dx

=

∫

x

∞∑

n=0

Hn(x)Hn(y)√
πn!2n

( t−1t+1 )
ne−

(x2+y2)
2 Hm(x)e

− x22 dx

=
∞∑

n=0

( t−1t+1 )
nHn(y)e

− y
2

2

∫

x

Hn(x)Hm(x)√
πn!2n

e−x
2
dx

=
∞∑

n=0

( t−1t+1 )
nHn(y)e

− y
2

2 δmn = ( t−1t+1 )
mHm(y)e

− y
2

2 . (5.25)

Consequently they are optimal for representing local and smooth processes. It is
worth mentioning that we have some restrictions on t. The windowing process and
the smoothing process are connected and can not be chosen independently. Further-
more, t must be > 1 because only then we have a smoothing. Moreover, for t →∞
the Eigenvalue ( t−1t+1 )

m becomes 1; for t = 1 the Eigenvalue becomes 0. Hence the
Eigenvalues for local and smooth processes are in the range ( t−1t+1 )

m ∈ (0,1).

5.1.2.2. Spherical Gaussian Derivatives.

It has been shown by Reisert and Burkhardt (2009a) that the Gaussian windowed

solid harmonics Rℓ(r)e
−r2
2 arise from the 3D Gaussian by recursively applying the

spherical up-derivatives. When additionally considering the spherical down-deriva-
tives we get the full set of the 3D spherical Laguerre functions:
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Theorem 5.1.4. The Gaussian windowed Laguerre functions Lℓn(r)e
− r22t ∈ Tℓ−n are the

spherical derivatives of the 3D isotropic Gaussian, namely

L
ℓ
n(r)e

− r22t =
(−t)ℓ
n!2n

∇
ℓ
ne
− r22t . (5.26)

Proof. We prove theorem 5.1.4 using mathematical induction. We first consider the

case where n = 0. In this case Lℓ0(r)e
− r22t = Yℓ(r)rℓe−

r2

2t (see Eq. (5.10) and Eq. (C.20)).
For ℓ→ 0 Eq. (5.26) holds. Using lemma 4.1.1 on page 100we can show the inductive
step ℓ→ ℓ +1, with

1
(−t)ℓ∇

1Lℓ0(r)e
− r22t = 1

(−t)ℓY
ℓ+1(r)rℓ ∂

∂r
1
rℓ
rℓe−

r2

2t

= 1
(−t)ℓ+1Y

ℓ+1(r)rℓ+1e−
r2

2t

= 1
(−t)ℓ+1L

ℓ+1
0 (r)e−

r2

2t . (5.27)

In combination with the spherical down-derivatives we additionally have a differen-
tial formulation for increasing the polynomial degree n of the radial Laguerre poly-
nomials iteratively. Let us consider the inductive step n→ n + 1. With lemma 4.1.1
we obtain the following equation:

n!2n

(−t)ℓ∇1L
ℓ
n(r)e

− r22t =

= ∇1Y
ℓ−n(r)rℓ−n 2nn!

(−t)ℓ L
(ℓ−n)+ 1

2
n ( r

2

2t )e
− r22t

= Yℓ−(n+1)(r)
2nn!
(−t)ℓ

r(ℓ−n)+1
∂
∂r
r2(ℓ−n)+1L

(ℓ−n)+ 1
2

n ( r
2

2t )e
−r2
2t . (5.28)

Considering only the radial component we get

1
r(ℓ−n)+1

∂
∂r
r2(ℓ−n)+1L

(ℓ−n)+ 1
2

n ( r
2

2t )e
−r2
2t

= (2t)(ℓ−n)+
1
2

r(ℓ−n)+1
∂
∂r
( r

2

2t )
(ℓ−n)+ 1

2L
(ℓ−n)+ 1

2
n ( r

2

2t )e
−r2
2t .

Differentiating using the differential relation of the Laguerre polynomials (Eq. (C.22))
and combining the resulting two Laguerre polynomials utilizing the 3-point rule
(C.21) leads to

(2t)(ℓ−n)+
1
2

r(ℓ−n)+1
∂
∂r
( r

2

2t )
(ℓ−n)+ 1

2L
(ℓ−n)+ 1

2
n ( r

2

2t )e
−r2
2t

= 2(n+1)r(ℓ−(n+1))L
(ℓ−(n+1))+ 1

2
n+1 ( r

2

2t )e
−r2
2t . (5.29)

Plugging Eq. (5.29) into (5.28) shows that

n!2n

(−t)ℓ∇1L
ℓ
n(r)e

− r22t = (n+1)!2n+1

(−t)ℓ L
ℓ
n+1(r)e

− r22t . (5.30)
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5.1.2.3. An SE(3) Covariant Spherical Gauss-Laguerre Transform

Similar to the “classical” dense spherical harmonic transformation SH, the Laguerre
transformation induces an SE(3) covariant filter. We denote this dense Laguerre
transformation by LT : T0→T(ℓ−n). It is induced by the Laguerre transform via

LT ℓ{I ,n}(x) := 〈h(−x)I ,α
1
2 (ℓ,n, t)Lℓn〉µ . (5.31)

We denote the filter output, an image of expansion coefficients, by

aℓn := LT ℓm{I ,n}, (5.32)

where the elements aℓn(x) ∈ C(2(ℓ−n)+1) are local expansion coefficients according to
Eq. (5.16). Apart from the 1D radial functions, which have no influence on rotations,
the filter is identical to SH. Hence it transforms under Euclidean motion in the same
way as SH. We omit showing the SE(3) covariance ofLT and refer to the preliminary
chapter instead.
The Gauss-Laguerre polynomials show a certain differential relationship. Simi-

lar to the example where we used the Hermite polynomials, we can use this prop-
erty to realize the projection of images onto the basis functions via finite differ-
ences. More precisely, with theorem 5.1.4 we can express the fully-weighted Gauss-
Laguerre transform (Eq. (5.16)) in terms of spherical tensor derivatives of a Gaussian
smoothed image, leading to

LT ℓ{I ,n}(x) = 〈h(−x)I ,α
1
2 (ℓ,n, t)Lℓn〉µ

= α
1
2 (ℓ,n, t)

∫

r∈R3
I(r+ x)Lℓn(r)e

−r2
2t dr

︸                         ︷︷                         ︸
∝2(ℓ−n)+1 3D convolutions
(component by component)

= α
1
2 (ℓ,n, t)

∫
I(r)Lℓn(r− x)e−‖r−x‖

2/(2t)dr

= (−1)ℓ−nα 1
2 (ℓ,n, t)

∫
I(r)Lℓn(x− r)e−‖r−x‖

2/(2t)dr (sh-parity, Eq. (2.68) )

= (−1)ℓ−nα 1
2 (ℓ,n, t)

(−t)ℓ
n!2n

∫
I(r)∇ℓne

−‖r−x‖2/(2t)dr

= (−1)ℓ−nα 1
2 (ℓ,n, t)

(−t)ℓ
n!2n

∇
ℓ
n

∫
I(r)e−‖r−x‖

2/(2t)dr

= (−1)ℓ−nα 1
2 (ℓ,n, t)

(−t)ℓ
n!2n

∇
ℓ
n

∫
I(r)e−‖x−r‖

2/(2t)dr

︸                   ︷︷                   ︸
one 3D convolution

. (5.33)

Hence from a computational point of view we only need one initial convolution
with a 3D Gaussian function followed by successively applying the spherical tensor
derivative operators to densely obtain all coefficients with respect to all points of
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5.1. An SE(3) Covariant Gauss-Laguerre Transform

Figure 5.5.: Transformation to the Gauss-Laguerre domain via the Laplace operator
and the spherical up-derivatives. The expansion coefficients are com-
puted up to a polynomial degree of 4 (The polynomial degree corre-
sponding to an expansion coefficient aℓn(x) ∈ C2(ℓ−n)+1 is ℓ + n). The
Laplace operator increases the polynomial degree in the radial direc-
tion. The spherical tensor up-derivative operator increases the polyno-
mial degree in angular direction.

expansion x:

LT ℓ{I ,n}(x) = 〈h(−x)I ,α
1
2 (ℓ,n, t)Lℓn〉µ

=(−1)ℓ−nα 1
2 (ℓ,n, t) (−t)

ℓ

n!2n ∇
ℓ
n(I ∗Gt)(x)

=(−1)ℓ−nα 1
2 (ℓ,n, t) (−t)

ℓ

n!2n ∇
ℓ−n∆n(I ∗Gt)(x) , (5.34)

where Gt(r) := e
− r22t is the Gaussian function. Moreover, as shown in Eq. (5.34), we

can completely omit the spherical down-derivatives by substituting ∇ℓn = ∇
ℓ−n∆n (Eq

(4.12) on page 99). As a consequence we successively apply the Laplace operator ∆
to increase the polynomial degree n of the basis function in radial direction followed
by successively applying the spherical derivatives ∇1 to project onto higher order
spherical harmonics of order ℓ − n. A computation of a polynomial degree limited
expansion coefficients is illustrated in Fig. 5.5.

5.1.3. An SE(3) Covariant Gauss-Laguerre Transform for Tensor Fields

In many scenarios images are scalar valued. However, some image acquisition tech-
niques or image preprocessing techniques lead to tensor valued modalities. (Note,
that there always exists a spherical tensor counterpart for a Cartesian tensor valued
image; see section 2.2.3.7 on page 78. For brevity we always assume a spherical
tensor representation).
For instance, the gradient vector flow (Xu and Prince 1997) of an image is a tensor

field of order 1. The proposed filter can be used for further analysis of such vector
fields. For instance, it is possible to search for certain patterns in the field such as
sources, sinks or torsions.
Another example are images acquired with the High Angular Resolution Diffu-

sion Imaging (HARDI) technique (Tuch et al. 1999). The HARDI-technique com-
bines different measurement parameters to infer underlying tissue properties and
allows e.g. for studying the neuronal fiber architecture in the human brain without
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harming the patient (Reisert et al. 2010). The resulting image (the HARDI signal) is
an angular dependent measurement so that spherical harmonics are a nearby tool
for representing the signal (Descoteaux et al. 2007). This results in several spher-
ical tensor fields, each representing a certain angular frequency within the signal.
The proposed framework allows for further analysis of such fields. For instance, the
proposed framework has been used for classifying HARDI images of human brains
into gray matter and white matter tissue (Skibbe et al. 2011a), or to detect different
anatomical regions (Skibbe and Reisert 2011). Both applications are introduced in
chapter A on page 181.

By extending the Gauss-Laguerre transform via tensorial harmonics we obtain a
Gauss-Laguerre basis for tensor fields of arbitrary tensor rank J . This basis induces
a Gauss-Laguerre representation for higher order tensor fields. More precisely, by
replacing the spherical harmonics with the tensorial harmonics (see section 2.2.3.4
on page 72) we gain an orthogonal basis spanning the space TJ of spherical tensor
fields of order J . These basis functions have the form

Z
ℓjm
Jn (x) := e

(ℓ−n)+j
m ◦J Lℓn(x) , (5.35)

whereZ
ℓjm
Jn : R3→ C2J+1. Note that in addition to the tensorial harmonics introduced

in the preliminary section 2.2.3.4 on page 72, we have the additional parameter n ∈
R≥0 defining the degree of the Laguerre polynomials representing the radial profile
of the tensor basis. The basis functions are orthogonal according to

〈ZℓjmJn ,Z
ℓ′j ′m′

Jn′ 〉µ =
1

A(ℓ, j,n, t)
δℓ,ℓ′δj,j ′δm,m′δn,n′ , (5.36)

where A(ℓ, j,n, t) = (2((ℓ−n)+j)+1)α(ℓ,n,t)
2J+1 ∈ R is a normalization factor (see auxiliary cal-

culation on page 204). Hence any tensor field of order J can be expanded in terms of
the Gauss-Laguerre basis by

fJ (r) =
∑

n≤ℓ

j=J∑

j=−J

m=(ℓ−n+j)∑

m=−(ℓ−n+j)
A

1
2 (ℓ, j,n, t)vℓnjmZ

ℓjm
Jn (r)

=
∑

n≤ℓ

j=J∑

j=−J
A

1
2 (ℓ, j,n, t)vℓnj ◦J Lℓn(r) . (5.37)

We obtain the coefficients vℓnj ∈ C2((ℓ−n)+j)+1 via orthogonal projection

vℓnjm = 〈fJ ,A 1
2 (ℓ, j,n, t)Z

ℓjm
Jn 〉µ . (5.38)

It is straight forward to extend the dense Gauss-Laguerre transform LT ℓ(n) : T0→
T(ℓ−n) to tensor fields of higher order. We obtain a new filter LT ℓj (n) : TJ → T(ℓ+j−n)
that maps spherical tensor fields of any order J to tensor fields representing the input
field’s local neighborhoods in a voxe-by-voxel manner by setting

[LT ℓj {fJ ,n}]m(x) := 〈h(−x)fJ ,A
1
2 (ℓ, j,n, t)Z

ℓjm
Jn 〉µ . (5.39)
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The filter output are images of spherical tensor valued tensorial harmonic expansion
coefficients

aℓnj := LT ℓj {fJ ,n}, (5.40)

where aℓnj ∈ T2(ℓ+j−n)+1.
For implementation we suggest the same strategy as for the “classical” tensorial

harmonic transform via weighted superposition of several scalar valued spherical
harmonic transformations of the single tensor field components; see Eq. (B.18) on
page 201. The explicit formular can be found on page 204.

5.1.3.1. A Fast Gauss-Laguerre Transform via Tensor Derivatives

A certain subset of the Gauss-Laguerre tensorial harmonic expansion coefficient im-
ages aℓnj (Eq. (5.39)) can be computed in an even more efficient manner via tensor

derivatives. These coefficients have the form aℓnJ and aℓnJ−2(ℓ−n). This is because they
can be computed by directly applying the spherical tensor derivatives to a Gaussian
smoothed tensor field fJ . We thus avoid an initial decomposition of the field into its
2J +1 components. Furthermore, we avoid a final weighted superposition of the par-
tial expansions. In Fig. 5.6 on the following page we have exemplarily highlighted
these coefficients for tensor fields of order J = 0, J = 1 and J = 2. Remember, that for
J = 0 the expansion coincides with the standard Gauss-Laguerre transform. In this
trivial case, all coefficients can be computed in the proposed manner.

Such a fast transformation is very beneficial for our applications. In general, we
are rather interested in efficiently computing compact, discriminative representa-
tions of local image structures than in fully restoring our image from the tensorial
harmonic coefficients. Of course, by choosing only a subset of coefficients we loose
information because not all information is covered by the partial expansion. How-
ever, in practice, the large number of possible tensorial harmonic coefficients de-
mands for selecting a small finite subset out of them. Since all coefficients are rep-
resenting mutual exclusive information, choosing the coefficients that can be com-
puted efficiently satisfies both demands, reducing memory usage and reducing com-
putational complexity.

The computation rule for the coefficient image aℓnJ := LT ℓJ {fJ ,n} is

aℓnJ =

= A
1
2 (ℓ, J ,n, t) (−t)

ℓ

n!2n ∇
ℓ−n∆n(fJ •̃JGt)

(−1)(ℓ−n)
√
(2(ℓ−n)+1)〈(ℓ−n)0,J0 | (J+(ℓ−n))0〉√

N(ℓ−n),J

= ∇ℓ−n∆n(fJ •̃JGt)A
1
2 (ℓ, J ,n, t)

(t)ℓ
√
(2(ℓ−n)+1)〈(ℓ−n)0,J0 | (J+(ℓ−n))0〉

n!2n(−1)n
√
N(ℓ−n),J

= ∇ℓ−n∆n(fJ •̃JGt) (t)
ℓα

1
2 (ℓ,n,t)〈(ℓ−n)0,J0 | (J+(ℓ−n))0〉

n!2n(−1)n , (5.41)
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Figure 5.6.: There exists a systematic way for directly computing the coefficients
shown in red in terms of tensor derivatives. After initially smoothing the
tensor field with an isotropic Gaussian in a component-by-component
manner, only up- and down-derivatives are required. From bottom to
the top: coefficients associated with spherical harmonics of increasing
order ℓ = 0,1, · · · . (Note that we are not considering the normalization
factors here)
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and for the coefficients aℓnJ−2(ℓ−n) := LT
ℓ(J−2(ℓ−n)){fJ ,n}

aℓn(J−2(ℓ−n)) = A
1
2 (ℓ, (J − 2(ℓ −n)),n, t) (−t)

ℓ

n!2n ×

∇ℓ−n∆
n(fJ •̃JGt)

(−1)(ℓ−n)
√
(2(ℓ−n)+1)〈(ℓ−n)0,J0 | (J−(ℓ−n))0〉√

N(ℓ−n),J

= ∇ℓ−n∆
n(fJ •̃JGt)A

1
2 (ℓ, (J − 2(ℓ −n)),n, t) (t)

ℓ
√
(2(ℓ−n)+1)〈(ℓ−n)0,J0 | (J−(ℓ−n))0〉

n!2n(−1)n
√
N(ℓ−n),J

= ∇ℓ−n∆
n(fJ •̃JGt)

(t)ℓα
1
2 (ℓ,n,t)

√
(2(J−(ℓ−n))+1)〈(ℓ−n)0,J0 | (J−(ℓ−n))0〉

n!2n(−1)n
√
(2(J+(ℓ−n))+1)

. (5.42)

As a consequence, only 2J + 1 initial convolutions with a Gaussian function are
required (component-by-component). The remaining operators are discrete tensor
derivatives and the application of the Laplace operator is realized via finite differ-
ences. For proofs see section B.3.1.2 on page 205.
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5. SE(3) Covariant Filters

Figure 5.7.: Gabor wavelets in 3D (red: positive, blue: negative values)

5.2. An SE(3) Covariant Spherical Gabor Transform

AGabor1 function (Gabor 1846) is a directed, Gaussian windowed plane wave suited
for locally analyzing the frequency of signals. The Gaussian windowed wave is also
known as Gabor wavelet, or as Gabor function. In 2D or 3D, a Gabor wave simulta-
neously selects a certain orientation and frequency with respect to a certain position
or time point of a signal. Figure 5.8 on the facing page exemplarily shows a 2D Ga-
bor wavelet, in Fig. 5.7 we show the real and imaginary part of Gabor wavelets in
3D.
The Gabor functions are well suited to model simple cells in the visual cortex

of mammalian brains (Daugman 1985) so that Gabor functions are an appropri-
ate mathematical tool for mimicking human visual perception. Therefore, Gabor
functions are playing an important role in many early vision tasks (Daugman 1980;
Daugman 1988) and became particularly important in applications like texture seg-
mentation and classification (Bovik et al. 1990; Jain and Farrokhnia 1990; Sandler
and Lindenbaum 2009). Similar to a set of Gaussian derivatives forming a “local
jet“ (see the previous section 5.1 on page 110), a set of Gabor features representing
different angular and radial frequencies at a certain image location are also known
as ”Gabor-jet” (Buhmann et al. 1989). Gabor features show high robustness against
noise (Kamarainen et al. 2002). Applications are ranging from texture based segmen-
tation of single tooths from x-ray dental images (Choorat et al. 2012), face detection
(Kyrki et al. 2004), character recognition (Hu et al. 2002; Yoshimura et al. 2000), Ga-
bor feature based hash functions for purposes like watermarking (Li et al. 2012) and
from the extraction of tagging sheets in tagged cardiac MR images (Qian et al. 2006)
to the segmentation of MRI and CT images of human brains (Olowoyeye et al. 2009).
An overview of recent applications can be found e.g. in Kamarainen et al. (2006).
The 3D plane-wave ω : R3→ C with corresponding wave-vector k ∈ R3 is defined

by ω(r,k) := eik
T r. Its counterpart in the frequency domain is the delta impulse

having its peak at position k, namely

ω(r,k′) = eik
′T r ❝ sω̃(k,k′) = (2π)

3
2 δ(k′ −k) ; (5.43)

see Eq. (B.40) in the appendix. Since point-wise multiplications in spatial domain
are convolutions in the frequency domain we conclude that having a Gaussian win-
dowed plane-wave i.e. a Gabor wavelet with a certain direction in spatial domain

1named after Dennis Gabor, 1900-1979, a Hungarian electrical engineer and physicist
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(a) Real part of a directed 2D

plain-wave ℜ(eik
′T r), where

k = π
2 (

1√
2
, 1√

2
)
T
.

(b) Imaginary part of a directed

2D plain-waveℑ(eik
′T r), where

k = π
2 (

1√
2
, 1√

2
)
T
.

(c) 2D Gaussian e−r
T r/(2).

(d) Real (symmetric) part of a directed 2D Gaus-

sian windowed plain-waveℜ(e−r
T r/2eik

′T r) (The
cosine).

(e) Imaginary (antisymmetric) part of a di-
rected 2D Gaussian windowed plain-wave

ℑ(e−r
T r/2eik

′T r) (The sinus)..

Figure 5.8.: A Gabor wave in 2D.

corresponds to a convolution of the corresponding delta peak in the frequency do-
main with a Gaussian function i.e. a shift of the Gaussian function. The Gabor kernel
ωs : R

3→ C in spatial and frequency domain is given by

ωs(r,k
′) = e−r

T r/(2s)eik
′T r ❝ sω̃s(k,k

′) = (2πs)
3
2 e−(k−k

′)T (k−k′)s/2 , (5.44)

where s ∈ R>0 defines the width of the Gaussian window. Note that a decreasing
width of the Gaussian window in spacial domain comes with an increasing size of
the Gaussian function in the frequency domain (and vise versa). This behavior re-
flects the uncertainty of the true frequency when analyzing only a small region of a
given signal. In addition to the Gaussian window size, the position in the frequency
domain steers the orientation and frequency of the Gabor wavelet. In Fig. 5.9 we
show the connection of frequency and time domain of Gabor functions.
A family of Gabor functions decomposes the appearance of a local structure into

local frequency patterns. A family consists of Gabor waves of different orientations
but having the same frequency magnitude. Hence in the frequency domain, all Ga-
bor wavelets of a family are Gaussians whose centers are points on the same sphere.
The common way to implement Gabor filters is to explicitly sample the orientation
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5. SE(3) Covariant Filters

Figure 5.9.: Gabor function in frequency and spatial (time) domain

space and using a finite number of Gabor kernels, each representing a certain orien-
tation of the plane wave; see e.g. Bigun (1994). This requires a quantization of the
orientation space as illustrated in Fig. 5.10 on the next page a). Such a quantization
has two shortcomings: (1) To ensure a sufficient sampling accuracy of the orienta-
tion space, a large number of Gabor functions is necessary, particularly in 3D. This
negatively affects the computation time. (2) In 2D, sampling of the orientation space
corresponds to an equidistant sampling of the unit-circle which can be solved easily.
However, in 3D, equidistant sampling of the orientation space is equivalent to deter-
mine an equidistant distribution of points on the unit-sphere, which is, in general, a
non-trivial problem known as the Thomson problem (Thomson 1904).

We propose a new family of functions that overcomes theses shortcomings. Our
idea is inspired by Simoncelli and Freeman (1995), where frequency and orientation
selection are two separate steps. We select a certain frequency range in the frequency
domain by smoothing a sphere. The radius of the sphere defines the frequency k; the
radial smoothing defines the frequency range (an interval around k defined by the
Gaussian window); see Fig. 5.10 b). This can be regarded as an undirected Gabor
wave. The counterpart in spatial domain is a Gaussian windowed Bessel function.
We then use the spherical tensor derivatives to sample the orientation space in terms
of spherical harmonics. Thanks to the spherical harmonics we overcome the prob-
lem of quantization in the orientation domain. The orientations are now covered
continuously. Furthermore, the tensor derivatives offer an efficient way to densely
compute Gabor filter responses for the whole image. With a spherical decomposition
of the Gabor wavelet we gain features representing all local radial and angular fre-
quency components separately. For details regarding rotation invariant descriptors
based on spherical harmonic expansion coefficients we refer to chapter 3 on page 83.

This section is based on work that has partially been published in Skibbe et al.
(2012) and also includes works that have been presented at conferences (Skibbe et
al. 2010; Skibbe et al. April, 2011).
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5.2. An SE(3) Covariant Spherical Gabor Transform

a)

b)

Figure 5.10.: a) For the ordinary Gabor wave, the selection of frequency and orientation is con-
nected. This is because a Gabor wave in spatial (time) domain is an isotropic Gauss in
frequency domain. (We only show the center slice of the real part of a 3D image here).
b) We propose to separate the frequency selection from orientation selection. We uti-
lize a Gaussian smoothed sphere in frequency domain to select a certain frequency.
We then use tensor derivatives in frequency domain to sample the orientation space in
angular direction. This corresponds to the Gauss-Bessel functions in spatial domain.
A linear combination of these functions can be used to approximate a Gabor wave in
any direction. (We only show the center slice of the real part for m = 0 of a spherical
tensor field here).
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5. SE(3) Covariant Filters

5.2.1. The Fourier Transform in Terms of Spherical Derivatives

The proposed Gabor transformation makes use of the fact, that the ordinary Fourier
transform can be represented in terms of spherical tensor derivatives.

Let ω(r,k) := e
ikT r√
t be the 3D plane wave. With t ∈ R we denote a scale parameter

which we consider w.l.o.g to be constant. The plane wave ω can be represented
in spherical coordinates by decomposing the wave into its angular and its radial
frequency components (see Eq. (C.18) in the appendix):

ω(r,k) =
∑

ℓ

(i)ℓ(2ℓ +1)jℓ(k
r√
t
)Yℓ(r)

︸        ︷︷        ︸
=Bℓ(r,k)

•0 Yℓ(k)

=
∑

ℓ

(i)ℓ(2ℓ +1)Yℓ(k) •0Bℓ(r, k) . (5.45)

With Bℓ(r, k) := Yℓ(r)jℓ(k
r√
t
) we denote the Bessel functions representing the angular

frequency component ℓ and radial frequency component k of the plane wave. They
form a set of orthogonal basis functions spanning L2(R

3). Note that Bℓ(r, k) is inde-
pendent the direction n = k

‖k‖ of k. The steering of the direction of the wave is only

done by the products with Yℓ(k). We call Yℓ(k) the angular expansion coefficients of
the plane wave. The functions jℓ : R→ R are known as spherical Bessel functions;
see Eq. (C.12) in the appendix. While the spherical harmonics build an orthogonal
basis for functions on the 2-sphere, the spherical Bessel functions form an orthogo-
nal basis for 1D functions with respect to the spherical weight r2; see Eq. (C.13) in
the appendix.
The functions Bℓ(r, k) can be used to perform a partial Fourier transform of a sig-

nal, leaving the orientation of the wave undetermined: let I ∈ L2(R3) be an image,
then the Fourier transform of f is given by

Ĩ(k) = (2π)−3/2〈I ,ω(k)〉 = (2π)−3/2
∫

R3
I(r)

∑

ℓ

(−i)ℓ(2ℓ +1)Yℓ(k) •0Bℓ(r, k)dr

= (2π)−3/2
∑

ℓ

(−i)ℓ(2ℓ +1)Yℓ(k) •0
∫

R3
I(r)Bℓ(r, k)dr

︸                ︷︷                ︸
=vℓ(k)

=
∑

ℓ

(−i)ℓ(2ℓ +1)Yℓ(k) •0 (2π)−3/2〈I ,Bℓ(k)〉︸    ︷︷    ︸
=vℓ(k)

. (5.46)

We call the coefficients vℓ(k) the angular independent Fourier coefficients of I , com-
pletely representing the function I in Fourier domain (up to rotation). We obtain the
coefficients vℓ via orthogonal projection on Bℓ(k), that is

vℓ(k) := 〈I ,Bℓ(k)〉 . (5.47)

We call the Bessel functions Bℓ(r, k) the angular Fourier basis functions. The
Fourier correspondences of Bℓ are just spherical harmonics living on a sphere; see
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5.2. An SE(3) Covariant Spherical Gabor Transform

Eq. (B.41) in the appendix on page 209 for the mathematical derivation. The radius
of the sphere corresponds to the ratio of frequency and scale k/

√
t. They are defined

by

B
ℓ(r, k′) = Yℓ(r)jℓ(k

′ r√
t
) ❝ sB̃

ℓ
(k, k′) = (−i)ℓ t

√
π

(k′2)δ(k −
k′√
t
)Yℓm(k) . (5.48)

There exists a natural relation between the angular Fourier basis and the spherical
tensor derivatives, namely

∇
ℓ
B

0(k) = (−k√
t
)ℓBℓ(k) . (5.49)

We have proven this equation in Skibbe et al. (2010). Alternatively, it can be shown
by using Eq. (4.15) on page 100 and Eq. (C.14) in the appendix.
Similar to the SE(3) covariant spherical harmonic transformations SH and LT

(dense Gauss-Laguerre transform), the angular Fourier transform induces an SE(3)
covariant filter, too: the projection of images onto the Fourier basis functions Bℓ(k)
can be regarded as local feature extraction. The features are spherical tensors and
thus transform under rotations of the input image in a predictable, SO(3) covariant
manner. Any SO(3) covariant feature extraction induces a filter (see the introduc-
tion and the preliminary section for details). In this scenario here, thanks to the
differential formulation of the basis function, the filter output can be computed via
one initial convolution, followed by applying the spherical tensor derivatives in a
recursive manner.
Given an image I ∈ T0. The dense spherical Fourier transformation is an SE(3)

covariant filter F T ℓ{k} : T0→Tℓ induced by a projection of the image onto the basis
functions Bℓ(k) via

F T ℓ{I ,k}(x) := 〈h(−x)f ,Bℓ(k)〉 =
∫

r∈R3
f (r+ x)Bℓ(r, k)dr

︸                       ︷︷                       ︸
∝(2ℓ+1) 3D convolutions

(component by component)

= (−1)ℓ
∫
f (r)Bℓ(x− r, k)dr (using sh-parity, Eq. (2.68))

= (−1)ℓ(
√
t
−k )

ℓ

∫
f (r)∇ℓB0(x− r, k)dr

= (
√
t
k )

ℓ∇
ℓ

∫
f (r)B0(x− r, k)dr

︸                   ︷︷                   ︸
one 3D convolution

. (5.50)

This Fourier transformation can hardly be used in practice for local feature analy-
sis, because the Bessel functions representing the radial direction are not vanishing
with increasing distance to the center. However, by windowing the Bessel function
with a Gaussian window function, we overcome this drawback. We obtain a new
windowed Fourier basis with local support. We call the resulting functions spherical
Gabor kernels.
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5. SE(3) Covariant Filters

Figure 5.11.: Isosurfaces of spherical Gabor kernels of order ℓ = 0,1,2,3. Spherical
harmonics represent the angular part while Gaussian windowed spher-
ical Bessel functions cover the radial direction.

5.2.2. Spherical Gabor Kernels:
Frequency Selection in the Gauss-Bessel Domain

The Fourier transform (Eq. (5.50)) transforms whole images into the Fourier domain.
However, we are interested in studying the frequencies of images locally and simul-
taneously we want to benefit from a fast, dense transformation in terms of tensor
derivatives, like we do in case of the Gauss-Laguerre transform. Therefore we will
slightly alter the transformation in Eq. (5.50).
According to Eq. (5.48), the Fourier correspondence of B0 is just a sphere in fre-

quency domain. Smoothing the sphere in frequency domain corresponds to win-
dowing B0 in spatial domain. We call

B
0
s (r, k) := j0(k

r√
t
)e
−r2
(2ts) (5.51)

the 0-order spherical Gabor kernel. The parameter s ∈ R>0 steers the size of the
Gaussian with respect to the frequency independently from the scale parameter t.
With t =

√
σ we can represent the scale in terms of the standard deviation. The ker-

nel B0
s selects a frequency range in frequency domain without making any decision

about the orientation. This scenario is the initial case (middle-left) illustrated in Fig.
5.10 a) on page 131. The explicit expression for the Gaussian smoothed sphere is

B̃
0
s (k, k

′) =
√
2π

5
2 t
√
s

kk′ (e−(k−k
′√t)2s/2 − e−(k+k′

√
t)2s/2) , (5.52)
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which has a Gaussian-like profile in radial direction; see Fig. 5.12. For the derivation
of the expression see Eq. (B.42) in the appendix. While the frequency is fixed by the

-15 -10 -5 5 10 15

0.5

1.0

1.5

2.0

2.5

Figure 5.12.: Radial profile for a Gaussian smoothed sphere, corresponding to a ra-
dius of π,2π and 3π.

choice of B0
s , the orientation space is decomposed into its frequency components via

spherical tensor derivatives. We denote by Bℓs the ℓth tensor derivative of B0
s , where

B
ℓ
s (k) = (−1)ℓ∇ℓB0

s (k). We call Bℓs a spherical Gabor kernel of order ℓ. In Fig. 5.11 on
the preceding page we show some 3D renderings of such kernels.

With ∇̃
ℓ̃
f = iℓRℓ(k)̃f (according to Eq. (4.8) on page 98) we obtain the following

equation of B̃
ℓ
s in frequency domain:

B̃
ℓ
s (k, k

′) = (−i)ℓRℓ(k)
√
2π

5
2 t
√
s

kk′ (e−(k−k
′√t)2s/2 − e−(k+k′

√
t)2s/2) . (5.53)

In Fig. 5.10 b) we show the center slices of [B̃
ℓ
s (k)]ℓ, the ℓth components of B̃

ℓ
s (k)

together with their spatial counterparts for an increasing order ℓ = 1 · · ·5. For an
explicit representation of the kernels Bℓs (k) see theorem C.3.4 on page 217.
We can observe that with an increasing order ℓ the smoothed sphere is decom-

posed in terms of spherical harmonics, while the radial profile stays almost the same.
It is worth mentioning that a small frequency shift to higher frequencies sneaks in
during the successive application of the tensor derivatives. However, the effect is
only noticeable for kernels of very high order. For our applications the effect is
negligible, because we will never go to such high bandwidths; see Fig. 5.13 on the
following page.

The ordinary Gabor wavelet with frequency k can be very well approximated by
superposing a small number of Gauss-Bessel functions Bℓs (k) according to

ωs(r,
k√
t
) ≈

∑

ℓ

(i)ℓ(2ℓ +1)αℓ(k)Y
ℓ(k) •0Bℓs (r, k) , (5.54)

where αℓ(k) ∈ R are real valued weighting factors. In the second row of Fig. 5.14 we
show a band-limited (ℓ ≤ 5) approximation of the Gabor wavelet using this spherical
expansion.
We conclude that similar to the ordinary Gabor ωs, the functions Bℓs (k) are very

well suited for the local analysis of frequencies in 3D images. Moreover, the spherical
decomposition of the wave in frequency domain allows for locally studying a certain
frequency with respect to the continuous range of all orientations simultaneously.
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(a) The shift in frequency domain for s = 1,
k = 2π and ℓ = 0,5,10,15,20.
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(b) The profile of the tensor derivatives of
a Gaussian smoothed sphere is similar to a
Gaussian, even for derivatives of very high or-
der (we aligned and scaled the functions with
respect to their maximum).
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(c) The shift in frequency domain for s = 2,
k = 2π and ℓ = 0,5,10,15,20.
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(d) The shift in frequency domain for s = 3,
k = 2π and ℓ = 0,5,10,15,20.

Figure 5.13.:While the radial profile of the sphere stays Gaussian-like, we have
a small frequency shift towards higher frequencies for higher order
spherical Gabor kernels Bℓs .

Figure 5.14.: a) Centered z-slices showing the 3D-Gabor wavelet with σ =
√
t =

12, s = 0.5. b) Proposed approximation based on the spherical deriva-
tives of the Gaussian windowed Bessel functions (symmetric real part
together with the antisymmetric imaginary part for k = 1,2,4,8). The
image size is 643 voxels. A spherical expansion up to order ℓ = 5 based
on Eq. (5.54) already leads to a very good approximation. For k = 8 the
angular resolution is insufficient since the frequency is correct, while
the shape differs.
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Figure 5.15.: Recursive implementation of the Gabor transform using spherical up-
derivatives. Each scale and frequency requires only one initial convo-
lution.

5.2.2.1. An SE(3) Covariant Spherical Gabor Transform

We have seen that by windowing and differentiating the 0-order angular Basis func-
tions B0 we obtain a set of spherical Gabor kernels Bℓs , suitable to locally studying
the frequencies of images. By accordingly replacing the functions in Eq. (5.50) , we
get an SE(3) covariant spherical Gabor transform GT ℓ{k} : T0→Tℓ, with

GT ℓ{I ,k}(x) := 〈h(−x)I ,Bℓs (k)〉

= (
√
t
k )

ℓ∇
ℓ

∫
I(r)B0

s (x− r, k)dr

= (
√
t
k )

ℓ∇
ℓ(I ∗B0

s (k))(x) . (5.55)

The filter output

aℓ(k) := GT ℓ{I ,k} (5.56)

is a spherical tensor field of order ℓ, whose elements are the local Gabor frequency
coefficients.
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Figure 5.16.: The Histogram of oriented gradients (HOG) counts the occurrence of
local gradient orientations. In 2D, HOG can be considered as function
on a circle. The orientation space is commonly discretized correspond-
ing to an equidistant sampling of the unit-circle. In the example shown
here, we distinguish between four different orientations, correspond-
ing to n = 0, π2 ,π and 3π

2 . The light blue circles are representing the
histograms, corresponding to the gradient directions in a-c). The red
entries are representing the amount of gradients contributing to a cer-
tain direction. We see that HOG based on a discrete sampling of the
orientation space is neither rotation invariant a-b) nor rotation covari-
ant c).

5.3. SHOG - Spherical Histograms of Oriented Gradients

In this section we introduce a new sort of SE(3) covariant filters for 3D images. The
filter outputs are spherical tensor valued feature images. The tensors are expansion
coefficients of functions representing the local occurrence of gradient orientations
of the input image. We call a function representing the occurrence of 3D gradient
orientations in 3D SHOG, a SphericalHistogram ofOrientedGradients. Parts of this
section have been presented at conferences (Liu et al. 2011b; Skibbe et al. 2011b). A
2D alternative has been presented by Skibbe and Reisert (2012a).

Representations of gradient orientation distributions are widely used as reliable
features for image patch description. Themost frequently used representative of this
group of features might be the structure tensor. The structure tensor is a Cartesian
second order tensor which represents the local distribution of gradient orientations
(Bigun and Granlund 1987; Förstner 1986); a definition can be found in example
2.2.4 in the preliminary chapter. The eigenvalues and eigenvectors of the structure
tensor are providing reliable information about the local curvature in images and
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so, the structure tensor has become an indispensable, widely used tool for the de-
tection of low-level features like corners (Förstner 1986; Noble 1988), edges (Harris
and Stephens 1988; Köthe 2003) or the analysis of textures (Bigun et al. 1991; Linde-
berg 1993; Rao and Schunck 1991). Further applications are ranging from diffusion
filtering (Weickert 1998) to optical flow techniques (Bigun et al. 1991). A survey on
structure tensors can be found e.g. in Granlund and Knutsson (1995).
The three eigenvectors of the 3D structure tensor together with their correspond-

ing eigenvalues are parameterizing an ellipsoid that represents the local distribution
of gradient orientations. Due to this very coarse representation of the distribution
the structure tensor is less suited to detect and distinguish complex structures.
In many object detection tasks, a discrete representation by a histogram is used.

The histogram is computed by discretization of the orientation space so that the
occurrence of gradient orientations is countable in a discrete manner. Such a rep-
resentation is richer in details than a structure tensor and allows for estimating the
continuous gradient orientation distribution in a computationally efficient manner.
Such representations are commonly used as discriminative image features with the
purpose of detecting arbitrary structures. Their most famous representatives are
SIFT features (Scale Invariant Feature Transform; see (Lowe 2004)) and HOG fea-
tures (Histogram of Oriented Gradients; see (Dalal and Triggs 2005)). SIFT and
HOG have shown a remarkable performance in various applications.
HOG features can be regarded as the most “natural” histogram that represents

the occurrence of gradient orientations. In order to compute a HOG from an image
patch, a (cyclic) orientation histogram is used to count the occurrence of gradient
orientations. A gradient is usually contributing by its gradient magnitude so that
very low gradients are only little contributing to the orientation statistic. Since the
orientation space is discretized, the weights are usually distributed over adjacent
bins via interpolation. The orientation space is typically coarsely sampled so that
HOG histograms become robust against small deformations and small rotations. The
strong advantage that HOG can be efficiently computed densely for the whole image
via the integral image technique (Viola and Jones 2001) comes with the disadvantage
that the HOG histogram has no well defined rotation behavior and thus rotation
invariance cannot be achieved analytically; see Fig. 5.16 on the preceding page.
HOG are used in applications ranging from human detection (Dalal and Triggs

2005; Zhu et al. 2006) to state-of-the-art object recognition techniques in natural
images (Bourdev and Malik 2009; Felzenszwalb et al. 2010). In recent work, HOG
features have also been used for matching patches in consecutive frames in movies.
These matches are used to cope with large displacements in optical flow estimation
techniques (Brox and Malik 2011).
SIFT histograms can be regarded as a rotation invariant representation of HOG.

That is, SIFT histograms are representing the local gradient orientation distribution
in a rotation invariant manner. Rotation invariance is achieved via normalization
(see Fig. 3.2 on page 86 regarding normalization versus group integration): in 2D,
the SIFT histogram is computed with respect to the local reference coordinate sys-
tem defined by the locally dominant gradient direction within an image patch (The
gradient main direction). The gradient main direction is computed from within an
isotropic region around the center of the patch. The advantage of rotation invariance
comes with the disadvantage that a reliable, dominant direction cannot be guar-
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anteed for all pixels in an image; see e.g. Lin et al. (2012). Due to this fact, SIFT
histograms are less suited to be computed densely for the whole image. Moreover,
compared to HOG, SIFT is much more computationally expensive. Therefore, SIFT
features are only computed on certain key-points within the image. An initially ap-
plied key-point detector finds points that most likely provide a reliable reference
frame. Moreover, scale-space techniques are used to make SIFT scale invariant; see
the paper by Lindeberg (1990).
Applications of SIFT are ranging from object recognition (Lowe 2004; Nister and

Stewenius 2006), face authentication (Bicego et al. 2006), action recognition (Scovan-
ner et al. 2007), or for solving point matching problems in medical images (Cheung
and Hamarneh 2007a). SIFT has also found its way into recent optical flow tech-
niques, where densely computed SIFT histogram features are used instead of the
raw intensity values (Liu et al. 2011a). Extension to 3D have been proposed by Al-
laire et al. (2008), where SIFT features are used to align medical images.
Integrating the integral image technique into SIFT leads to SURF (Speed Up Ro-

bust Features; Bay et al. (2006)). A 3D version of SURF has been introduced by
Knopp et al. (2010). The resulting features can be regarded as a combination of the
advantages of both histogram representations HOG and SIFT. SURF features can be
computed more efficiently and they provide a rotation invariant representation.

Figure 5.17.: The SIFT or HOG descriptor is based on several concatenated his-
tograms of oriented gradients (HOG). In this example, the four red
rectangles are indicating the four regions from within four HOG are
computed. The final HOG descriptor is then formed by concatenating
all four histograms. In case of SIFT, the grid (here 2×2) is aligned with
respect to the local gradient main direction in order to achieve rotation
invariance.

It is worth mentioning that for describing image patches in a most discriminative
manner by HOG or SIFT, a grid is provided that subdivides an image patch into
regions. For each region a HOG or SIFT histograms is computed. A patch descrip-
tor is formed by concatenating the histograms; see Fig. 5.17. Such a representation
considers the spatial differences of the occurrence of gradient orientations within an
image patch. In case of SIFT, rotation invariance is achieved by aligning the whole
grid with respect to the patch’s gradient main direction. An illustration of such a
SIFT descriptor for 3D images can be found in the experiment section in Fig. 6.7 on
page 164. For instance, in case of the original 2D SIFT descriptor, the descriptor is
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formed from histograms computed on a local 4 × 4 grid. Alternatively, histograms
can be formed from circular regions (Dalal and Triggs 2005).
The difficult part in designing rotation invariant SIFT-, HOG- or SURF-like fea-

tures for volumetric images is the 3D rotation. With 3D SIFT (Allaire et al. 2008)
and 3D SURF (Knopp et al. 2010) there exist 3D approaches that cope with this
challenge. The 3D rotation comes mainly with two difficulties:
(1) Following the idea of 3D SIFT and 3D SURF, the gradient histograms are

aligned with respect to a locally dominant direction of a local image patch. While
in 2D only one dominant direction is required, two orthogonal dominant directions
are necessary to define a local coordinate system for alignment in 3D (see Fig. 6.7 on
page 164). Unfortunately, finding two orthogonal, reliable directions is less likely
than finding one as it is the case in 2D. This is particularly the case when working
with volumetric images, where classical edges do not exist. In 3D we most likely
have blob like structures and/or surfaces. Particularly when working with biomed-
ical data we seldom have clear, dominant edges or corners formed by connected
surfaces.
(2) Directly extending the existing approaches from 2D to 3D requires a discrete

sampling of the 3D orientation space of a 3D gradient to form the orientation bins
of a histogram. An equidistant sampling of the orientation space in 2D is trivial. It
is just an equidistant sampling of the circle (Fig. 5.18 a) ). But equidistant sampling
of the orientation space of a gradient in 3D is in general a non-trivial task. In 3D, a
gradient’s direction is defined by two angles (Fig. 5.18 b) ). Hence the histogram of
oriented gradients in 3D can be regarded as a function on the 2-sphere. However, we
know that an equidistant sampling of the sphere is difficult, because in general it can
not be solved explicitly (Thomson 1904). Moreover, a dense sampling of the sphere
requires significantly more sampling points than a circle (compare Fig. 5.18 a) with
b)). An alternative is sampling the orientation space with respect to the two angles
representing a gradient direction; see Fig. 1.5 on page 21. However, in this case the
poles are oversampled which must be considered in the computation (Allaire et al.
2008; Knopp et al. 2010). Furthermore, such a sampling does not solve the problem
of having many more sampling points in the 3D case in comparison with the 2D
scenario.
In this section we introduce SHOG, a new representation of histograms of ori-

ented gradients in 3D that combines the structure tensor with the concepts of HOG
and SIFT. We compute and represent a gradient orientation distribution directly in
Fourier domain using spherical tensor representations. As a consequence, similar
to the structure tensor, we densely compute a continuous representation of the local
gradient orientation distribution. Similar to HOG and SIFT, our proposed represen-
tation covers finer details, too. Our SHOG representation can be regarded as a gen-
eralized form of the 3D structure tensor (we will discuss this later on in this section).
Similar to HOG and the structure tensor, we compute the histograms densely for
the whole image. And finally, similar to SIFT and the structure tensor, our method
transforms under rotations in a predictable, continuous, well defined manner.
The major difference to HOG, SIFT and SURF is that we propose to keep the his-

togram continuous and realize the ”binning“ in the frequency domain by using a
band limited expansion in terms of spherical harmonics. By binning in frequency
domain we gain the following advantages:
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18 points 100 points

Figure 5.18.: In 3D the gradient direction is described by two angles thus a his-
togram of oriented gradients (HOG) can be considered as function on
the sphere. We propose to represent the spherical histogram in Fourier
domain in order to avoid angular discretization in spatial domain. This
is mainly for two reasons: (1) in contrast to the 2D case, equidistant
sampling of the orientation space of a gradient in 3D is a nontrivial
task. This is the case because this problem is equivalent to distributing
points on a sphere in an equidistant manner which for many config-
urations cannot be computed explicitly. (2) The number of necessary
points required for sampling the sphere is significantly larger than for
the 2D case (For α = 20◦ we have 18 points on a circle and 100 points
on the sphere). This hinders a fast computation in 3D.

• No interpolation (with respect to bins) is required because, similar to the struc-
ture tensor, SHOG is based on the true continuous distribution function.

• SHOG rotates continuously with respect to rotation of its underlying data with-
out leading to any artifacts that may occur when using a discrete representa-
tion of the orientation histogram.

• A representation in terms of spherical harmonics allows for using spherical
tensor algebra. Thanks to spherical tensor calculus we can derive rotation in-
variants from the new HOG representation in an analytical manner.

This section focuses on the design of a filter mapping images to spherical tensor
valued feature images. A feature image’s elements are the expansion coefficients of
the irreducible representations of local SHOG histograms (irreducible regarding 3D
rotations). Details regarding invariant features derived from spherical HOG expan-
sion coefficients can be found in chapter 3 on page 83. The design of specific region
descriptors mimicking the concatenation of several neighboring histograms (like in
SIFT and HOG) in a covariant manner is introduced and used in the experiments
chapter 6 on page 157.

5.3.1. Spherical Histograms of Oriented Gradients

Given a volumetric image I ∈ L2(R3). We call the output of the mapping

SHOGw : L2(R
3)→ L2(S2), (SHOGw : image→ gradient orientation

distribution
) (5.57)

a spherical histogram of oriented gradients, shortly SHOG. The spherical function
SHOG is representing the occurrence of gradient orientations in an image. With S2
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Figure 5.19.: Computation of a histogram of oriented gradients. For illustration, we
consider a scenario in 2D.

we denote the unit-sphere which is used to represent the angular depended gradient
orientation occurrence statistic. We denote by w an isotropic window function w ∈
L2(R

3). The window function defines the volume within the gradient orientations
are contributing to a histogram. A suitable window function is e.g. the 3D Gaussian
function or a Gaussian smoothed sphere. Isotropy is required, because only then the
window is not changing its shape under rotations. This facilitates the extraction of
rotation invariant features. For anisotropic smoothing within the proposed concept
see the paper by Reisert and Skibbe (2012).
We compute a SHOG function by counting the occurrence of gradient orientations

within the window function w. Let g : R3 → C3, g = ∇I be the gradient image of I .
The resulting continuous gradient orientation distribution function has the form

SHOGw(I ,n) :=

∫

r∈R3
‖g(r)‖γδ2n(ĝ(r))w(r)dr . (5.58)

An illustrative example is given in Fig. 5.19. The function ĝ : R3→ S2, with

ĝ(r) := g(r)/‖g(r)‖ , (5.59)

is the gradient orientation field, with n ∈ S2 we denote the current histogram entry
(the direction) taken into account. By δ2n : S2→ Rwe denote the Dirac delta function
on the unit sphere (see Eq. (C.11) in the appendix) that selects those gradients out
of the gradient image g with orientation n. We weight the count of a gradient g(r) by
its magnitude ‖g(r)‖γ . With the parameter γ ∈ R>0 we can steer the gradient weights
in a nonlinear manner. Similar to a gamma correction, we can use values γ < 1 to
emphasize the influence of small gradients and to damp large outliers.
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Figure 5.20.: The histogram of oriented gradients (HOG) represents the local occur-
rence of gradient orientations. The black circle indicates the region
which is considered to compute a HOG with respect to the image cen-
ter. The first row shows the proposed HOG feature (in 2D), where bin-
ning is realized in frequency domain (We used six complex valued coef-
ficients). We see that when rotating the image, the histogram smoothly
rotates with respect to the gradients. In the second row we see a HOG
in its classical representation (here 12 bins). Due to binning in spatial
domain, only rotations which are consistent with the number of bins
(here every 30◦) are rotated versions of the “original” histogram. Even
soft-binning alters the appearance of the histogram during rotations.
This is because rotations are acting on the histograms in a non-linear,
non-invertible fashion. The third row shows the cyclic profiles of the
histograms.

5.3.1.1. The Irreducible Representations of SHOG

Since SHOG is a function on the sphere, there exists a representation in terms of
spherical harmonics, namely

SHOGw(I ,n) =
∞∑

ℓ=0

(2ℓ +1)(vℓw)
T
Yℓ(n) . (5.60)

We denote by vℓw ∈ C2ℓ+1 the expansion coefficients, completely representing the
SHOG in the spherical harmonic domain. When neglecting higher frequency com-
ponents by limiting the band ℓ ≤ L we obtain the best-approximation of SHOGw in
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the finite subspace spanned by {Yi}{i=0···L}. We consider the band limiting parameter
L as Fourier counterpart of the number of angular bins of the traditional, spatial
HOG, because it steers the angular resolution of the histogram. In Fig. 5.21 on the
following page we exemplarily depict the band limited expansion of a gradient his-
togram for an increasing number of frequency components with L = 1,2,3,4,5.
We identify the coefficients vℓw by plugging the spherical expansion of the Dirac

delta function (see section C.11 in the appendix) into Eq. (5.58). We get

SHOGw(I ,n) =

∫

r∈R3
‖g(r)‖γδ2n(ĝ(r))w(r)dr

=

∫
‖g(r)‖γ

∞∑

ℓ=0

(2ℓ +1)(Yℓ(ĝ(r)))
T
Yℓ(n)

︸                             ︷︷                             ︸
=δ2n(ĝ(r)); see Eq. (C.11) in the appendix

w(r)dr

=
∞∑

ℓ=0

(2ℓ +1)

∫
‖g(r)‖γ (Yℓ(ĝ(r)))Tw(r)dr

︸                             ︷︷                             ︸
=(vℓw)

T∈C2ℓ+1

Yℓ(n)

(5.61)

Hence the Fourier coefficients of SHOG, vℓw ∈ C2ℓ+1, are the result of the angular

Fourier transformation ˜SHOGw(ℓ) : T0→ C(2ℓ+1). The transformation is defined by

˜SHOGw(I , ℓ) :=

∫
‖g(r)‖γ (Yℓ(ĝ(r)))Tw(r)dr . (5.62)

That is, we compute the SHOG coefficients vℓw ∈ C2ℓ+1 by aggregating the contribu-
tions of the ’higher order’ gradient orientation fields ‖g(r)‖Yℓ(ĝ) ∈ C2ℓ+1 within the
window function w in a component-by-component manner.
The SHOG coefficients vℓw ∈ C2ℓ+1 are spherical tensors. Hence they rotate in a

predictable manner: assume a 3D rotation denoted by g ∈ SO(3) is acting on a vol-
umetric image I ∈ L2(R3) so that gI(x) := I(UTg x); see Eq. (2.38) on page 49. In this

scenario the coefficients vℓw are transforming according to

SHOGw(gI ,n) = SHOGw(I ,U
T
g n) =

∞∑

ℓ=0

(2ℓ +1)(Dℓ
gv
ℓ
w)
T
Yℓ(n) . (5.63)

As a consequence, the coefficients vℓw are spherical tensors. A proof can be found on
page 210.

5.3.1.2. An SE(3) Covariant SHOG Filter

The angular Fourier transform of ˜SHOGw(I , ℓ) maps images to rotation covariant
spherical tensor valued expansion coefficients. Since any SO(3) covariant local fea-
ture extraction induces an SE(3) covariant filter, we use the Fourier transformation
˜SHOGw(I , ℓ) to build a filter that maps images to dense SHOG coefficient feature

images.

145



5. SE(3) Covariant Filters

Figure 5.21.: We use a representation of spherical HOG in the spherical harmonic domain
so that a few number of coefficients is sufficient to represent the characteristics of the true
gradient orientation distributions. The expansion coefficients can be computed efficiently
and rotate smoothly with respect to the underlying data. In this image we have visualized
the spherical representations of three gradient orientation distributions for an increasing
number of expansion coefficients ℓ ≤ L,L = 1,2,3,4,5. Black indicates 0, red represents pos-
itive values, blue negative values (Negative values occur because of the band-limit repre-
sentation). We also show the corresponding quantized SHOG functions. Black arrows are
indicating gradient orientations not contributing to the current histogram.
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Figure 5.22.: The spherical expansion coefficients aℓw can be computed very effi-
ciently by utilizing a recurrence relation of the spherical harmonics
and by utilizing the Fast Fourier Transform. In an initial step we com-
pute the spherical gradient ∇1I . We decompose the spherical gradient
image into its corresponding gradient magnitude image ‖g‖ = ‖∇1I‖
and its spherical orientation field Y1(ĝ), where Y1(ĝ) = ∇1I /‖∇1I‖ (see
Eq. (5.68)). i) Higher angular moment states are then computed re-
cursively utilizing tensor products • ii) and are then weighted by the
gradient magnitude. iii) We finally use the Fast Fourier Transform to
superimpose the angular moment states of neighboring gradients to
form the coefficients.

We call the filter SHOG filter and denote it by SHOGℓ : T0→Tℓ, where

SHOGℓ{I ,w}(x) := ˜SHOGw(h(−x)I , ℓ) . (5.64)

By substituting the definition of the Fourier representation of SHOG (Eq. (5.62))
into Eq. (5.64), we obtain

SHOGℓ{I ,w}(x) =
∫
‖g(r+ x)‖γ (Yℓ(ĝ(r+ x)))

T
w(r)dr

=

∫
‖g(r)‖γ (Yℓ(ĝ(r)))Tw(r− x)dr

=

∫
‖g(r)‖γ (Yℓ(ĝ(r)))Tw(x− r)dr (since w is isotropic)

=
((
‖g‖γ (Yℓ(ĝ))

)
∗w

)
(x) . (5.65)

That is, we convolve the higher order spherical gradient fields ‖g‖Yℓ(ĝ) with an
isotropic window function w ∈ L2(R3).
Recursive Computation. Instead of explicitly computing the gradient orientation

fields Yℓ(ĝ), we utilize spherical tensor products in order to compute the coefficients
in a recursive manner. We make use of the fact that we can recursively derive spheri-
cal harmonics of order ℓ±1, ℓ > 0 by coupling two spherical harmonics of order ℓ and
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1 with Yℓ±1 = Yℓ •ℓ±1 Y1; see Prop. 2.2.29 on page 69 (We illustrate in Fig. 2.5 how
higher order spherical harmonics can be computed recursively). By utilizing this
property we gain a recursive rule with which we avoid an explicit, expensive com-
putation of Yℓ(ĝ). We compute the higher order orientation fields in a voxel-by-voxel
way via

Yℓ+1(ĝ(r)) = Yℓ(ĝ(r)) •ℓ+1 Y1(ĝ(r)) . (5.66)

Remember that a 3D image can be regarded as a spherical tensor field of order 0 so
that I ∈ T0. Therefore, the basis case is the normalized ordinary gradient in spherical
notation:

Y1(ĝ) =
( 1√

2
(∂xI−i∂yI ),∂zI ,− 1√

2
(∂xI+i∂yI ))

T

‖g‖ (5.67)

=
( 1√

2
(∂x−i∂y ),∂z ,− 1√

2
(∂x+i∂y ))

T
I

‖g‖ =
∇1I

‖g‖ =
∇1I

‖∇1I‖
; (5.68)

see Eq. (4.1) on page 97. The special case for ℓ = 0 has “no orientation”, hence

Y0(ĝ(r)) = Y1(ĝ(r)) •0 Y1(ĝ(r)) = 1 . (5.69)

Once the gradient orientation fields Yℓ(ĝ) are computed, the remaining computa-
tions are the convolutions with the window function w.

5.3.1.3. SHOGℓ , a Generalized 3D Structure Tensor Field

The spherical tensor field of the Fourier representations of the spherical histogram
of oriented gradients (SHOG) can be regarded as generalization of the second order
structure tensor field: if we consider the special case where γ = 2, the Fourier SHOG
expansion coefficient fields a0w = SHOG0{I ,w} and a2w = SHOG2{I ,w} are identical
with a spherical tensor representations of the 3D structure tensor field. That is,
there exists a unitary transformation between the Cartesian structure tensor field
and the zero and second order Fourier representations of SHOG.
Let S{I } : R3 → R9 be the the structure tensor field of an image I ∈ L2(R3); see

example 2.2.4 on page 51. We represent the structure tensor field w.l.o.g in matrix
form:

S{I } =




(∂xI )
2 (∂xI )(∂yI ) (∂xI )(∂zI )

(∂xI )(∂yI ) (∂yI )
2 (∂yI )(∂zI )

(∂xI )(∂zI ) (∂yI )(∂zI ) (∂zI )
2



∗w . (5.70)

The structure tensor is a symmetric tensor. Therefore, according to Eq. (2.148) on
page 78, there exists a unique (invertible) decomposition into a traceless symmet-
ric tensor and the trace of the structure tensor. Moreover, for both the symmetric
part and the trace exists an unambiguous representation in terms of spherical tensor
fields (see Eq. (2.154)), which are

s2 =




1
2 ((∂xI )

2 − (∂yI )2 +2i(∂xI )(∂yI ))
((∂xI )(∂zI ) + i(∂yI )(∂zI ))
−1
6 ((∂xI )

2 + (∂yI )
2 − 2(∂zI )2)

(−(∂xI )(∂zI ) + i(∂yI )(∂zI ))
1
2 ((∂xI )

2 − (∂yI )2 − 2i(∂xI )(∂yI ))




=




1
2 ((∂xI )− i(∂yI ))2

((∂xI ) + i(∂yI ))(∂zI )√
2
3 (−

(∂xI )
2

2 − (∂yI )
2

2 + (∂zI )
2)

(−(∂xI ) + i(∂yI ))(∂zI )
1
2 ((∂xI ) + i(∂yI ))

2




, (5.71)
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where s2 ∈ T2 represents the traceless, symmetric part of the tensor. For the trace we
have

s0 =
−((∂xI )2 + (∂yI )

2 + (∂zI )
2)

√
3

, (5.72)

where s0 ∈ T0 is a scalar valued image. It turns out that if γ = 2, then the correspond-
ing SHOG contains the structure tensor in terms of the coefficients

a0w = 〈10,10 |00〉(−1)(s0 ∗w) and

a2w = 〈10,10 |20〉(−1)(s2 ∗w) , (5.73)

where 〈10,10 |20〉(−1) and 〈10,10 |00〉(−1) are two real-valued constant normalization
factors.

Proof. Weuse Eq. (5.68) in combination with the explicit representation of the spher-
ical derivatives, see Eq. (4.1) on page 97, to compute the weighted orientation fields
for the coefficients a2w and a0w (before smoothing). The resulting tensor for a2w is

‖g‖2(Y1(ĝ) •2 Y1(ĝ)) = ‖∇1I‖2(( ∇
1I

‖∇1I‖ ) •2 (
∇1I
‖∇1I‖ )) = ((∇1I ) •2 (∇1I ))

=




√
3
2
1
2 ((∂xI )− i(∂yI ))2√

3
2 ((∂xI ) + i(∂yI ))(∂zI )

(− (∂xI )
2

2 − (∂yI )
2

2 + (∂zI )
2)√

3
2 (−(∂xI ) + i(∂yI ))(∂zI )√

3
2
1
2 ((∂xI ) + i(∂yI ))

2




=

√
3
2




1
2 ((∂xI )− i(∂yI ))2

((∂xI ) + i(∂yI ))(∂zI )√
2
3 (−

(∂xI )
2

2 − (∂yI )
2

2 + (∂zI )
2)

(−(∂xI ) + i(∂yI ))(∂zI )
1
2 ((∂xI ) + i(∂yI ))

2




(5.74)

= 〈10,10 |20〉(−1)




1
2 ((∂xI )− i(∂yI ))2

((∂xI ) + i(∂yI ))(∂zI )√
2
3 (−

(∂xI )
2

2 − (∂yI )
2

2 + (∂zI )
2)

(−(∂xI ) + i(∂yI ))(∂zI )
1
2 ((∂xI ) + i(∂yI ))

2




,

which is equal to s2 up to the normalization factor 〈10,10 |20〉(−1) ∈ R. Similarly for
the spherical tensor field a0w, we get

‖g‖2(Y1(ĝ) •0 Y1(ĝ)) = ‖∇1I‖2(( ∇
1I

‖∇1I‖ ) •0 (
∇1I
‖∇1I‖ )) = ((∇1I ) •0 (∇1I )) = ‖∇1I‖

2

= ((∂xI )
2 + (∂yI )

2 + (∂zI )
2) = (−

√
3)
−((∂xI )2 + (∂yI )

2 + (∂zI )
2)

√
3

= 〈10,10 |10〉(−1)
−((∂xI )2 + (∂yI )

2 + (∂zI )
2)

√
3

, (5.75)

which is equal to s0 up to the normalization factor 〈10,10 |00〉(−1) ∈ R.
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5.4. Implementation: Filters for Object Detection in 3D

In this section we list up implementation related details regarding the proposed
spherical harmonic transformations. This also includes the descriptors that we will
use in our experiment section. The purpose of this section is to give a short guideline
that should help finding suitable settings for solving an object detection task.
One issue that we should address for all of the proposed discrete spherical har-

monic transformations is the choice of an upper bound for the spherical harmonic
order ℓ. Since the images are presented in a discrete voxel grid, there exists a nat-
ural limitation for the representation of frequencies within a local pattern: all zero
crossings appearing on a spherical harmonic function should be representable in a
discrete image, otherwise we risk aliasing effects, see Nyquist (1928).
We focus on the circular harmonic eimϕ appearing in the term of the spherical

harmonic function, see section 2.2.2.1 on page 54. It represents the equator of a
spherical harmonic function. We focus on its highest frequency m = ℓ. In this case,
eiℓϕ has 2ℓ zero crossings. Hence if we assume a sampling on a sphere with radius
σ ∈ R>0,

ℓ < πσ (5.76)

is a good estimation for an upper bound of ℓ. To give some numbers: if the radius
of an object is 2 voxels, then ℓ ≤ 6 would be the maximum angular frequency that
should be taken into account.

5.4.1. A Spherical Laguerre Transform for Object Detection in 3D

Regarding computational complexity, the Gauss-Laguerre transformation is themost
efficient transformation among the proposed transformations. A big advantage of
this transformation is the small number of parameters: we simply define a scale and
an upper bound for the polynomial degree.
In Skibbe et al. (2012) we used Gauss-Laguerre descriptors for the detection and

classification of cells in microscopical images of Arabidopsis root tips; see chapter A
on page 181. We found that representing local image patches in a coarse to fine
manner is crucial for successfully distinguishing between the cells.
If we have objects of varying size, then we suggest the following strategy for select-

ing a suited set of scale parameters: let σ0 ∈ R be the radius of the biggest structures
or objects that we are looking for. Then t = σ2

0 gives us the size of the Gaussian kernel
that covers these structures. We then build a whole cascade of different scales in a
coarse to fine manner by repeatedly dividing σ by two, namely σn+1 = σn/2. We stop
when σn ≤ 2.
In an object detection task, a training set and/or a validation set can be used to find

a suitable σ0. An upper bound for the polynomial degree is found by increasing the
degree until no improvements can be achieved on the training set (or the condition
Eq. (5.76) is violated).

Implementation For an efficient discrete realization of the spherical Gauss-Laguerre
transformation (Eq. (5.34)) we use the discrete fast Fourier transform (we use
the FFTW (Frigo and Johnson 2005)) for the initial convolution and the discrete
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Figure 5.23.: Computation time: comparing the derivative based transformations
(Gauss-Laguerre and Gabor, denoted as laguerre) to SHOG (denoted as
shog) and the “standard” spherical harmonic transformation (denoted
as sh). We compared the following scenarios: a transformation up to
order 5 for datasets of the sizes 323,...,2243 voxels using single and
double precision numbers. The derivate based approaches clearly per-
form best. The SHOG expansion coefficients must be computed in a
nonlinear manner which is computationally expensive. The standard
transformation is based on a large number of convolutions with many
different kernels which also requires a large amount of computation
time and memory intensive operations. (making use of 8 cores of an
Intel(R) Core(TM) i7-3770S CPU @ 3.10GHz with 32 GB of Ram via
OpenMP and the multi-threaded FFTW(Frigo and Johnson 2005))

spherical tensor derivative operators introduced in section 4.2 on page 103. For
a comparison of the computation time of the derivative based transformation
with the SHOG transformation and the purely convolution based transforma-
tion see Fig. 5.23.

Computation Complexity Apart from one initial discrete convolution with com-
plexity O(N logN ), where N is the number of voxels, only finite differences
are required. The finite differences can be computed in O(MN ), where M is
the small number of scalar valued basis functions which we consider to be
constant.

5.4.1.1. Gauss Laguerre Descriptors

For our experiments we use the power-spectrum (Eq. 3.27) and the bi-spectrum
(Eq. 3.28) to form descriptor images from spherical Gauss Laguerre expansion co-
efficients. We also considered cross-spectrum invariants by combining expansion
coefficients associated with different radial polynomial degree n. For the details re-
garding the parameters we refer to the experiment chapter.
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5.4.2. A Spherical Gabor Transform for Object Detection in 3D

The spherical Gabor transformation allows for computing local features represent-
ing the frequency components of local patterns. Regarding this transformation,
there are two major issues worth further investigation: scale and frequency. Since
in our definition of spherical Gabor kernels scale and frequency are multiplicatively
connected, we keep the scale constant in the following consideration and consider
a varying frequency. The frequency parameter k determines the frequency of the
radial spherical Bessel functions. To avoid artifacts induced by undersampling the
radial profile of a spherical Gabor kernel, the zeros of the Bessel function should be
clearly represented by its discrete representation. The common characteristic of all
spherical Gabor functions of increasing order in frequency domain is that they are
all lying on the same sphere (we are ignoring the small frequency shift here, because
it has only little influence on the frequencies we take into account). Hence it is suf-
ficient to focus on one representative. For brevity we focus on the zero crossings of
the zero order Bessel function which has the simple form j0(k) =

sink
k , i.e. it is the

sinc function. Hence the zeros of this Bessel function (considering only k > 0) are
{πn | n ∈ N>0}. The corresponding spherical Gabor kernel is

B
0
s (r, k) := j0(k

r√
t
)e
−r2
(2ts) . (5.77)

(see Eq. (5.51) on page 134). Therefore, taking the scale parameter t into account, we
get the following upper bound which we must obey in order to avoid undersampling
artifacts:

k ≤
√
tπ . (5.78)

Similar to the Gauss-Laguerre transformation, we use a multi-scale representation
for the spherical Gabor features: let σ0 ∈ R be the radius of the biggest structures or
objects that we are looking for. Then t = σ2

0 gives us the size of the kernel that covers
these structures. Given a frequency k, we build the whole cascade of different scales
by repeatedly dividing by two, namely σn+1 = σn/2, until Eq. (5.78) is violated. A
training set or a validation set is used to find a suited σ0.
For the selection of the frequencies we propose the following strategy: since the

zero crossings of the zero order Bessel functions are a multiple of π, we suggest
selecting the frequencies out of this set. In most cases it is sufficient to choose either
k ∈ {nπ | n ∈ N>0,n < N }, or in a more conservative setting k ∈ {nπ2 | n ∈ N>0,n < N },
where N is a small constant.
An upper bound for the spherical harmonic order is found by increasing the order

until no improvements can be achieved on a training set (and/or the condition Eq.
(5.76) is violated).
In Fig. 5.24 on the next page we exemplarily show a multi-scale cascade that we

use in our experiments, with ℓ ≤ 5 (only ℓ = 0,5 are depicted), σ ∈ {8,4,2} and k ∈
{π,2π,3π,4π,5π,6π}. We see that scale and frequency are well covered by these
settings.

Implementation For an efficient discrete realization of the spherical Gabor trans-
formation Eq. (5.55) we use the discrete fast Fourier transform for the initial
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Figure 5.24.: Spherical Gabor kernels: a multi-scale cascade with parameters selected via the
proposed strategy. Here we see the kernels in spatial and frequency domain for ℓ ≤ 5 (only
ℓ = 0,5 are depicted), σ ∈ {8,4,2} and k ∈ {π,2π,3π,4π,5π,6π}. The red circles illustrate the
sampling of the frequency in frequency domain for ℓ = 0. We see, that scale and frequency
are well covered by these settings.
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convolution with the 0-order Gabor kernel B0
s . We then use the finite cen-

tral differences (see section 4.2 on page 103) for realizing the spherical tensor
derivative operators. Fig. 5.15 on page 137 illustrates the operations required
for the discrete Gabor transform. For a comparison of the computation time
of the derivative based transformation with the SHOG transformation and the
purely convolution based transformation see Fig. 5.23 on page 151.

Computation Complexity The complexity is similar to the complexity of the Gauss-
Laguerre transform; see section 5.1. Apart from one initial cross-correlation
per radial frequency with each complexity O(N logN ), where N is the num-
ber of voxels, only finite differences are required. The finite differences can
be computed in O(MN ), where M is the small number of scalar valued basis
functions per radial frequency which we consider to be constant.

5.4.2.1. Gabor Descriptors

Similar to the Gauss-Laguerre descriptor, we propose to form Gabor descriptors us-
ing the power-spectrum (Eq. 3.27) and the bi-spectrum (Eq. 3.28). In our experi-
ments we also considered cross-spectrum invariants by combining expansion coef-
ficients associated with different radial frequencies k. For the details regarding the
parameters we refer to the experiment section.

5.4.3. A SHOG Transform for Object Detection in 3D

The SHOG transformation allows for mapping images to non-linear feature images
in an SE(3) covariant manner. The single values of the feature images are repre-
senting the local gradient orientation occurrence around image points. Compared
to the previous two transformations, the nonlinearity comes with additional com-
putational costs. However, gradient histogram based features have shown superior
performance in a broad variety of applications (particularly in 2D) that might justify
the computational complexity.
For the choice of the window functionwe propose the usage of a Gaussian smoothed

sphere. Such a window functions has shown superior performance over a simple
Gaussian function in preliminary experiments on real microscopical data (Skibbe
et al. 2011b). Instead of using its correct analytical expression (see Eq. (B.42) in the
appendix), we use the following approximation

w(r,d, t) := e−(d−r)
2/(t2) , (5.79)

where r = ‖r‖ is the running parameter, d ∈ R is the sphere radius and t ∈ R steers
the smoothing of radial Gaussian profile. A reason for using this approximation
is the fact that for the case where the radius d equals 0 the equation above turns
into a pure Gaussian window function. In practice we normalize the area under the
window function to 1.
We propose the following strategy for selecting an appropriate set of parameters:

suppose d ∈ R is the radius of the biggest structures or objects that we are looking for.
We propose to use several radial window functions with different radii to cover the
whole volume within the ball of radius r. So we experimentally determine a suitable
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(a) 2D profiles
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Figure 5.25.: The proposed kinds of window functions for SHOG for radius d = 10
and devisions D = 6.

number D ∈ N>1 by dividing d equally into D parts. Let D be the number of window
functions that should be taken into account. Then we choose {(i−1)∗d/(D−1)}i=1,··· ,D
for the radii and t = (d/(D − 1))2 for the smoothing. That is, we always have an
overlap of adjacent Gaussian windowed spheres and the most inner window is a
small Gaussian window. For an example see Fig. 5.25.
An upper bound for the spherical harmonic order is found by increasing the order

until no improvements can be achieved on a training set (and/or the condition Eq.
(5.76) is violated).
The parameter γ weights the influence of the gradient magnitude in a nonlinear

manner. For γ = 1, orientations are weighted by the gradients magnitude. For γ = 2,
the weights are corresponding to the squared magnitude so that SHOG becomes a
generalized higher order structure tensor. A value γ < 1 behaves similar to a gamma
correction: high values are damped, small values amplified.

Implementation In our implementation we realize the convolutions by utilizing the
Fast Fourier Transform (Frigo and Johnson 2005). For a comparison of the com-
putation time with the derivative based transformation and the purely convo-
lution based intensity transformation see Fig. 5.23 on page 151.

Computation Complexity The computation of the SHOG filter is in O(MN logN ),
where N is the number of voxels. This is because the most time consuming
parts are the convolutions. We must convolve all single, scalar-valued compo-
nents of all expansion coefficients up to order L with the window functions,
that is, M = (L + 1)2 convolutions (for real valued images we can benefit from
a sparse tensor representation so thatM = (L + 1)(L + 2)/2; please consider the
last section of chapter 2 for details). The orientation fields ‖g‖Yℓ(ĝ) are com-
puted independently in a voxel-by-voxel manner by tensor products with an
Y1. Hence this computation step linearly depends on the number of voxels so
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that the computational complexity is in O(MN ).

5.4.3.1. SHOG Descriptors

For creating a SHOG descriptor we use the power-spectrum (Eq. 3.27) and the bi-
spectrum (Eq. 3.28). In our experiments we also considered cross-spectrum invari-
ants by combining expansion coefficients associated window functions of different
radii. For the details regarding the parameters we refer to the experiment section.
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The proposed spherical harmonic framework has shown superior performance in
various recent applications, outperforming state-of-the-art features like 3D SIFT.
Such applications are the detection and classification of cells in microscopical im-
ages of Arabidopsis root tips (Skibbe et al. 2012), or the detection of landmarks in ze-
brafish embryos for the purpose of image registration (Liu et al. 2012). An overview
of further biomedical applications making use of the proposed spherical harmonic
framework is e.g. given in Skibbe and Reisert (2013).
In addition to experiments that are part of several conference and journal pub-

lications (two examples are introduced in chapter A on page 181), we conducted
three further experiments based on datasets consisting of volumetric images with
high intra-class and extra-class variation. We used three different datasets, two of
them based on data simulating images strongly distorted by noise and absorption
effects. The third dataset consists of microscopical images of allergically relevant
pollen grains.
The aim of the experiments is to complete the results of previously conducted

experiments by tackling some unanswered issues:
We show that the proposed techniques outperform a dense version of 3D SIFT

(Allaire et al. 2008) and 3D SURF (Knopp et al. 2010) in object detection tasks. We
also compare with existing spherical harmonic based features including descriptors
based on the spherical Gaussian derivatives (Reisert and Burkhardt 2009a) and the
standard spherical harmonic transformation (Kazhdan et al. 2003). We further bring

Figure 6.1.: The training set of the PSB dataset (In total: 174 objects). For the exper-
iments we distorted the images by simulating absorption and noise.
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1) 2) 3) 4) 5) 6) 7) 8)

9) 10) 11) 12) 13) 14) 15) 16)

17) 18) 19) 20) 21) 22) 23) 24)
Figure 6.2.: The 24 object classes used in the first experiment on simulated data.

theory into praxis and show that using the proposed coupling rules for tensors sig-
nificantly reduces the number of products in the bi-spectrum of real valued func-
tions (see section 3.1.1.2 on page 88 for the theoretical background). This leads to a
much smaller image descriptor. The experiments show that the performance of the
“sparse“ bi-spectrum is comparable to a ”full“ but linearly dependent spectrum.

6.1. Datasets

The advantages of simulated datasets are manifold. The ground truth can be gen-
erated along the data generation process. This is not only more convenient than
manually labeling the dataset, it also allows for precisely positioning the labels. Fur-
thermore, we can distort the data in a predictable manner. This eases the comparison
of the proposed techniques with the existing 3D SIFT and 3D SURF features in vary-
ing scenarios. The third database based on microscopical data is used for verifying
the outcome on simulated data with experiments on real data.

6.1.1. PSB Dataset

The first of the two simulated datasets consists of volumetric images, each containing
about 60 objects out of 24 different object categories; see Fig. 6.2 for an overview of
the categories. The objects were generated via rendering of 3Dmeshmodels from the
Princeton shape benchmark (PSB) (Shilane et al. 2004) into a discrete voxel grid. In
total we have 174 objects in four images for training and 682 objects in 15 images for
evaluation. The different categories are equally distributed in each image. Objects
are randomly painted into an image with respect to position, rotation and a varying
scale (95%-105%). The images are tightly rendered into the target image. However,
single parts (like the legs of an insect) do not intersect with neighboring objects. The
size of an image was 643 voxels. The goal is, to detect the objects with respect to
position and class membership.
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An isosurface rendering of the training set is shown in Fig. 6.1 on page 157. The
whole test-set is shown in Fig. E.6 on page 241. A single slice of one of the train-
ing images is depicted in Fig. 6.3(a) on the following page. We distorted the images
in the following manner: we first simulated absorption which often occurs in bi-
ological probes; Fig. 6.3(b). For this, we multiplied the image in one dimension
(depth direction, or Z-direction) with a decreasing Gaussian function (e(−x)). The
function has been scaled so that the uppermost part is not penalized by the effect of
absorption and the lowest part is damped by a factor of 0.5. As a result, absolute in-
tensity values do not provide reliable information for discriminating the objects. We
then constructed three scenarios by adding mean free Gaussian noise to the images
(f (x) ∼ N (0,σ)). All images are in the range of [0,1] so that we define a signal-to-
noise ratio by SNR=1/σ . The three scenarios are: (1) A bit noisy: a signal to noise
ratio (SNR) of 40; Fig. 6.3(c). (2) Noisy, SNR of 20, Fig. 6.3(d). (3) Very noisy, SNR
of 6.5, Fig. 6.3(e). Note that the SNR is given with respect to the image without ab-
sorption. Hence due to the nonlinear change of illumination in the depth direction,
the SNR decreases significantly in a nonlinear way in depth direction, making the
detection of the objects even more challenging.

It is further worth mentioning that each image was stored in its undistorted state.
Noise and absorption were separately added for each dataset in each experiment.
While the effect of absorption was always the same for all experiments, noise was
added in a randommanner. This slightly influenced the outcome of the experiments.
Repeating experiments several times showed amaximum variation of the equal error
rate in the range of ±1.5% (in the worst case). This effect should be taken into account
when considering the PR (precision recall) curves of the experiments on simulated
data.

6.1.2. Simulated Pollen Dataset

Palynology is the study and analysis of pollen. Palynology has a broad diversity of
applications like paleoclimatology or forensics. In this experiment we aim at detect-
ing pores in pollen grains, small pores on the surface of the grain whose number and
shape is a crucial feature for the determination of the species.

This dataset consists of simulated airborne pollen. The goal is to detect and distin-
guish between specific structures within and on the surface of the pollen. The shape
of these structures is inspired by pollen pores of “real” pollen (Ronneberger et al.
2007). The dataset contains 30 training images and 165 test images for evaluation.
The image size is 643 voxels. The dataset is divided into 10 different types of species.
We aimed at detecting and distinguishing 10 different kinds of structures with a high
intra-class variation of scale (±15%) and shape. The different species together with
the landmarks are depicted in Fig. 6.4 on page 161. An overview of the inner struc-
tures of the different species can be found in Figs. E.18 to E.21 on pages 254–257.
Note that landmark 9 is a mirrored version of landmark 10. Hence power-spectrum
features are not capable to distinguish between them. The whole test-dataset is de-
picted on pages 262–269. The total number of landmarks for training and testing
are listed in the table below.
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(a) original (b) +absorption

(c) +absorption +noise SNR 40 (d) +absorption +noise SNR 20 (e) +absorption +noise SNR 6.5

Figure 6.3.: A slice of one of the datasets of PSB experiment with different levels of
distortion.

Landmark 1 2 3 4 5 6 7 8 9 10 total
Training 48 48 96 24 24 24 192 96 12 6 570
Evaluation 192 192 384 96 96 96 768 384 35 37 2280

Similar to the PSB dataset, we conducted experiments with respect to different lev-
els of distortion. We simulated absorption (details in the description of PSB dataset)
and added Gaussian noise to the images leading to two scenarios: (1) SNR of 40 and
(2) SNR of 6.5.

6.1.3. Real Pollen Dataset

The third dataset is consisting of microscopic images of pollen grains, acquired with
a confocal laser scanning microscope (Ronneberger 2007; Ronneberger et al. 2007).
It includes five different pollen species. The aim is to detect manually labeled pollen
pores near the pollen surface. In contrast to existing publications on this task (Reis-
ert and Burkhardt 2009a; Skibbe et al. 2011b; Skibbe et al. April, 2011), we put
all species into one dataset and complemented them with additional pollen types.
Hence the different kinds of landmarks must be detected in a mutually exclusive
manner further complicating the task. The challenge is to detect and discriminate
between all five different pore types. The landmarks are depicted in Fig. 6.6. This
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Figure 6.4.: a) The different pollen species together with the landmarks. b) We fur-
ther added some other types of images with similar structures to make
the task more challenging.

datasets contains 20 images with 65 pores for training, and 51 images with 163 pores
for evaluation. The diameter of a voxel corresponds to 0.4µm. The smallest image
contains 72× 72× 64 voxels, the largest image 80× 80× 90 voxels. The total number
of landmarks for training and testing is listed in the table below.

Landmark 1 2 3 4 5 total
Training 17 12 12 12 12 65
Evaluation 45 33 31 33 21 163

6.1.4. Experiment Setup

Since we are rather interested in the performance of the features than evaluating
different types of classifiers, we used a linear classifier for the first two datasets. It is
worth mentioning that a more sophisticated classifier, like a support vector machine
or a random forest (Breiman 2001), significantly improves the results. However,
repeating the experiments with a random forest classifier did not change the relative
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(a) SNR 40 (b) SNR 6.5

Figure 6.5.: A slice of one of the simulated pollen datasets after distortion via ab-
sorption and noise (The two noise levels used in the experiments).

Figure 6.6.: Types of allergically relevant pollen grains used in the experiment:
Alder pollen (landmark 1), Birch pollen (landmark 2), Murgwort pollen
(landmark 3), Composite pollen (landmark 4) and Buckeye pollen (land-
mark 5).
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ordering of the different descriptor types regarding the detection performance (we
will show results from such an experiment, too). For the real pollen dataset we only
show the results for the random forest classifier.
In our experiments we considered two groups of features: (1) several kinds of

spherical harmonic based power-spectrum and bi-spectrum descriptors. This in-
cludes features based on our new proposed transformations as well as features com-
puted via the standard spherical harmonic transformation. (2) For comparison we
used a densely computed version of 3D SIFT and 3D SURF. There are mainly three
hypothesis that should be supported by the experiment:

• Since the bi-spectrum preserves phase information, bi-spectrum descriptors
should perform better than power-spectrum based descriptors.

• Removing the linearly dependent two third of all possible third order invari-
ants is not negatively effecting the classification and detection performance.

• The spherical harmonic based features perform at least as good as, or even
better, than state-of-the-art 3D SIFT and 3D SURF features.

• The Gaussian-Laguerre, Gabor and SHOG based invariants perform equivalent
to, or better, than invariants based on the existing spherical harmonic transfor-
mation. This would be especially welcome since it provides computationally
much more efficient alternatives.

When searching biomedical landmarks or small objects, scale invariance is sel-
dom required. However, robustness to small variations in size is important. For the
spherical harmonic based approaches as well as for the two reference approaches
we determined one fixed scale (per approach and experiment) that works best on
the training set using one half of the training images for training and the remain-
ing training images for evaluating the settings (or 3 to 1, respectively). This was the
procedure for determining all free parameters. Since the biggest occurring size of
landmarks was similar for all three datasets, it turned out that the best performing
scales were very similar for all datasets. Further descriptor parameters performing
best on the training set slightly varied for the different datasets. But for most of the
descriptors we found and used a setting that worked best for all three datasets. This
facilitated the comparison of the results (with the cost that a descriptor dimension
was slightly larger than necessary for the real pollen dataset).
The details regarding the descriptors we used for the experiments are listed below:

3D SIFT and 3D SURF. Apart from scale, we used the parameters proposed in
Flitton et al. (2010) and Knopp et al. (2010) for SIFT and SURF, respectively. That
is, a concatenation of 4 × 4 × 4 gradient orientation histograms. Usually both tech-
niques rely on a saliency detector for stable keypoint detection, pose normalization
and scale selection. A pre-selection of saliency points is indispensable for achieving
a reasonable computation complexity. However, to make the descriptors compara-
ble to the dense spherical harmonic based features, we computed SIFT and SURF
densely with one fixed scale, too. This ensures that no object is left out during
the classification. Furthermore, it ensures that we evaluate the features and not

163



6. Experiments

Figure 6.7.: Illustration of 3D SIFT, consisting of eight gradient histograms, each
representing eight directions. A local coordinate system around an im-
age point c is used for pose normalization. Therefore, the gradient main
direction ĝ1 and a second, orthogonal dominant gradient direction ĝ2
are locally determined in a voxel-by-vexel manner.

the saliency detectors. While SIFT is a concatenation of gradient orientation his-
tograms like HOG and SHOG, SURF is rather an approximation of such a distribu-
tion. We expected the letter one to be less sensitive to noise than SIFT with the cost
of minor loss of discriminability. The resulting feature dimension for SIFT was 512
(4×4×4 histograms ×8 gradient directions) and 384 for SURF, respectively (4×4×4
histograms bins ×6 signed Cartesian coordinate bins). A histogram arrangement of
3D SIFT is exemplarily illustrated in Fig. 6.7. Before computing the gradients, we
initially smoothed the image with a small Gaussian of width 1.5. For the PSB dataset
we obtained the best results on the training set when using a radius of 7 voxel for
the descriptor, but a smaller radius of 3.5 voxel for determining the dominant gra-
dient directions. For the two pollen datasets we used 8 voxel and 4 voxel (direction
histogram) radii, respectively. The descriptors were normalized with respect to the
L2-norm.

SH-Inv Descriptor. The spherical harmonic descriptor has been proposed by
Kazhdan et al. (2003): a volumetric image is represented in terms of spherical har-
monic functions via projection of the image’s intensity values onto a (theoretically)
infinite number of nested spheres. The spherical fractions of the image can then
be represented in terms of spherical harmonics. We used the training set to de-
termine the number of spheres which performs best on our data. In our case, six
different radii {0,1.6,3.2,4.8,6.4,8.0}. We regarded the discrete voxel grid by using
a Gaussian function of width 1.6 to smooth the radial profiles of the spheres (the
most inner profile is simply a Gaussian function). This ensures a small overlap of
neighboring spheres increasing the descriptor’s robustness against small deforma-
tions. We determined an upper bandwidth limit of ℓ ≤ 5 for the spherical harmonic
expansion. Note that a 0 order coefficient represents the signal’s mean. Hence we
achieve invariants against additive illumination changes by neglecting this coeffi-
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cient for building the descriptor. On the other hand, the mean is often an additional
important feature. For our experiments we considered the mean value for form-
ing the features in all three experiments, performing significantly better than when
not including the mean value into the descriptor. The expansion coefficients were
normalized using the L2-norm with respect to the whole expansion to achieve in-
variance against local, multiplicative illumination changes. The power spectrum
was used to form rotation invariant features (denoted by the postfix o2). We further
computed cross-spectrum invariants, additionally combining coefficients of differ-
ent radii (denoted by the postfix o2c). In addition to the second order spectra, we
computed (even) bi-spectrum invariants. We computed them twice: once a set of
linearly independent features using the proposed coupling rules (denoted by the
postfix o3(coupling rules)) and a second time computing all possible features
(denoted by the postfix o3(all)). We additionally computed bi-spectrum invari-
ants including odd products, essential for solving reflection symmetries (denoted by
the postfix o3(odd, coupling rules)). We took the square-root from the compo-
nents of the power-spectrum based descriptors and the signed third root from the
bi-spectrum based descriptors (sign(f ) |f |1/3).
SHOG-Inv Descriptor. The SHOG invariants are based on local SHOG expansion

coefficients. We experimentally determined an upper bandwidth limit of ℓ ≤ 5 for
the spherical harmonic expansion. As window functions we used the same spher-
ical Gaussian profile as for the spherical harmonic descriptors SH-Inv. That is, six
different radii d = {0,1.6,3.2,4.8,6.4,8.0} with a smoothing of the radial profile with
t = 1.6; for details see section 5.4.3 on page 154. We initially smoothed the im-
age with a small Gaussian of width 1.5. The spherical harmonic representations
of SHOG were normalized via L2-norm. The gradients have been weighted with
γ = 1. Rotation invariant feature representations where directly derived from the
SHOG expansion coefficients via the power spectrum (denoted by the postfix o2).
We further computed cross-spectrum invariants, additionally combining coefficients
of different radii (denoted by the postfix o2c). Similar to SH, we computed three
types of bi-spectrum features: a set of linearly independent even products using the
proposed coupling rules (denoted by the postfix o3(coupling rules)) and a sec-
ond time computing all possible features (denoted by the postfix o3(all)). Odd
products are denoted by o3(odd, coupling rules). We took the square-root from
the components of the power-spectrum based descriptors and the signed third root
(sign(f ) |f |1/3) from the bi-spectrum based descriptors.

SHOG Region-Descriptors. SHOG expansion coefficients are representing the
gradient orientation distribution within a window function. The window function
must be isotropic, otherwise the tensor representations would not be rotation co-
variant anymore. One drawback of directly computing descriptors from the SHOG
expansion coefficients, like for the SHOG-Inv descriptors, is the fact that from the
spatial distribution of gradients within a window only the distance to the center is
represented by the descriptor (if we use smoothed spheres as window functions).
This is a wanted feature for small regions, because it makes the features robust
against small deformations. However, for larger objects the spatial distribution of
gradients is also an important feature. This drawback hinders a fair comparison
with the Gauss-Laguerre, Gabor, or even SIFT descriptors because they do all not
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suffer in that way.
Due to this fact we considered an additional kind of descriptor in our experiments:

we introduce a second smoothing step that aggregates all SHOG features in an im-
age point‘s neighborhood; see Skibbe et al. (2011b). This is one way for mimicking
the concatenation of several histograms like in SIFT or HOG via tensor operations;
see Fig. 5.17 on page 140 for an illustration of how SIFT is composed upon several
histograms of oriented gradients. The new SHOG-region descriptor is inspired by
the harmonic filter framework (Reisert and Burkhardt 2009a). The theoretical de-
tails of the proposed descriptor go beyond the scope of this theses, however, the
interested reader may consult the brief introduction for the filters on page 225. An
alternative for the filter approach is an expansion of the SHOG coefficient image via
tensorial harmonics before forming invariants (Liu et al. 2011b). We included the
SHOG-Region descriptors in order to show that SHOG based descriptors can rea-
sonably compete with the intensity based approaches, but with the cost of additional
processing steps.
The SHOG-Region descriptor is based on SHOG expansion coefficients combined

in a nonlinear manner via second order tensor products. A smoothing step in co-
operation with tensor derivatives is aggregating the outcome of the products in an
image points neighborhood. The descriptor image is based on the concatenation of
all combinations of the following filter F L : L2(R3)→ L2(R

3):

F L{I , ℓ1, ℓ2,ν} := Gν ∗
(
∇L(a

ℓ1
w ◦L aℓ2w )

)
, (6.1)

where the aℓw ∈ Tℓ are the SHOG expansion coefficients according to Eq (5.64). While
w is the window function we used for the SHOG-Inv descriptors, the parameter ν ∈ R
determines the Gaussian width of a second smoothing step. The two “smoothing”
parameters are mutually influencing each other. Hence we searched for the best
setting based on both feature related and smoothing related parameters leading to
the following settings working best on the training sets of each dataset:
PSB Dataset: γ = 1, ℓ ≤ 5, d = {0,1.6,3.2,4.8,6.4,8.0}, t = 1.6 and ν = 2; Simulated

Pollen Dataset: γ = 1, ℓ ≤ 5, d = {0,2,4,6}, t = 2 and ν = 3; Real Pollen Dataset: γ = 1,
ℓ ≤ 5, d = {0,2,4}, t = 2 and ν = 4.

Gabor-Inv Descriptor. The Gabor descriptor is based on power- and bi-spectrum
invariants representing local frequency components within an image in a rotation
invariant manner. The spectra are derived from the coefficients computed via the
proposed spherical Gabor transformation. We accounted for the absorption effect by
using a soft normalization proposed by Reisert and Burkhardt (2009a): the expan-
sion coefficients of order ℓ = 1 where normalized with respect to the local standard
deviation according to 1

γ+sdev(r)
before computing the remaining coefficients via ten-

sor derivatives. The standard deviation sdev was computed within a Gaussian win-
dow of the size of the scale that we determined for the Gabor kernel. Note that this
step only requires two additional scalar valued convolutions. The parameter γ ∈ R
is a small constant regularization parameter which we determined experimentally
(γ = 10−4). Theoretically, only the “constant” plane-wave with frequency 0 is sensi-
tive to additive illumination changes. However, for the Gabor function all 0 order
coefficients are slightly sensitive to additive intensity changes since the radial waves
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vanish due to the Gaussian window. We tested both the performance with and with-
out considering the 0 order coefficients. Since the performance was better with all
coefficients, we also accounted for the 0 order coefficients when forming the descrip-
tors. We also normalized the 0 order coefficients with respect to the local standard
deviation (separately to the normalization of higher order coefficients).

We determined the parameters for extracting the Gabor frequency coefficients
along the guidelines in section 5.4.2 on page 152. We determined a scale of 8 result-
ing in a scale pyramid with σ0 = 8,σ1 = 4,σ2 = 2, radial frequencies k ∈ {0.5π,π,1.5π}
and an upper angular bandwidth of ℓ ≤ 6.

Similar to the SH-Inv and the SHOG-Inv we computed the power spectrum invari-
ants (o2), cross spectrum invariants considering different radial frequencies (o2c)
and the bi-spectrum invariants (postfixes o3(coupling rules), o3(all) and the
odd products o3(odd, coupling rules)). We took the square-root from the com-
ponents of the power-spectrum based descriptors and the signed third root from the
bi-spectrum based descriptors (sign(f ) |f |1/3).

Laguerre-Inv Descriptor. The Laguerre descriptors are based on the spherical
derivatives of the Gaussian. We can regard them as rotation invariant representa-
tions of local jets, Gaussian derivatives computed with respect to different scales (see
the introduction of section 5.1 on page 110 for related literature). We achieved in-
variance against multiplicative illumination changes via normalization with respect
to the local standard deviation of the first order coefficients (see the description of
the Gabor invariants above). Similar to the Gabor coefficients, the 0 order coefficients
were separately normalized with respect to the standard deviation. Note that here
only the initial feature (the mean) is sensitive to additive illumination changes. All
remaining coefficients are based on differentiation and therefore invariant against
additive illumination changes. For our experiments the performance was better
when making use of all coefficients thus we kept all for building the descriptors.

We determined the parameters for extracting the coefficients following the guide-
line in section 5.4.1 on page 150. We determined a scale of σ0 = 6 leading to a scale
pyramid of σ0 = 6,σ1 = 3,σ2 = 1.5 and an upper polynomial degree of (ℓ +n) ≤ 6.

We computed the power spectrum invariants (o2), cross spectrum invariants con-
sidering different radial polynomials (o2c) and the bi-spectrum invariants (denoted
by the postfixes o3(coupling rules), o3(all) and for the odd products o3(odd, cou-

pling rules)). We took the square-root from the components of the power-spec-
trum based descriptors and the signed third root (sign(f ) |f |1/3) from the bi-spec-
trum based descriptors.

Gauss-Inv Descriptor. The Gauss descriptors are a subset of the Laguerre de-
scriptors. A Gauss descriptor is build upon the Gauss-Laguerre coefficients with a
fixed radial polynomial degree of n = 0. They have been proposed by Reisert and
Burkhardt (2009a). A direct comparison with the Laguerre-Inv descriptors should
show the performance gain we achieve when considering additional radial functions
for the Laguerre invariant descriptor. The parameters are identical with those for
the Laguerre descriptor.
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saliency map image

1) 2)

3) 4)

5) 6)

Figure 6.8.: Detection of single classes of the PSB dataset (SNR 40) using the La-
guerre descriptor based on bi-spectrum invariants. The slice close to
a detection or ground-truth label is shown for both the filter response
(saliency map, darker represents higher values for better readability)
and the image (without noise and absorption). Yellow lines are indi-
cating the ground truth labels, magenta lines detections (after classifi-
cation and local maxima detection). In the perfect case they should form
a cross. The black lines are separating regions showing slices from dif-
ferent depths. The images show results corresponding to the first image
of test set for the object categories 1-6. In this example we have two
false positive detections for class 6. The corresponding PR curves can be
found on page 244. The filter responses for the remaining categories can
be found on pages 247–249
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Equal Error Rate (EER) in %
Descriptor Dim PSB

SNR 40
PSB

SNR 6.5
P1

SNR 40
P1

SNR 6.5 P2
Laguerre-Inv o2 48 88 89 57 70 38

o2c 126 38 64 33 52 42
o3 150 18 51 20 38 25

Gabor-Inv o2 49 81 93 57 70 45
o2c 196 39 65 40 62 33
o3 210 20 53 30 52 30

SHOG-Inv o2 36 84 94 96 97 68
o2c 126 56 80 95 97 68
o3 120 18 67 64 95 73

SHOG-Region o2 (PSB) 252 26 78
o2 (POLLEN) 168 18 84 31

(Reference Approaches)
Gauss-Inv o2 21 94 96 78 77 44

o2c 42 89 94 70 73 31
o3 90 36 59 25 45 31

SH-Inv o2 36 96 97 85 88 61
o2c 126 86 92 79 87 53
o3 120 56 71 71 86 45

3D SIFT 512 33 86 43 64 42
3D SURF 384 35 83 76 79 54

Table 6.1.: The EER for all datasets and all approaches. PSB with a SNR of 40 and
6.5, the simulated pollen dataset (P1) with a SNR of 40 and 6.5 and the
real pollen dataset (P2). The Upper row shows results based on descrip-
tors formed from expansion coefficients of the proposed techniques. The
lower table shows reference approaches we used for comparison. For the
results in the table we tolerated a maximum displacement to the ground
truth of 3 voxels. The rates in red are the best (lowest) rates for each
experiment.

6.2. Results

We evaluated the detection performance of each descriptor on all three datasets. In
total, we had six different scenarios: PSB dataset with a SNR of 40, 20 and 6.5, the
simulated pollen dataset with an SNR of 40 and 6.5, as well as the real pollen dataset.
A short overview showing the most important results (the equal error rates (EER)) is
given in table 6.1.

For the linear classifier we smoothed all descriptors (except for the SHOG-Region
descriptor, because it applies already final smoothing steps) in a component-by-
component manner with a small Gaussian (width of 1.5 voxels). This was particu-
larly important for the SIFT and SURF descriptors. One linear classifier was trained
per class by fitting the descriptor images to a label image, where 0 denoted back-
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ground and 1 a detection. Note that the output was continuous and could directly
be used as saliency map. For experiments where we used a random forest classi-
fier we used 500 trees. The number of variables considered for splitting at each
node was empirically determined for each dataset using the training datasets. The
saliency map for each class was build upon the number of trees voting for a certain
class.
For determining a possible detection and building the PR curves we classified each

voxel and determined local maxima in the saliency maps. For all experiments we
counted an object as detected if a local maxima was in a 3 voxel surrounding of the
position of a ground truth label. We also show results for a 6 voxel threshold.
The best performing descriptor was the Laguerre descriptor based on the bi-spec-

trum invariants. The Laguerre descriptor did not only benefit from the most efficient
transformation (among the tested descriptors), it also showed the best performance
regarding the difficult scenarios with a very low signal to noise ratio. It also per-
formed significantly better than its Gauss descriptor counterpart in most of the ex-
periments. Only in the real pollen dataset the Gauss descriptor showed a comparable
performance. It seems that as soon finer details become important for discriminating
the classes, the Laguerre descriptor benefits from a more detailed radial representa-
tion. However, if only the coarse shape of an object is important for discrimination,
the Laguerre descriptor can benefit only little from higher order radial polynomials
and the performance drops toward the performance of the Gauss descriptor. Con-
sequently, if image details are important, we have a big performance gain over the
Gauss descriptor because of a richer description in radial direction. In a direct com-
parison to SIFT and SURF, the Laguerre descriptors based on the power-spectrum
performed significantly worse on the PSB dataset. On the simulated and real pollen
dataset, the power-spectrum based descriptors performed similarly to SIFT and bet-
ter than SURF. In all experiments, the bi-spectrum based Laguerre descriptors per-
formed significantly better than both SIFT and SURF, see Fig. E.9 on page 244 for
single class plots on the PSB database and Figs. E.25 to 6.11 on pages 261–174 for
single results on the simulated pollen datasets. Considering the fact that even the di-
mension of the bi-spectrum Laguerre descriptor is less half the size as for the SURF
descriptor, the Laguerre descriptor significantly outperforms the existing two ap-
proaches regarding detection performance, computational complexity and memory
consumption.
The worst performance showed the standard spherical harmonic descriptor. We

tried several settings such as removing the zero order frequency coefficients from
the descriptor, normalizing the final descriptor and/or the coefficients and tried to
normalize with respect to the local standard deviation (like for the Laguerre de-
scriptor), but always obtained similar results. For the PSB dataset we tried removing
more than half of the classes (mainly those classes which can only be distinguished
when considering details, keeping classes 1,2,3,4,6,11,14,19) and the performance
was much better (EER 31% with a SNR 20, bi-spectrum). But such a scenario is not
challenging enough for revealing the differences of the approaches. Therefore we
didn’t consider it for further comparison. We observed that the SH-Inv descriptor
seems to be less suited to represent finer details and it showed, compared to the
other approaches, a higher sensitivity to noise and scale variations.
The Gabor descriptors performed slightly worse than the Laguerre descriptor. We
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(b) ordering: Feature dimension

Figure 6.9.: PR curves for the PSB dataset with a SNR 40

were surprised, because this was in contrast to previous results on real datasets in a
cell detection and classification task (Skibbe et al. 2012). A closer look on the detailed
results of the PSB dataset revealed that in contrast to the Laguerre descriptor, the
Gabor descriptor was confused by the object classes (16-22); see the PR curves in
Figs. E.15 to E.17 on pages 250–252 for details.
For the gradient histogram based descriptors including 3D SIFT, 3D SURF and the
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proposed SHOG-Inv descriptor the performance was quite diverse for the different
datasets and scenarios. While the performance was good on the PSB dataset with a
SNR of 40, the performance for all three approaches dropped significantly with the
increasing noise level (e.g. 3D SIFT, EER 33% → 86%). As we expected, SIFT suf-
fered slightly more from noise than SURF, but in general, SIFT showed a better per-
formance than SURF. A coarse binning compensates effects caused by noise up to a
certain extent, but it is not surprising that the gradient orientation based approaches
are much more sensitive to noise than the intensity based approaches representing
the image patches in a global manner. While SHOG-Inv features performed supe-
rior over SIFT and SURF in the PSB database, the performance was poor in the two
pollen experiments. SIFT and SURF can clearly benefit from the fact that they divide
the surroundings of an image point into different regions: several disjunct gradient
histograms are covering different image regions. Hence there is a clear relation be-
tween 3D gradient positions and gradient orientations. SHOG-Inv descriptors can
only sense the gradient orientation distribution with respect to a certain distance to
an image point. The angular distribution of the gradient positions is not represented.
Hence only very local structures are covered in detail. The larger the distance to the
object center, the weaker its ability of discrimination. The results for the SHOG-
Region descriptor confirmed this assumption. Mimicking a SIFT-like concatenation
of histograms lead to a significant performance boost so that the SHOG-Region de-
scriptor even outperformed, or performed similar to the Laguerre descriptor in the
low noise scenarios.

Regarding the SHOG gradient weighting factor γ and the feature normalization
we tried different settings. For the parameter γ and the normalization we compared
the performance of the following combinations: γ = 1 for HOG-like, γ = 2 for gen-
eralized structure tensor-like and γ = 0.5, in combination with no normalization, L2
normalization and similar to the Laguerre descriptor and Gabor descriptor, using
a normalization of the gradients with respect to the local standard deviation. The
results on the PSB are depicted in Figs. E.7 to E.8 on pages 242–243. Since sim-
ulated absorption demands a normalization, it is not surprising that normalizing
the descriptor led to significantly better results. Both normalization techniques led
to comparable results. Considering all three scenarios with increasing noise levels,
then γ = 1 seems to be a good choice. When choosing γ = 2 (structure tensor-like),
the performance was slightly worse than for the other two settings.

The detailed results for the PSB dataset using a linear classifier can be found in
the precision recall curves (PR curves) in Fig. 6.9 on the previous page and Figs. E.1
to E.2 on pages 236–237. In Fig. 6.8 on page 168 and Figs. E.12 to E.13 on pages 247–
248 we exemplarily show a filter response of a Laguerre based filter. In Figs E.4 and
E.5 we compare the detection accuracy for a tolerated 3 voxel displacement to a 6
voxel displacement. Results obtained via a random forest classifier can be found in
the PR curve shown in Fig. E.3. The results for the simulated pollen dataset in the
curves in Figs. E.22 to E.23 on pages 258–259. Details for the real pollen dataset in
Fig. E.34.

172



6.2. Results

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
e

c
a

ll

 

 

Laguerre−Inv−o3(odd, coupling rules) (EE: 22, D:168)

Laguerre−Inv−o3(coupling rules) (EE: 22, D:150)

Laguerre−Inv−o3(all) (EE: 24, D:330)

Gabor−Inv−o3(all) (EE: 25, D:490)

Gabor−Inv−o3(odd, coupling rules) (EE: 26, D:245)

Gabor−Inv−o3(coupling rules) (EE: 27, D:210)

SHOG−Inv−o3(coupling rules) (EE: 28, D:120)

SHOG−Inv−o3(all) (EE: 29, D:270)

SHOG−Inv−o3(odd, coupling rules) (EE: 31, D:132)

Figure 6.10.: PR curves for the PSB dataset with a SNR of 20. When building all 3rd
order invariants the feature dimension is more than double as large
as when building features according to the re-coupling rules. How-
ever, both features are covering the same information. Moreover, odd
products are indispensable for distinguishing between objects which
are identical up to reflections. But if this is not the case, odd products
do not significantly contribute to the detection performance.

6.2.1. Power-Spectrum versus Bi-Spectrum

There are various possible ways to combine spherical harmonic expansion coeffi-
cients to form invariants. We focused on three kinds of invariants: the power-spec-
trum, the cross-spectrum and the bi-spectrum. This list of invariants can easily be
extended. For instance, by combining different radial profiles in a bi-spectrum we
obtain some kind of bi-cross-spectrum. Preliminary results on such Gabor features
have shown a big performance boost with the cost of a noticeable increase of the
descriptor dimension.

In all experiments bi-spectrum based descriptors performed better than the power-
spectrum based descriptors. However, the performance gain comes with the cost
of a three times higher descriptor dimension (considering the even products only).
When including the odd products, the dimension becomes even higher. Moreover,
the choice between the power-spectrum and the bi-spectrum is not always a pure
tradeoff between memory consumption and detection performance. In many tasks
the performance of the power-spectra based descriptors can become close to the per-
formance of their bi-spectrum counterparts; compare Gauss-Inv-o2c (EER 31%) with
Gauss-Inv-o3 (EER 31%) in the results of the real pollen dataset shown by the PR
curves in Fig. E.34 on page 270). Hence if the structure of objects is simple and if the
number of classes is manageable, then it is worth trying both second order spectra
like the power- or cross-spectrum and bi-spectrum based descriptors.
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Figure 6.11.: Evaluating single classes of the simulated pollen dataset (SNR 40).
Comparing Laguerre descriptors with SIFT and SURF. Landmark 9 is
a reflected version of landmark 10. While the odd bi-spectrum, SIFT
and SURF can resolve reflections, the even bi-spectrum confounds the
two classes.

6.2.2. Bi-Spectrum & Coupling Rules

We considered three representations of bi-spectra: two containing only even prod-
ucts, where the first contained all possible products (but without trivial identities,
see table 6.2 on the facing page and table 6.3 on page 176, where we exemplarily
show a list of products up to order 4), the second one only the linearly indepen-
dent subset (see table 6.2 on the facing page). The third kind is a linearly inde-
pendent spectrum including the odd products. The odd products are indispensable
for distinguishing a mirrored copy of an object from its original counterpart; see
section 3.1.1.3 on page 90. However, many of the object categories within the exper-
iments show a reflection symmetry. Since odd products are 0 on a symmetry axis,
they do not provide information for these object categories.
Hence it is not surprising that if reflection does not play a role, all spectra per-

form similarly; see Fig 6.10 on the preceding page. That is, it is never necessary
to compute the full spectrum. This saves us about one third of memory and com-
putation time. Moreover, since odd products only contribute in specific scenarios,
we can also neglect them in many applications. In our experiments, the simulated
pollen database contains one pair of landmarks which are reflected versions of each
other. Here the odd products contributed decisively: landmark (9) EER 50%→ 37%
and landmark (10) EER 46% → 24%; see Fig. 6.11. A further example is given in
section A.2 on page 184: odd products are indispensable for distinguishing between
the left and right hemisphere of a human brain.
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odd =0 (all) (coupling rules)
((a0 ◦0 a0) ◦0 a0) ((a0 ◦0 a0) ◦0 a0)
((a0 ◦1 a1) ◦0 a1)
((a0 ◦2 a2) ◦0 a2)
((a0 ◦3 a3) ◦0 a3)
((a0 ◦4 a4) ◦0 a4)
((a1 ◦1 a0) ◦0 a1)
((a1 ◦0 a1) ◦0 a0) ((a1 ◦0 a1) ◦0 a0)

X X ((a1 ◦1 a1) ◦0 a1)
((a1 ◦2 a1) ◦0 a2)
((a1 ◦1 a2) ◦0 a1) ((a1 ◦1 a2) ◦0 a1)

X X ((a1 ◦2 a2) ◦0 a2)
((a1 ◦3 a2) ◦0 a3)
((a1 ◦2 a3) ◦0 a2)

X X ((a1 ◦3 a3) ◦0 a3)
((a1 ◦4 a3) ◦0 a4)
((a1 ◦3 a4) ◦0 a3)

X X ((a1 ◦4 a4) ◦0 a4)
((a2 ◦2 a0) ◦0 a2)
((a2 ◦1 a1) ◦0 a1)

X X ((a2 ◦2 a1) ◦0 a2)
((a2 ◦3 a1) ◦0 a3)
((a2 ◦0 a2) ◦0 a0) ((a2 ◦0 a2) ◦0 a0)

X X ((a2 ◦1 a2) ◦0 a1)
((a2 ◦2 a2) ◦0 a2) ((a2 ◦2 a2) ◦0 a2)

X X ((a2 ◦3 a2) ◦0 a3)
((a2 ◦4 a2) ◦0 a4)
((a2 ◦1 a3) ◦0 a1)

X X ((a2 ◦2 a3) ◦0 a2)
((a2 ◦3 a3) ◦0 a3)

X ((a2 ◦4 a3) ◦0 a4)
((a2 ◦2 a4) ◦0 a2) ((a2 ◦2 a4) ◦0 a2)

X ((a2 ◦3 a4) ◦0 a3)

odd =0 (all) (coupling rules)
((a2 ◦4 a4) ◦0 a4)
((a3 ◦3 a0) ◦0 a3)
((a3 ◦2 a1) ◦0 a2)

X X ((a3 ◦3 a1) ◦0 a3)
((a3 ◦4 a1) ◦0 a4)
((a3 ◦1 a2) ◦0 a1) ((a3 ◦1 a2) ◦0 a1)

X X ((a3 ◦2 a2) ◦0 a2)
((a3 ◦3 a2) ◦0 a3)

X ((a3 ◦4 a2) ◦0 a4)
((a3 ◦0 a3) ◦0 a0) ((a3 ◦0 a3) ◦0 a0)

X X ((a3 ◦1 a3) ◦0 a1)
((a3 ◦2 a3) ◦0 a2) ((a3 ◦2 a3) ◦0 a2)

X X ((a3 ◦3 a3) ◦0 a3)
((a3 ◦4 a3) ◦0 a4)
((a3 ◦1 a4) ◦0 a1)

X ((a3 ◦2 a4) ◦0 a2)
((a3 ◦3 a4) ◦0 a3) ((a3 ◦3 a4) ◦0 a3)

X X ((a3 ◦4 a4) ◦0 a4)
((a4 ◦4 a0) ◦0 a4)
((a4 ◦3 a1) ◦0 a3)

X X ((a4 ◦4 a1) ◦0 a4)
((a4 ◦2 a2) ◦0 a2)

X ((a4 ◦3 a2) ◦0 a3)
((a4 ◦4 a2) ◦0 a4)
((a4 ◦1 a3) ◦0 a1) ((a4 ◦1 a3) ◦0 a1)

X ((a4 ◦2 a3) ◦0 a2) ((a4 ◦2 a3) ◦0 a2)
((a4 ◦3 a3) ◦0 a3)

X X ((a4 ◦4 a3) ◦0 a4)
((a4 ◦0 a4) ◦0 a0) ((a4 ◦0 a4) ◦0 a0)

X X ((a4 ◦1 a4) ◦0 a1)
((a4 ◦2 a4) ◦0 a2) ((a4 ◦2 a4) ◦0 a2)

X X ((a4 ◦3 a4) ◦0 a3)
((a4 ◦4 a4) ◦0 a4) ((a4 ◦4 a4) ◦0 a4)

Table 6.2.: In this table we depict all possible 65 triple-products for tensors (or ten-
sor fields) up to order 4 together with a linearly independent set of prod-
ucts (coupling rules) spanning the set of all products (all). Assuming
that the coefficients are the results of a spherical harmonic transform of
a real valued image, the number of linearly independent products is 15,
significantly smaller. We obtain the linearly independent set of prod-
ucts by removing the odd zero products, removing trivial identities (just
switching the order of tensors in the most inner product) and removing
non-trivial identities using the coupling rules for triple products. In the
case we don’t count the trivial identities and remove the zero tensors we
get 30 products out of 65; see table 6.3.
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odd =0 (all)
((a0 ◦0 a0) ◦0 a0)
((a0 ◦1 a1) ◦0 a1)
((a0 ◦2 a2) ◦0 a2)
((a0 ◦3 a3) ◦0 a3)
((a0 ◦4 a4) ◦0 a4)
((a1 ◦0 a1) ◦0 a0)
((a1 ◦2 a1) ◦0 a2)
((a1 ◦1 a2) ◦0 a1)
((a1 ◦3 a2) ◦0 a3)
((a1 ◦2 a3) ◦0 a2)

odd =0 (all)
((a1 ◦4 a3) ◦0 a4)
((a1 ◦3 a4) ◦0 a3)
((a2 ◦0 a2) ◦0 a0)
((a2 ◦2 a2) ◦0 a2)
((a2 ◦4 a2) ◦0 a4)
((a2 ◦1 a3) ◦0 a1)
((a2 ◦3 a3) ◦0 a3)

X ((a2 ◦4 a3) ◦0 a4)
((a2 ◦2 a4) ◦0 a2)

X ((a2 ◦3 a4) ◦0 a3)

odd =0 (all)
((a2 ◦4 a4) ◦0 a4)
((a3 ◦0 a3) ◦0 a0)
((a3 ◦2 a3) ◦0 a2)
((a3 ◦4 a3) ◦0 a4)
((a3 ◦1 a4) ◦0 a1)

X ((a3 ◦2 a4) ◦0 a2)
((a3 ◦3 a4) ◦0 a3)
((a4 ◦0 a4) ◦0 a0)
((a4 ◦2 a4) ◦0 a2)
((a4 ◦4 a4) ◦0 a4)

Table 6.3.: Even in the case we omit the trivial identities and remove the zero tensors
(so we get 30 products out of 65), the resulting set of linearly indepen-
dent products is up to three times smaller than this set (depending on
the maximum tensor rank). In our experiments we always compared the
completely reduced set of products (denoted as coupling-rules) to the
type of products shown here (denoted as all).
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7 Conclusions

In this thesis we introduced the theoretical background for building SE(3) covariant
filters using spherical tensor algebra. We focused on the rotation invariant detection
of objects in volumetric images. We highlighted the benefits of spherical tensors over
“classical” Cartesian tensors, being the most natural and sparse representations re-
garding full 3D rotations. We have shown how to transform volumetric images into
spherical tensor representations so that we can utilize spherical tensor algebra for lo-
cal feature and object detection. Given a spherical tensor representation of images,
locally rotation invariant features can be derived via an established group integra-
tion technique. We have shown how to make use of this framework for deriving
two kinds of widely used invariants: the angular power-spectrum based invariants
and the angular bi-spectrum based invariants. We have shown that similar to the
symmetry of the Fourier coefficients of real valued cyclic functions, there exists a
symmetry interrelation of spherical tensor representation of real valued functions
on the sphere. This implies the same symmetry for the spherical tensor coefficients
of real valued volumetric images. We further have shown that this fact induces a
certain kind of non-trivial symmetries within a function’s angular bi-spectrum. We
further have shown that many components of this bi-spectrum are identical to the
zero tensor. The consideration of both facts is indispensable for an efficient and
memory friendly implementation, because it significantly reduces the amount of
memory and computation time by a factor of about three without weaken the ability
of discrimination.

We have contributed with several new theoretical insights and new algorithms.
We introduced three new types of transformations mapping images to fields which
elements are spherical tensor representations. Each transformation extracts intrin-
sic features from local image patches in a voxel-by-voxel manner: (1) the first kind
of transformation extracts features based on the derivatives of a Gaussian smoothed
image, a spherical counterpart of a “local jet“ (Koenderink and Doorn 1987). The re-
sulting features are image representations in the 3D Gauss-Laguerre domain which
we have shown to be optimal for local, smooth processes. We introduced an efficient
implementation for discrete images via finite difference operators. Apart from one
initial convolution, the computational complexity becomes linear in the number of
voxels leading to the fastest transformation among the proposed techniques. We fur-
ther introduced an extension that extracts features from higher order tensor fields.
(2) The second kind of transformation is a Gabor transformation. The extracted fea-
tures are representing local frequency components of image patches. We have shown
that the underlying basis functions are providing a very accurate selectivity regard-
ing frequency and orientation in frequency domain. Similar to the Gauss-Laguerre
transformation, the spherical Gabor transformation benefits from an implementa-
tion via finite differences. (3) The third transformation, the SHOG transformation,
is a generalization of the structure tensor (see section 5.3.1.3 on page 148). SHOG
represents the local gradient orientation distribution of an image patch in a sim-
ilar manner than HOG. However, in contrast to HOG and SIFT, the computation
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and representation of the histogram is based on a continuous function and all the
computations are realized in Fourier domain. We have shown how to compute the
histograms in an efficient manner using spherical tensor algebra.
We complemented the theoretical background regarding these transformations

with a framework for forming image descriptors from the resulting spherical ten-
sor representations. We particularly addressed the limitations existing when work-
ing on a discrete voxel grid and have shown how to select the parameters to avoid
under-sampling artifacts.
We further conducted experiments, particularly addressing a comparison of the

proposed techniques to a dense version of 3D SIFT and 3D SURF in several sce-
narios. The results clearly support the hypotheses that spherical tensor based ap-
proaches perform not only comparable to the state-of-the-art of SIFT and SURF,
but they outperformed them significantly. We further compared the ability of dis-
crimination of the power-spectrum based descriptors to several types of bi-spectrum
based descriptors. In most cases the performance of the bi-spectrum based features
was significantly better than for the power-spectrum based descriptors. On the other
hand we observed that the power-spectrum based descriptors can show a good per-
formance and thus might be very well suited for object detection tasks where the
structure that is important for discrimination is simple. The results have further
shown that applying the proposed rules for removing linear dependencies within a
bi-spectrum shrinks the dimension of descriptors without any loss of discrimination
ability. Furthermore, it turns out that the odd tensor products, which are important
for discriminating reflected versions of structures, do not noticeably contribute to
the performance when reflection plays not a role and can also be omitted in such
tasks.
Mathematical facts allow us to draw the following major conclusions: (1) spheri-

cal tensors are the most sparse representations of the 3D rotation and therefore the
natural tool for coping with higher order tensor representations. (2) The proposed
Gauss-Laguerre transformation is one of the most efficient transformation mapping
images to spherical harmonic expansion coefficients in a voxel-by-voxel manner. It
is further optimal for representing local smooth processes. In the time of writing, we
are not aware of any alternative that performs similarly fast and in a more memory
efficient manner. (3) There are linear dependencies within the angular bi-spectrum
for real-valued functions that can be removed in an analytical, straight forwardman-
ner. Furthermore, we can easily identify non-contributing components within the
odd components of the spectrum.
We can further draw the following conclusions from experiments on simulated

and real data: (1) For an efficient implementation of the proposed transformations,
the usage of simple central difference schemes is sufficient for our applications.
For the Laplace operations, which are accelerating the computation of the Gauss-
Laguerre expansion coefficients, a new differentiation scheme shows a better numer-
ical stability over a “standard operator“ without significantly increasing the compu-
tation time. (2) All three proposed transformations can be computed in significantly
less time than a purely convolution based approach, where a convolution kernel
has to be provided for each single tensor component. (3) We proposed descriptors
based on the power-spectrum and the bi-spectrum. They outperform 3D SIFT and
3D SURF as well as existing spherical harmonic based descriptors. In contrast to the
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Gauss-Laguerre transform, the SHOG transform seems to be much more sensitive to
noise. It further turned out that that for forming a SHOG descriptor it is highly ben-
eficial to use a two step approach where neighboring SHOG expansion coefficients
are combined to mimic the concatenation of several histograms like in HOG or SIFT.
It is difficult to give an advice or to draw a rule for choosing one of the proposed

transformation techniques. Several ”real world” applications have shown diverse re-
sults on Gauss-Laguerre based descriptors (including the Gauss descriptor), spheri-
cal Gabor descriptors and SHOG based descriptors. From a computational point of
view, the Gauss-Laguerre transformation is the best choice. The performance of the
Gauss-Laguerre descriptor was remarkable in our experiments. However, it difficult
to transfer such a ranking to all possible scenarios. In Liu et al. (2011b); Skibbe et al.
(2011b), SHOG based descriptors showed a very good performance.
All three types of transformation are covering different kinds of features: local

derivatives for the Gauss-Laguerre transform, frequency selective features for the
spherical Gabor transform and representations of local gradient orientation distri-
butions for the SHOG transformation. It is worth trying all three types of trans-
formations when aiming to solve a detection and/or classification problem. Since
all three transformations are build upon the same mathematical framework, the re-
maining computations steps, like the computation of the spectra or the application
of filters, are identical for all three candidates and therefore additional implementa-
tion effort is not required.
For the feature computation itself the answer is clear. Descriptors based on the bi-

spectrum have a big advantage over second order power-spectrum features. From a
theoretical point of view they preserve phase information which is lost in the power
spectrum, but also in the experiments they performed best.
This thesis has coved the theoretical and practical background to build SE(3) co-

variant filters for rotation invariant object detection based on spherical tensor alge-
bra, complementing existing approaches and mathematical concepts with new theo-
retical insights, algorithms and techniques. We believe that spherical tensor algebra
for 3D image analysis will be of similar importance than “standard“ Fourier anal-
ysis and due to the increasing importance of volumetric biomedical images in the
life-sience, we expect that many applications will make use and benefit from this
framework.
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In this chapter we exemplarily introduce two applications were wemade use of the
proposed spherical tensor techniques. This includes one typical biological scenario,
where we aimed at cell detection and cell classification in microscopical biological
images and a second scenario where we worked with medical DTI images of the hu-
man brain. The tasks on medical images included a voxel-by-voxel classification of
the images by different tissue types and anatomical regions, as well as the detection
of point landmarks.

A.1. Confocal Recordings of Arabidopsis Root Tips

In this section we give a brief summary of previous experiments on biological data
published in Skibbe et al. (2010); Skibbe et al. (2012). Please refer these references
for further details.
Manual annotation and evaluation of large cell populations in biological 3D im-

ages is a very time consuming, tedious and error-prone task. Analyzing a single 3D
image by an expert often takes hours or even days. In this application we demon-
strated how dense features derived via the spherical Laguerre transform and the
spherical 3D Gabor transform allow for automated and objective detection and clas-
sification of a large number of cells in volumetric images.
Two recordings of Arabidopsis root tips, acquired via a confocal laser scanning

microscope, were considered. The images were of the sizes 429 × 419 × 98 and
461 × 470 × 101. The cell nuclei were stained with DAPI1. The goal was to detect
and classify the cell nuclei with respect to their cell state and correspondence to a
cell layer. For our experiment we used the first dataset for training and the second
dataset for evaluation. A slice of the training root is shown in Fig. A.1 a). We classed
the cells by the cell layers (from outer to the inner) Root Cap (RC), Epidermis (Ep),
Cortex (Co), Endodermis (En), Pericycle (Pe) and the Vasculature (Va); We further
classed the cells by their cell states: an expert can distinguish cells that have already
been differentiated (RC-cells), mitotic cells and stem cells. The training dataset con-
tained 3614 stained nuclei and the test dataset 3608 stained nuclei.
We formed Gabor-Inv descriptors and Laguerre-Inv descriptors based on three

different scales. One coarse scale covering a cells surrounding so that a cell’s posi-
tion is encoded into the descriptors and two finer scales representing the detailed
shape of the cells for cell state classification. The descriptor was formed by using
the power-spectrum. For the detection we used a random forest classifier Breiman
(2001). The number of trees voting for a class was used to build a saliency map. We
considered local maxima as detection candidates. For further details regarding the

14’-6-Diamidino-2-phenylindole
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A. Biomedical Applications

We aimed at detecting  and classifying cells according 

to their state (mitotic/differentiated) and position (layer)

correctly detected and classified cells

(most of them)
incorrectly detected  cells

(small number)

missed cells

(few of them)

a)

b)

a

b)

Figure A.1.:We aim at detecting and classifying cells
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A.1. Confocal Recordings of Arabidopsis Root Tips

Detection of mitotic cells (left: manual labels, right: detections)

We missed one candidate

We used  a voxel-by-voxel 

classification to segment into cell layers

a)

b)

Figure A.2.: Cells are classified with respect to cell state and cell layer
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A. Biomedical Applications

experiment setup we refer to Skibbe et al. (2010); Skibbe et al. (2012). In the experi-
ments we correctly detected and classified most of the cells. Moreover, our approach
performed significantly better than existing approaches like SIFT or the standard
spherical harmonic transformation (In our experiment called SH-Inv). We depict an
isosurface rendering showing detected and classified root-cap cells in Fig. A.1 b).
False positive detections are colored in red, false negative detections in yellow. Cor-
rectly detected and classified cells in green. In Fig. A.2 a) we exemplarily show the
detected mitotic cells in one slice of the test dataset.
A voxel-by-voxel classification can also be utilized for image segmentation. We

exemplarily demonstrated a segmentation of the root image into different cell lay-
ers; see Fig. A.2 b). It is quite remarkable that we obtained spatially compact seg-
ments without exploiting any explicit neighborhood consistency as, for example, in
a markov random field setting.

A.2. DTI Analysis

In this section we give a brief summary of previous experiments on DTI data of the
human brain published in Skibbe and Reisert (2011); Skibbe and Reisert (2012b);
Skibbe and Reisert (2013); Skibbe et al. (2011a). Please refer these references for
further details.
The study of Magnetic Resonance (MR) imaging modalities is of great interest in

fundamental neuroscience and medicine. MR imaging offers a wide range of differ-
ent contrasts, providing scientists insights into anatomical and functional proper-
ties of the human brain. One may distinguish between anatomical contrasts (T1-
weighted, T2-weighted) and derived contrasts that use combinations of different
measurement parameters to infer underlying tissue properties. Examples of the lat-
ter are are Diffusion Weighted Imaging (DTI), High Angular Resolution Diffusion
Imaging (HARDI Tuch et al. (1999)), functional MRI (fMRI) and Arterial Spin La-
beling. The main difference to anatomical images is the rather bad image quality in
terms of resolution and signal to noise ratio.
For several applications it is necessary to transfer information from the anatom-

ical images to, for example, the low resolution DTI images. Usually co-registration
is employed. One possible kinds of applications are group studies, where the de-
termination of corresponding anatomical regions is necessary for inter subject com-
parisons. High quality anatomical images are used to find inter-subject correspon-
dences, which are transfered to the low resolution contrasts by co-registration. An-
other application scenario is seed region generation for fiber tracking analysis. Seeds
are selected on a manually labeled atlas. Then, the seeds are transfered to the DTI
or HARDI contrast by co-registration with a template. In Fig. A.3 a) we visualized a
result obtained via a state-of-the-art fiber tracking technique.
In our papers we proposed to omit the co-registration step and to directly realize

a parcellation of, or a landmark detection in the HARDI signal. We proposed a two-
steps approach based on rotation invariant image descriptors and machine learning
techniques. We first learn the connection of voxel-label and voxel-appearance in a
supervised manner using a co-registered atlas as label image and a descriptor image
derived form the HARDI signal. Both are used for training a classifier. The sec-
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ond step is simply a voxel-by-voxel classification of new, unlabeled HARDI signals.
Currently, a co-registration is necessary for creating a training set. Future work will
focus on an unsupervised creation of a training set based on an automated deter-
mination of voxel correspondences based on both spatial regularization (difficult to
omit completely) and appearance. A big advantage of our approach over registration
based approaches: the success of our approach does not rely much on an existing,
nearly perfect global transformation between two images. Hence it can easier cope
with partial corrupted data, or with data stemming from patients with pathologies;
see e.g. Fig. A.7 on page 190.
The HARDI signal is an angular dependent measurement HARDI : R3 → S2; see

Fig. A.3 b) for an example. Therefore, spherical harmonics are a common represen-
tation of the HARDI signal. Since diffusion is symmetric, only symmetric spheri-
cal harmonic functions are necessary to represent the signal. A representation of a
HARDI signal in terms of spherical harmonics has the form

HARDI(x,n) =
∑

ℓ≥0 is even

aℓ(x)
T
Yℓ(n) . (A.1)

In our applications we used the partial Gauss-Laguerre transform for higher order
tensor fields to generate new covariant neighborhood features from the expansion
coefficients aℓ ∈ Tℓ; see section 5.1.3.1 on page 125. We did this for several scales so
that we were representing both in the descriptors local structural details of the tissue
and the location in the brain. Depending on the applications, we formed different
kinds of locally rotation invariant descriptor images.

Tissue Classification. The neuronal fiber architecture is located in the brain white
matter. Hence the classification into different tissue types is an indispensable pre-
requisite for many further studies. In a first experiment we aimed at the classifica-
tion into two different tissue types: brain white matter and brain gray matter. We
further used a background class representing the remaining classes such as water or
air. We formed rotation invariant descriptors based on the power spectrum. For the
machine learning part we used a random forest classifier. In our experiments we per-
formed superior over a comparable approach proposed by Schnell et al. (2009). They
solely computed the power spectrum based on the expansion coefficients aℓ without
considering a voxels neighborhood which we belief is the reason for our superior
performance. Our approach highly benefits form the tensor expansion in different
scales. We show an isorendering of a classification result in Fig. A.4 c). For further
details regarding the experiments see Skibbe et al. (2011a).

Parcellation inAnatomical Relevant Regions. The parcellation of the brain white
matter and gray matter into different anatomically relevant regions play an impor-
tant role in group studies. For instance, suppose you are interested in all fibers con-
necting with the frontal lobe. In such a scenario a classification into different tissue
types is by far not sufficient. In our paper Skibbe and Reisert (2011) we showed that
the proposed technique can also cope with this challenge. However, we observed that
we need even larger scales covering the size of the whole brain in order to precisely
encode the position into the descriptors. We exemplarily depict two classification
results in Figs. A.4 a-b). In the first image we show a parcellation into 54 anatomical
relevant regions, in the second image a parcelltation into 11 regions. For generating

185



A. Biomedical Applications

One field of interest is the investigation of the neuronal fiber architecture 

located in the brain white matter connecting different regions in the brain

The fibers them selves cannot be recorded directly. The high angular

resolution diffusion imaging technique is used to acquire a signal which

represents the tissue in an angular dependent manner. Here we show two 

slices corresponding to two directions out of 81. Typically, the spatial 

resolution is low and suffers from noise and nonlinear distortions.
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Figure A.3.: (Visualization of fibers based on tracking results of Reisert et al. (2010))
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Figure A.4.: A voxel-by-voxel classification is used for image parcellation
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Voting Map (green)

White Matter (red)
Voting Map (MIP)

Global Maximum

(our approach)

Landmark

(reference)

                     Global maximum as detections

Figure A.5.: Landmark detection: the symmetry of the brain requires odd third or-
der tensor products to distinguish between the left and the right hemi-
sphere.188
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(our approach) (reference)

Figure A.6.:We use a coarse to fine approach to detect more than 20000 landmarks
within a few minutes
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Figure A.7.: Predictions and probability maps for gray matter (GM) and white mat-
ter (WM) on a patient database.

the regions we used atlas information provided by the Talairach Daemon database
(we used the WFU PickAtlas2, a software that provides a method for generating ROI
masks based on the Talairach Daemon database; see Lancaster (1997)).
In Figs. A.8 to A.9 on pages 191–192 we show the votes of a random forest classi-

fier for the 54 regions as heat maps. We show the corresponding T1-weighted image
in the background.

Unique Point Landmark Detection. In our most recent experiment we put the
focus on single landmark detection. The goal was to distinguish and detect more
than 20 thousand landmarks within a HARDI signal of a human brain in reasonable
time. For solving this challenging task we made use of region features based on the
harmonic filter framework (see appendix D on page 225 for a brief introduction in
harmonic filters). Instead of scalar valued images, we used the expansion images
aℓ of the HARDI signal as input images. In order to distinguish the left and the
right hemisphere we used a combination of both, the second order region features
Eq. (D.10) and only odd products of the third order region features Eq. (D.11). We
omitted computing the even third order products to keep memory usage low.
For the experiment we placed about 20000 landmarks within the brain gray and

white matter in an equidistant manner. For each dataset, the computation of the
features and the detection of of all landmarks took about 5 minutes. We exemplarily
depict detection results in Figs. A.5 to A.6 on pages 188–189. We further show some
feature images in Figs. A.10 to A.11 on pages 193–194.

2http://fmri.wfubmc.edu/software/PickAtlas
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A.2. DTI Analysis

Figure A.8.: Heat maps representing the probability for all 54 regions of Level 3
of the Talairach daemon database exemplarily shown for two datasets
(continued in figure A.9).
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Figure A.9.: Heat maps representing the probability for all 54 regions of Level 3
of the Talairach daemon database exemplarily shown for two datasets
(starting in figure A.8).
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(a)

(b)

Figure A.10.: Features images used in the landmark detection task
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Figure A.11.: The proposed region features are robust against strong distortions.
Here we cropped one forth of the image. The remaining feature im-
ages are still very similar to the feature images of the unaltered image;
see on the preceding page. Note that thees features are incorporating
a large voxel neighborhood.
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B.1. Introduction

Proof: SE(3) covariance of F ; Eq. (1.9).

F {τPt τPθI }(r) = F(τP(−r)τ
P
t τ

P
θI ) = F(τ

P
(t−r)τ

P
θI ) = F(τ

P
θτ

P
(UT

θ (t−r))
I )

(Eq. (1.7))
= τ

Cn

θ F(τ
P
(UT

θ (t−r))
I )

(Eq. (1.8))
= τ

Cn

θ F {I }(UTθ (r− t)) = (τV̂t τ
V̂
θF {I })(r).

Proof: SO(3) covariance of F and F can be fully recovered from F; Eq. (1.11). SO(3) co-
variance of F:

F(τPθI ) = F {τPθI }(0)
(Eq. (1.9))

= (τV̂θF {I })(0)
(Eq. (1.10))

= τ
Cn

θ (F {I }(0)) = τ
Cn

θ F(I ) .

If F(I ) := F {I }(0), then

F ′{I }(r) := F(τP(−r)I )
(Def. F)
= F {τP(−r)I }(0)

(Eq. (1.10))
= F {I }(r), (B.1)

that is, F can be fully recovered given F.

B.2. Harmonic Analysis in 3D

B.2.1. Rotations in 3D: The Reducible Representations of SO(3)

In Eq. (2.38) we only implicitly define the linear transformation that rotates the im-
age. Actually, this transformation is infinitely dimensional. We can find an explicit
representation by expanding I in terms of its derivatives, i.e. by performing a Taylor
expansion and see how a rotation transforms the derivatives. Let x = (x0,x1,x2)

T ∈ R3

be the point of expansion. The Taylor expansion of I is then defined by
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I(r) =
∞∑

j=0


1
j!




2∑

n=0

(rn − xn)
∂

∂r ′n




j

I(r ′0, r
′
1, r
′
2)

r ′0=x0
r ′1=x1
r ′2=x2

=
∞∑

j=0

1
j!
Dj (I ,x) , (B.2)

where

Dj (I ,x) :=
∑

i0,··· ,ij
ik∈{0,1,2}

[ ∂
∂ri0
· · · ∂

∂rij
f ](x)(ri0 − xi0) · · · (rij − xij ) , (B.3)

are the terms containing all derivatives and monomials of order j . Now suppose we
are rotating the image. Following Eq. (2.38) we get

(gI )(r) =
∞∑

j=0

1
j!
Dj (gI ,x) . (B.4)

Consecutively computing the derivatives according to

∂

∂ri
(gI )(r) =

(
∂

∂ri
(UTg r)

)[
∂

∂rn
I

]
(UTg r) =Ug(i,n)

[
∂

∂rn
I

]
(UTg r) , (B.5)

we get

Dj (gI ,x) =
∑

i0,··· ,ij
ik∈{0,1,2}

[ ∂
∂ri0
· · · ∂

∂rij
(gf )](x)(ri0 − xi0) · · · (rij − xij )

=
∑

i0,··· ,ij
n0,··· ,nj

ik ,nk∈{0,1,2}

Ug(i0 ,n0)
· · ·Ug(ij ,nj )

[ ∂
∂rn0
· · · ∂

∂rnj
I ](UTg x)(ri0 − xi0) · · · (rij − xij )

=
∑

i0,··· ,ij
ik∈{0,1,2}

(ri0 − xi0) · · · (rij − xij )
∑

n0,··· ,nj
nk∈{0,1,2}

Ug(i0 ,n0)
· · ·Ug(ij ,nj )

[ ∂
∂rn0
· · · ∂

∂rnj
I ](UTg x)

︸                                                ︷︷                                                ︸
rotation of derivatives of order j

. (B.6)

Therefore, Eq. (B.4) together with Eq. (B.6) gives us an explicit representation of
a 3D image rotation. Moreover, considering Eq. (B.6) more closely, we see that the
3D image rotation is a direct sum of finite dimensional linear transformations, sep-
arately acing on the derivatives of I , with

[ ∂
∂rn0
· · · ∂

∂rnj
(gI )](x) =

∑

n0,··· ,nj
nk∈{0,1,2}

Ug(i0 ,n0)
· · ·Ug(ij ,nj )

[ ∂
∂rn0
· · · ∂

∂rnj
I ](UTg x) . (B.7)
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B.2.2. Spherical Harmonic Functions

Proof: The feature extraction F(I , ℓ, r) is covariant to SO(3). We show that F(I , ℓ, r) de-
fined in Eq. (2.73) is covariant to 3D rotations; see Def. 1.2.1 on page 18 for covari-
ance. Let us consider the action of an element of the 3D rotation group SO(3) on an
image I ∈ L2(R3). Then Eq. (2.73) transforms according to

F(gI , ℓ, r) = 〈gI ,Yℓδr〉

=

∫

r′∈R3
(gI )(r′)
︸ ︷︷ ︸

SO(3) group action
on images

Yℓ(r′)δ(‖r′‖ − r)dr′ =
∫

r′∈R3
I(UTg r

′)
︸  ︷︷  ︸

SO(3) group action
image domain

Yℓ(r′)δ(‖r′‖ − r)dr′

=

∫

r′∈R3
I(r′)Yℓ(Ugr

′)δ(‖r′‖ − r)dr′ (Eq. (2.62))= Dℓ
g

∫

r′∈R3
I(r′)Yℓ(r′)δ(‖r′‖ − r)dr′

= Dℓ
gF(I , ℓ, r)

︸       ︷︷       ︸
SO(3) group action
harmonic domain

= gF(I , ℓ, r)
︸    ︷︷    ︸

SE(3) group action
on feature

. (B.8)

SE(3) Covariant Spherical Harmonics Transformation SHℓ. We show that the spheri-
cal harmonic transform defined in Eq. (2.75) is covariant to Euclidean motion; see
Def. 1.2.1 on page 18 for covariance. Let us consider the action of an element of
the Euclidean motion group SE(3) on an image I ∈ L2(R3). We separately consider a
rotation g ∈ SO(3) and a translation ht ∈ T (3). Then Eq. (2.75) transforms according
to

a′ℓ(x, r) = SHℓ{htgI , r}(x) = 〈h(−x)htgI ,Yℓδr〉

=

∫

r′∈R3
(htgI )(r

′ + x)
︸         ︷︷         ︸

SE(3) group action
on images

Yℓ(r′)δ(‖r′‖ − r)dr′

=

∫

r′∈R3
(gI )(r′ + x− t)Yℓ(r′)δ(‖r′‖ − r)dr′

=

∫

r′∈R3
I(UTg r

′ +UTg (x− t))
︸                 ︷︷                 ︸
SE(3) group action

image domain

Yℓ(r′)δ(‖r′‖ − r)dr′

=

∫

r′∈R3
I(r′ +UTg (x− t))Yℓ(Ugr

′)δ(‖r′‖ − r)dr′

=Dℓ
g

∫

r′∈R3
I(r′ +UTg (x− t))Yℓ(r′)δ(‖r′‖ − r)dr′

=Dℓ
ga
ℓ(UTg (x− t), r)

︸                ︷︷                ︸
SE(3) group action
harmonic domain

= (gaℓ)(x− t, r) = (htga
ℓ)(x, r)

︸        ︷︷        ︸
SE(3) group action

on coefficients

. (B.9)
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B.2.3. Spherical Tensor Algebra

B.2.3.1. The Angular Power- and Bi-Spectrum

Proof. Proving theorem 2.2.27 and 2.2.28 on page 68. Let f 1 ∈ L2(SO(3)) and f 2 ∈
L2(SO(3)) be two functions defined on the rotation group SO(3).

According to Eq. (2.55),

f (g) =
∞∑

ℓ=0

(2ℓ+1)
8π2

ℓ∑

m,n=−ℓ
Aℓm,n[D

ℓ
g]mn . (B.10)

Hence

f (gg1) =
∞∑

ℓ=0

(2ℓ+1)
8π2

ℓ∑

m,n=−ℓ
Aℓm,n[D

ℓ
gD

ℓ
g1
]mn =

∞∑

ℓ=0

(2ℓ+1)
8π2

ℓ∑

m,n,i=−ℓ
Aℓm,n[D

ℓ
g]mi [D

ℓ
g1
]in ,

(B.11)

(just imaging the case where f is an element of the Wigner-D matrices itself).

We define the angular correlation by

C(g′) =
∫

SO(3)
f 1(g)f 2(gg′)dg

=

∫

SO(3)

∑

ℓ1,m1,n1

2ℓ1+1
8π2 [Dℓ1

g ]m1,n1A
ℓ1
m1,n1

∑

ℓ2,m2,n2,i2

2ℓ2+1
8π2 [Dℓ2

g ]m2,i2[D
ℓ2
g′ ]i2,n2B

ℓ2
m2,n2dg

=
∑

ℓ1,m1,n1,
ℓ2,m2,n2,i2

2ℓ1+1
8π2 A

ℓ1
m1,n1

2ℓ2+1
8π2 [Dℓ2

g′ ]i2,n2B
ℓ2
m2,n2

∫

SO(3)
[Dℓ1

g ]m1,n1[D
ℓ2
g ]m2,i2dg

︸                              ︷︷                              ︸
= 8π2

2ℓ1+1
δℓ1ℓ2δm1 ,m2

δn1 ,i2

=
∑

ℓ1,m1,
n1,n2

2ℓ1+1
8π2 A

ℓ1
m1,n1

2ℓ1+1
8π2 [Dℓ1

g′ ]n1,n2B
ℓ1
m1,n2

8π2

2ℓ1 +1

=
∑

ℓ1,m1,
n1,n2

2ℓ1+1
8π2 A

ℓ1
m1,n1[D

ℓ1
g′ ]n1,n2B

ℓ1
m1,n2 , (B.12)

where we use the expansion of f 1 and f 2 in terms of the irreducible representations
of SO(3) according to Eq. (2.55) on page 54 (Note that we use the Schmidt semi-
normalization here). The Fourier correspondence of the correlation can be obtained
by projecting the angular correlation onto the irreducible representations of SO(3)
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(the Wigner D-Matrices). We get

Cℓmn =

∫

SO(3)
C(g, r)[Dℓ

g]mndg

=

∫

SO(3)

∑

ℓ1,m1,n1,
n2

2ℓ1+1
8π2 A

ℓ1
m1,n1[D

ℓ1
g′ ]n1,n2B

ℓ1
m1,n2[D

ℓ
g]mndg

=
∑

ℓ1,m1,n1,
n2

A
ℓ1
m1,n1

2ℓ1+1
8π2 B

ℓ1
m1,n2(−1)(n1+n2)

∫

SO(3)
[Dℓ1

g ](−n1),(−n2)[D
ℓ
g]mndg

︸                                 ︷︷                                 ︸
= 8π2

2ℓ+1δℓ1ℓδ(−n1),mδ(−n2),n

=
∑

m1

(−1)(m+n)Aℓm1,(−m)B
ℓ
m1,(−n) . (B.13)

If f 1 ∈ L2(S2) and f 2 ∈ L2(S2), then the expansion of f 1 (and f 2, respectively)
simplifies to (see Eq. (2.56) on page 54 and Eq. (2.57) on page 54)

f 1(g) =
∑

ℓ,m,n

2ℓ+1
8π2 A

ℓ
mn[D

ℓ
g]mn =

∑

ℓ,m,n

2ℓ+1
8π2 δn,0a

ℓ
m[D

ℓ
g]mn . (B.14)

Substituting the expansion coefficients in (B.12) and (B.13) according to (B.14) (Aℓmn =
δn,0a

ℓ
m) proofs theorem 2.2.27.

Let f 1, f 2, f 3 ∈ L2(SO(3)) be functions defined on the rotation group SO(3). The
triple-correlation is then defined by

C(g1,g2) =

∫

SO(3)
f 1(g)f 2(gg1)f 3(gg2)dg

=
∑

ℓ1,m1,n1
ℓ2,m2,n2,i2
ℓ3,m3,n3,i3

2ℓ1+1
8π2 A

ℓ1
m1,n1

2ℓ2+1
8π2 [Dℓ2

g1]i2,n2B
ℓ2
m2,n2

2ℓ3+1
8π2 [Dℓ3

g2]i3,n3C
ℓ3
m3,n3

×
∫

SO(3)
[Dℓ1

g ]m1,n1[D
ℓ2
g ]m2,i2[D

ℓ3
g ]m3,i3dg

=
∑

ℓ1,m1,n1
ℓ2,m2,n2,i2
ℓ3,m3,n3,i3

2ℓ1+1
8π2 A

ℓ1
m1,n1

2ℓ2+1
8π2 [Dℓ2

g1]i2,n2B
ℓ2
m2,n2

2ℓ3+1
8π2 [Dℓ3

g2]i3,n3C
ℓ3
m3,n3

×
∫

SO(3)
[Dℓ1

g ]m1,n1[D
ℓ2
g ]m2,i2[D

ℓ3
g ]m3,i3dg

︸                                           ︷︷                                           ︸
simplifies using Eq. (C.42) in the appendix

=
∑

ℓ1,m1,n1
ℓ2,m2,n2,i2
ℓ3,m3,n3,i3

A
ℓ1
m1,n1

2ℓ2+1
8π2 [Dℓ2

g1]i2,n2B
ℓ2
m2,n2

2ℓ3+1
8π2 [Dℓ3

g2]i3,n3C
ℓ3
m3,n3

× 〈ℓ2m2, ℓ3m3 | ℓ1m1〉〈ℓ2i2, ℓ3i3 | ℓ1n1〉. (B.15)
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The Fourier correspondence of the triple-correlation is the bi-spectrum, given by

C
ℓj
mnop =

x

SO(3)

D(g1,g2, r)[D
ℓ
g1]mndg1[D

j
g2]opdg2

=
∑

ℓ1,m1,n1
ℓ2,m2,n2,i2
ℓ3,m3,n3,i3

A
ℓ1
m1,n1

2ℓ2+1
8π2 B

ℓ2
m2,n2

2ℓ3+1
8π2 C

ℓ3
m3,n3〈ℓ2m2, ℓ3m3 | ℓ1m1〉〈ℓ2i2, ℓ3i3 | ℓ1n1〉

×
x

SO(3)

[Dℓ2
g1]i2,n2[D

ℓ
g1]mndg1[D

ℓ3
g2]i3,n3[D

j
g2]opdg2

︸                                                        ︷︷                                                        ︸
= (−1)(m+n+o+p) 8π2

2ℓ+1
8π2

2j+1δℓ2,ℓδi2,(−m)δn2,(−n)δℓ3,jδi3,(−o)δn3,(−p)

=
∑

ℓ1,m1,n1
m2,m3

A
ℓ1
m1,n1B

ℓ
m2,(−n)C

j
m3,(−p)〈ℓm2, jm3 | ℓ1m1〉〈ℓ(−m), j(−o) | ℓ1n1〉

=
∑

ℓ1,m2,m3

A
ℓ1
(m2+m3),(m+o)B

ℓ
m2,(−n)C

j
m3,(−p)〈ℓm2, jm3 | ℓ1(m2 +m3)〉〈ℓ(−m), j(−o) | ℓ1(−o −m)〉.

(B.16)

If f 1, f 2, f 3 ∈ L2(S2) we can again simplify the bi-spectrum according to Eq. (B.14)
and we get

c
ℓj
m =
∑

ℓ1,m2,m3

a
ℓ1
(m2+m3)

δ0,(m+o)b
ℓ
m2
δ0,nc

j
m3
δ0,p〈ℓm2, jm3 | ℓ1(m2 +m3)〉〈ℓ(−m), j(−o) | ℓ1 − (m+ o)〉

= δ0,nδ0,p
∑

ℓ1,m2,m3

〈ℓm,j(−m) | ℓ10〉aℓ1(m2+m3)
bℓm2

c
j
m3
〈ℓm2, jm3 | ℓ1(m2 +m3)〉

=
∑

ℓ1

〈ℓm,j(−m) | ℓ10〉〈aℓ1 , (bℓ ◦ℓ1 c
j )〉 , (B.17)

which is the bi-spectrum for functions on the 2-sphere according to theorem 2.2.28
on page 68.

B.2.3.2. Tensorial Harmonic Functions

In Skibbe et al. (2009b) we have shown how to compute the expansion coefficients in
two steps in terms of an ordinary spherical harmonic transform: the expansion coef-
ficients aℓj (x, r) ∈ C2(ℓ+j)+1 can be computed by first projecting fJ = {f J−J , . . . , f

J
M , · · · , f

J
J }

into the space spanned by spherical harmonics in a component-by-component man-
ner. Finally, a weighted superposition forms the coefficients.
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Theorem B.2.1. Computation of tensorial harmonic expansion coefficients

aℓjm(x, r) = 〈h(−x)fJ ,Z
ℓjm
J δr〉

=
J∑

M=−J

ℓ∑

n=−ℓ
〈h(−x)f JM ,Y ℓnδr〉︸            ︷︷            ︸
standard SH trafo

〈(ℓ + j)m,ℓn | JM〉
︸                ︷︷                ︸

weights

. (B.18)

Proving Eq. (B.18) on this page. Let

bℓM (x, r) = 〈h(−x)f JM ,Yℓδr〉 , (B.19)

where the bℓM ∈ Tℓ are the spherical harmonic coefficients of the contra-variant spher-
ical harmonic expansion (compared to the standard spherical harmonic expansion,
the spherical harmonics are complex conjugated). Combining Eq. (2.125) and Eq.
(2.77) we obtain a system of equations which allow us to determine the relation
between the tensorial harmonic coefficients aℓj (x, r) and the spherical harmonic coef-

ficients bℓM (x, r):

fJ (r) =
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,ja

ℓ
j (x,‖r− x‖) ◦J Yℓ(r− x)

=
∞∑

ℓ=0

j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)

n=ℓ∑

n=−ℓ
aℓjm(x,‖r− x‖)〈(ℓ + j)m,ℓn | JM〉Y ℓn (r− x)

=
∞∑

ℓ=0

n=ℓ∑

n=−ℓ
Y ℓn (r− x)

j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
aℓjm(x,‖r− x‖)〈(ℓ + j)m,ℓn | JM〉

︸                                                        ︷︷                                                        ︸
=(2ℓ+1)bℓM,n(x,‖r−x‖)

=
∞∑

ℓ=0

n=ℓ∑

n=−ℓ
(2ℓ +1)bℓM,n(x,‖r− x‖)Y ℓn (x− r)

=
∞∑

ℓ=0

(2ℓ +1)bℓM (x,‖r− x‖)TYℓ(r− x) (B.20)

With use of Eq. (B.20) we can directly observe that

(2ℓ +1)bℓM,n(x, r) =
j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
aℓjm(x, r)〈(ℓ + j)m,ℓn | JM〉 (B.21)

Multiplying both sides with 〈(ℓ + j ′)m′ , ℓn | JM〉 results in

(2ℓ +1)bℓM,n(x, r)〈(ℓ + j ′)m′ , ℓn | JM〉

=
j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
aℓjm(x, r)〈(ℓ + j)m,ℓn | JM〉〈(ℓ + j ′)m′ , ℓn | JM〉 (B.22)
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Summarizing over all n andM leads to

∑

M,n

bℓM,n(x, r)〈(ℓ + j ′)m′ , ℓn | JM〉(2ℓ +1)

=
∑

M,n

j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
aℓjm(x, r)〈(ℓ + j)m,ℓn | JM〉〈(ℓ + j ′)m′ , ℓn | JM〉

=
j=J∑

j=−J
Nℓ,j

m=(ℓ+j)∑

m=−(ℓ+j)
aℓjm(x, r)

∑

M,n

〈(ℓ + j)m,ℓn | JM〉〈(ℓ + j ′)m′ , ℓn | JM〉

︸                                              ︷︷                                              ︸
δj,j′δm,m′

2J+1
2(ℓ+j′ )+1

(B.23)

Due to the orthogonality of the Clebsch-Gordon coefficients (Eq. (C.33) in the ap-
pendix) all addends with m ,m′ or j , j ′ vanish:

∑

M,n

bℓM,n(x, r)〈(ℓ + j)m,ℓn | JM〉 =Nℓ,j
2J +1

(2(ℓ + j) + 1)(2ℓ +1)
aℓjm(x, r)

= aℓjm(x, r). (B.24)

B.3. SE(3) Covariant Filters

B.3.1. An SE(3) Covariant Gauss-Laguerre Transform

Proof: The polynomial degree of Lℓn(r) is ℓ +n. Using the Cartesian representation of
the spherical harmonics (Eq. (C.10) in the appendix) we get

[Lℓn]m(r, t) =
√
((ℓ −n)−m)!((ℓ −n) +m)!

ℓ∑

i=0

ℓ∑

j=0

ℓ∑

k=0

δi+j+k,(ℓ−n)δi−j,m
i!j!k!2i2j

(x − iy)j (−x − iy)izk

︸                                                                           ︷︷                                                                           ︸
=Yℓ−n(r)rℓ−n with polynomial degree ℓ −n (according to δi+j+k,(ℓ−n))

× L
(ℓ−n)+ 1

2
n ( r

2

2t )︸        ︷︷        ︸
polynomial degree 2n

. (B.25)

Consequently, the polynomial degree of Lℓn is ℓ −n+2n = ℓ +n.
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Proof: Orthogonality of spherical Laguerre polynomials (Eq. (5.11) on page 115).

〈[Lℓn]m, [Lℓ
′
n′ ]m′〉µ =

=

∫

R3
Y ℓ−nm (r)rℓ−nL

(ℓ−n)+ 1
2

n ( r
2

2t )Y
ℓ′−n′
m′ (r)rℓ′−n′L

(ℓ′−n′)+ 1
2

n′ ( r
2

2t )e
− r22t dr

=

∫
rℓ−nL

(ℓ−n)+ 1
2

n ( r
2

2t )r
ℓ′−n′L

(ℓ′−n′)+ 1
2

n′ ( r
2

2t )r
2e−

r2

2t dr
x

Y ℓ−nm (r)Y ℓ
′−n′

m′ (r)d sinθθdϕ
︸                             ︷︷                             ︸

= 4π
(2(ℓ−n)+1)δℓ−n,ℓ′−n′δm,m′

=
4π

(2(ℓ −n) + 1)

∫
(r2)(ℓ−n)L

(ℓ−n)+ 1
2

n ( r
2

2t )L
(ℓ−n)+ 1

2
n′ ( r

2

2t )r
2e−

r2

2t dr

︸                                                  ︷︷                                                  ︸

=2(ℓ−n+1+
1
2 )t(ℓ−n+1+

1
2 )

Γ(ℓ+ 1
2 +1)

2n! δn,n′ ,(Eq. (C.24) in the appendix)

δℓ−n,ℓ′−n′δm,m′

=
4π

(2(ℓ −n) + 1)
2(ℓ−n+1+

1
2 )t(ℓ−n+1+

1
2 )
Γ(ℓ + 1

2 +1)

2n!
δℓ,ℓ′δm,m′δn,n′

=
4π

(2(ℓ −n) + 1)
2(ℓ−n+1+

1
2 )t(ℓ−n+1+

1
2 )
(2ℓ +1)!!

√
π

2(ℓ +1)2n!
δℓ,ℓ′δm,m′δn,n′

= t(ℓ−n)
(2πt)

3
2 (2ℓ +1)!!

2nn!(2(ℓ −n) + 1)
δℓ,ℓ′δm,m′δn,n′ . (B.26)

Auxiliary calculation for for Eq. (5.23) on page 120:

cg (x,y) =
1

σs
√
π

∫

a,b,c,d
δ(c − x)e−

c2

2σ2w

︸         ︷︷         ︸
window

e
− (c−a)2

2σ2s︸ ︷︷ ︸
smooth

cf (a,b)e
− (d−b)2

2σ2s︸ ︷︷ ︸
smooth

e
− d2

2σ2w δ(d − y)
︸         ︷︷         ︸

window

dadbdcde

=
1

σs
√
π

∫

a,b,c,d
δ(c − x)e−

c2

2σ2w e
− (c−a)2

2σ2s δ(a,b)e
− (d−b)2

2σ2s e
− d2

2σ2w δ(d − y)dadbdcde

=
1

σs
√
π

∫

a
e
− x2

2σ2w e
− (x−a)2

2σ2s e
− (y−a)2

2σ2s e
− y2

2σ2w da

=
1

σs
√
π
e
− x2

2σ2w e
− y2

2σ2w

∫

a
e
− (x−a)2

2σ2s e
− (y−a)2

2σ2s da

= e
− x2

2σ2w e
− y2

2σ2w e
− (x−y)2

4σ2s = e
− x2

2σ2w e
− (x−y)2

4σ2s e
− y2

2σ2w .
(B.27)
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Auxiliary calculation for Eq. (5.24) on page 120.

∞∑

n=0

Hn(x)Hn(y)

n!2n
λn =(1−λ2) −12 e

2xyλ−(x2+y2)λ2
1−λ2 | × e−

(x2+y2)
2

⇔
∞∑

n=0

Hn(x)Hn(y)

n!2n
λne−

(x2+y2)
2 =(1−λ2) −12 e

2xyλ−(x2+y2)λ2
1−λ2 e−

(x2+y2)
2

=
∞∑

n=0

Hn(x)Hn(y)

n!2n
λne−

(x2+y2)
2 =(1−λ2) −12 e− 1−λ

1+λ
(x+y)2

4 − 1+λ
1−λ

(x−y)2
4 |x→ (−x)

⇔ (−1)n
∞∑

n=0

Hn(−x)Hn(y)
n!2n

λne−
(x2+y2)

2 =(1−λ2) −12 e− 1−λ
1+λ

(y−x)2
4 − 1+λ

1−λ
(−x−y)2

4 |λ =
t − 1
t +1

⇔ (−1)n
∞∑

n=0

Hn(−x)Hn(y)
n!2n

( t−1t+1 )
ne−

(x2+y2)
2 = (1+t)√

4t
e
−(1+t2)x2

4t
−(t2−1)2xy

4t
−(1+t2)y2

4t

= (−1)n
∞∑

n=0

Hn(−x)Hn(y)
n!2n

( t−1t+1 )
ne−

(x2+y2)
2 = (1+t)√

4t
e
−x2
2t e

−(t2−1)(x+y)2
4t e

−y2
2t |x→ (−x)

⇔
∞∑

n=0

Hn(x)Hn(y)

n!2n
( t−1t+1 )

ne−
(x2+y2)

2 = (1+t)√
4t
e
−x2
2t e

−(t2−1)(y−x)2
4t e

−y2
2t | × 1√

π

⇔
∞∑

n=0

Hn(x)Hn(y)√
πn!2n

( t−1t+1 )
ne−

(x2+y2)
2 = (1+t)√

π4t
e
−x2
2t e

−(t2−1)(y−x)2
4t e

−y2
2t

︸                ︷︷                ︸
=c(x,y)

⇔
∞∑

n=0

Hn(x)Hn(y)√
πn!2n

( t−1t+1 )
ne−

(x2+y2)
2 = (1+t)√

π4t
c(x,y) (B.28)

Auxiliary calculation for Eq. (5.36) on page 124.

〈ZℓjmJn ,Z
ℓ′j ′m′

Jn′ 〉µ =
J∑

M=−J

∫

R3
Z
ℓjm
JnM (r)Z

ℓ′j ′m′

Jn′M (r)dr

=
J∑

M=−J
〈(ℓ −n+ j)m, (ℓ −n)(M −m) | JM〉〈(ℓ′ −n′ + j ′)m′ , (ℓ′ −n′)(M −m′) | JM〉

︸                                                                                               ︷︷                                                                                               ︸
2J+1

2((ℓ−n)+j)+1δm,m′δj,j′

×

∫

R3
[Lℓn](M−m)(x)[L

ℓ′
n′ ](M−m′)(x)e

−r2
2t dr

︸                                          ︷︷                                          ︸
δℓ,ℓ′ δm,m′ δn,n′

α(ℓ,n,t)

=
1

A(ℓ, j,n, t)
δℓ,ℓ′δj,j ′δm,m′δn,n′ . (B.29)

B.3.1.1. An SE(3) Covariant Gauss-Laguerre Transform for Tensor Fields

In the preliminary section we introduced a transformation into the tensorial har-
monic domain via scalar valued spherical harmonic transformations. For this, the
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single components of a spherical tensor field were transformed into the harmonic
domain in a component by component manner; see Eq. (B.18) on page 201. Simi-
larly, we can compute the transformation of higher order spherical tensor fields into
the Gauss-Laguerre domain LT ℓj based on the Gauss-Laguerre transformation for
scalar valued images LT ℓ. Let fJ = {f J−J , , · · · , f

J
M , · · · , f

J
J }, f

J
M : R3 → C be the single

components of a spherical tensor field fJ ∈ TJ . Then, according to Eq. (B.18) on
page 201,

[LT ℓj {fJ ,n}]m(x) = 〈h(−x)fJ ,A
1
2 (ℓ, j,n, t)Z

ℓjm
Jn 〉µ (B.30)

= A
1
2 (ℓ, j,n, t)

J∑

M=−J

(ℓ−n)∑

N=−(ℓ−n)
[LT ℓ{f JM ,n}]N (x)︸               ︷︷               ︸

=Trafo Eq. (5.34)

〈(ℓ −n+ j)m, (ℓ −n)N | JM〉

= (−1)ℓ−nA 1
2 (ℓ, j,n, t)

∑

M,N

〈(ℓ −n+ j)m, (ℓ −n)N | JM〉 (−t)
ℓ

n!2n ∇
ℓ−n

∆n(f JM ∗ e−
r2

2t )(x) .

Hence we can benefit from the same fast Gauss-Laguerre transform as for pure scalar
valued images. It is worth mentioning, that for J = 0 the transformation coincides
(up to a factor) with Eq. (5.34).

B.3.1.2. A Fast Gauss-Laguerre Transform via Tensor Derivatives

In the following we prove Eq. (5.41) on page 125 and Eq. (5.42) on page 127. Let

Z
ℓjm
J (x) := e

(ℓ−n)+j
m ◦J Bℓ(x) (B.31)

be a tensorial harmonic basis, where Bℓ = ∇ℓB0 are spherical harmonic basis func-
tions having a differential relationship. Let further be B0 ∈ T0. Then for the tensorial
harmonic expansion coefficients aℓJ and aℓ(J−2ℓ) it holds that

aℓJ = ∇
ℓ(fJ •̃JB0)

(−1)ℓ
√
(2ℓ+1)〈ℓ0,J0 | (J+ℓ)0〉√

Nℓ,J
(B.32)

aℓ(J−2ℓ) = ∇ℓ(f
J •̃JB0)

(−1)ℓ
√
(2ℓ+1)〈ℓ0,J0 | (J−ℓ)0〉√

Nℓ,J
. (B.33)

Proof. Since we have the differential relationship of the basis functions we can rewrite

205



B. Auxiliary Calculations

the projection onto the tensorial harmonics in terms of tensor derivatives:

aℓjm(x) = 〈τxfJ ,Z
ℓjm
J 〉

=

∫

r∈R3
(fJ (r− x))TZℓjmJ (r)dr

=

∫

r∈R3
(fJ (r))

T
Z
ℓjm
J (r+ x)dr

=

∫

r∈R3

M=J∑

M=−J
f JM (r)Z

ℓjm
JM (r+ x)dr

=

∫

r∈R3

M=J∑

M=−J
f JM (r)Z

ℓjm
J(−M)(r+ x)(−1)Mdr

=
√
2J+1
(−1)J (f

J ◦̃0Z
ℓjm
J )(x)

=
√
2J+1
(−1)J (f

J ◦̃0(e
ℓ+j
m ◦J Bℓ︸     ︷︷     ︸
=Z

ℓjm
J

))(x)

=
√
2J+1
(−1)J ((B

ℓ◦̃ℓ+jfJ ) ◦0 e
ℓ+j
m )(x)

=
√
2J+1
(−1)J (((∂

ℓ ◦ℓ B0

︸   ︷︷   ︸
=Bℓ

)̃◦ℓ+jfJ ) ◦0 e
ℓ+j
m )(x)

=
√
2J+1
(−1)J ((∂

ℓ ◦ℓ+j (fJ •̃JB0)) ◦0 e
ℓ+j
m )(x)

=
√
2J+1
(−1)J

(−1)ℓ+j√
2(ℓ+j)+1

((∂
ℓ ◦ℓ+j (fJ •̃JB0)) •0 e

ℓ+j
m )(x)

=
√
2J+1
(−1)J

(−1)ℓ+j√
2(ℓ+j)+1

[(∂ℓ ◦ℓ+j (fJ •̃JB0))]m(x)

=
√
2J+1
(−1)J

(−1)ℓ+j√
2(ℓ+j)+1

[(∂ℓ ◦ℓ+j (fJ •̃JB0))]m(x)

= 1√
Nℓ,j

√
(2ℓ +1)(−1)J+ℓ+j [(∂ℓ ◦ℓ+j (fJ •̃JB0))]m(x) . (B.34)

For the special case where j = J we get

aℓJm =
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ[(∂ℓ ◦J+ℓ (fJ •̃JB0))]m

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ〈ℓ0, J0 | (J + ℓ)0〉[∇ℓ(fJ •̃JB0)]m , (B.35)

and

aℓ(J−2ℓ)m =
√
(2ℓ+1)√
Nℓ,J

(−1)J+ℓ+(J−2ℓ)[(∂ℓ ◦ℓ+(J−2ℓ) (fJ •̃JB0))]m(x)

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ[(∂ℓ ◦J−ℓ (fJ •̃JB0))]m(x)

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ〈ℓ0, J0 | (J − ℓ)0〉[∇ℓ(fJ •̃JB0)]m . (B.36)
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Alternatively, we can use Eq. (B.18) on page 201 and get

aℓjm(x) =
M=J∑

M=−J

n=ℓ∑

n=−ℓ
〈τ(−x)f JM ,Bℓn〉〈(ℓ + j)m′ , ℓn | JM〉

=
M=J∑

M=−J

n=ℓ∑

n=−ℓ
bℓM,n(x)〈(ℓ + j)m′ , ℓn | JM〉

=
n=ℓ∑

n=−ℓ
bℓm+n,n(x)〈(ℓ + j)m,ℓn | J(m+n)〉

=
n=ℓ∑

n=−ℓ
bℓm+n,n(x)〈(ℓ + j)m,ℓn | J(m+n)〉

=
√

2J+1
2(ℓ+j)+1

M=J∑

M=−J

n=ℓ∑

n=−ℓ
(−1)ℓ+nbℓM,n(x)〈ℓ(−n), JM | (ℓ + j)m〉

=
√
(2ℓ+1)√
Nℓ,J

∑M=J
M=−J

∑n=ℓ
n=−ℓ(−1)ℓ+nbℓM,n(x)〈ℓ(−n), JM | (ℓ + j)m〉 . (B.37)

Since bℓM = ∇ℓ(f JM ∗B0) we obtain

aℓJm =
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ(−1)n[∇

ℓ
b0
m+n]n〈ℓ(−n), J(m+n) | (ℓ + J)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ(−1)n[(∂

ℓ •ℓ b0
m+n)]n〈ℓ(−n), J(m+n) | (ℓ + J)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ(−1)n∂

ℓ
nb

0
m+n〈ℓ(−n), J(m+n) | (J + ℓ)m〉

(Eq. (4.6)) =
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ ∂

ℓ
−nb

0
m+n〈ℓ(−n), J(m+n) | (J + ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ ∂

ℓ
nb

0
m−n〈ℓn, J(m−n) | (J + ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ ∂

ℓ
n(f

J
m−n ∗B0)〈ℓn, J(m−n) | (J + ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ[(∂ℓ ◦(J+ℓ) (fJ •̃JB0))]m

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ〈ℓ0, J0 | (ℓ + J)0〉[∇ℓ(fJ •̃JB0)]m , (B.38)
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and

aℓ(J−2ℓ)m =
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ(−1)n[∇

ℓ
b0
m+n]n〈ℓ(−n), J(m+n) | ((J − 2ℓ) + ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ(−1)n[(∂

ℓ •ℓ b0
m+n)]n〈ℓ(−n), J(m+n) | (J − ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ(−1)n∂

ℓ
nb

0
m+n〈ℓ(−n), J(m+n) | (J − ℓ)m〉

(Eq. (4.6)) =(−1)ℓ
n=ℓ∑

n=−ℓ
∂ℓ−nb

0
m+n〈ℓ(−n), J(m+n) | (J − ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ∑n=ℓ
n=−ℓ ∂

ℓ
nb

0
m−n〈ℓn, J(m−n) | (J − ℓ)m〉

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ[(∂ℓ ◦(J−ℓ) (fJ •̃JB0))]m

=
√
(2ℓ+1)√
Nℓ,J

(−1)ℓ〈ℓ0, J0 | (J − ℓ)0〉[∇ℓ(fJ •̃JB0)]m . (B.39)

B.3.2. An SE(3) Covariant Spherical Gabor Transform

Needed by Eq. (5.48) on page 133: the Fourier representation of the plane wave ω is

F T {ω(k′)}(k) = (2π)−3/2〈ω(k′), eikT r〉 = ω̃(k,k′) =

=
∑

ℓ1,ℓ2,
m1,m2

∫

R3
(−i)ℓ1(i)ℓ2 (2ℓ1+1)(2ℓ2+1)

(2π)3/2
jℓ1(kr)jℓ2(k

′r)Y ℓ1m1
(r)Y ℓ1m1

(k)Y ℓ2m2
(r)Y ℓ2m2

(k′)dr

= (2π)−3/2
∑

ℓ1,ℓ2,
m1,m2

∫ ∞

r=0
(2ℓ1 +1)(2ℓ2 +1)jℓ1(kr)jℓ2(k

′r)Y ℓ1m1
(k)Y ℓ2m2

(k′)

× (−i)ℓ1(i)ℓ2
x

Y
ℓ1
m1

(r)Y ℓ2m2
(r)sin(θ)dθdϕ

︸                              ︷︷                              ︸
= 4π

2ℓ1+1
δℓ1 ,ℓ2δm1 ,m2

r2dr

= 2√
π

∑

ℓ1

(−i)ℓ1(i)ℓ1
︸     ︷︷     ︸

=1

(2ℓ1 +1)

∫ ∞

r=0
jℓ1(kr)jℓ1(k

′r)r2dr

︸                       ︷︷                       ︸
= π

2(k′ )2 δ(k−k
′)

∑

m1

Y
ℓ1
m1

(k)Y ℓ1m1
(k′)

= t
(k′)2 δ(k − k

′)
√
π
∑

ℓ1

(2ℓ1 +1)
∑

m1

Y
ℓ1
m1

(k)Y ℓ1m1
(k′)

︸                                 ︷︷                                 ︸
=4πδ2k(k

′), (Eq. (C.11))

= (2π)
3
2 1
(k′)2 δ(k − k

′)δ2(k′)(k) = (2π)
3
2 δ(k−k′) . (B.40)

As we expected, the Fourier transform of the plane wave ω is just a delta impulse
in the frequency domain (see Eq. (C.11) in the appendix).
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The coefficients B̃
ℓ
(k, k′) ∈ C2ℓ+1 are the Fourier representations of the Bessel func-

tions Bℓ(r, k′):

F T {Bℓm(k′)}(k) =
∑

ℓ1,m1

∫

R3
(−i)ℓ1 (2ℓ1+1)

(2π)3/2
jℓ1(kr)jℓ(k

′ r√
t
)Y ℓ1m1

(r)Y ℓ1m1
(k)Y ℓm(r)dr

= (2π)−3/2
∑

ℓ1,m1

∫ ∞

r=0
(2ℓ1 +1)jℓ1(kr)jℓ(k

′ r√
t
)Y ℓ1m1

(k)

× (−i)ℓ1
x

Y
ℓ1
m1

(r)Y ℓm(r)sin(θ)dθdϕ
︸                             ︷︷                             ︸

= 4π
2ℓ1+1

δℓ1 ,ℓδm1 ,m

r2dr

= 2√
π
(−i)ℓ

∫ ∞

r=0
jℓ(kr)jℓ(k

′ r√
t
)r2dr

︸                       ︷︷                       ︸
= tπ

2(k′ )2 δ(k−
k′√
t
)

Y ℓm(k) = (−i)ℓ t
√
π

(k′)2 δ(k −
k′√
t
)Y ℓm(k) = B̃

ℓ
(k, k′) .

(B.41)

Similar to the spherical representation in spatial domain, B̃
ℓ
(k, k′) is independent

the direction of the frequency vector n = k′

‖k′‖ of k
′. Accordingly, the steering of the

direction of the wave in frequency domain depends only on the term Yℓ(k).

B.3.2.1. Gaussian Smoothed Sphere

The Fourier correspondence of a spherical Bessel function of order 0 and frequency
k is a sphere in frequency domain with radius k; see Eq. (5.48) on page 133. Hence a
Gaussian smoothed sphere is the Fourier representation of the Gaussian windowed
Bessel function. Therefore, we get the explicit formula for the smoothed sphere by
transforming the Gaussian windowed Bessel function into the Fourier domain.

F T {B0
s (k
′)}(k) =

∫

R3
eik

T r
B

0
s (r, k

′)e−
‖r‖2
2st dr =

∫

R3
eik

T rj0(
k′‖r‖√
t
)e−

‖r‖2
2st dr =

=
y

eikr cosθj0(
k′r√
t
)e−

r2

2st sin(θ)r2dθdϕdr

=
x ∫ π

θ=0
eikr cosθ sin(θ)dθ

︸                      ︷︷                      ︸
= 2sin(kr)

kr

j0(
k′r√
t
)

︸︷︷︸

=
sin( k

′ r√
t
)

k′ r√
t

e−
r2

2st r2dϕdr

=
2
√
t

k′

∫
sin(kr)
k sin( k

′r√
t
)e−

r2

2st

∫ 2π

ϕ=0
dϕ

︸   ︷︷   ︸
=2π2

dr =
4π2
√
t

k′

∫
sin(kr)
k sin( k

′r√
t
)e−

r2

2st dr

= 4π2
√
t

k′
(e−(k−k

′√t)2s/2−e−(k+k′
√
t)2s/2)

2k

√
π
2

√
s
√
t

=
√
2π

5
2 t
√
s

kk′ (e−(k−k
′√t)2s/2 − e−(k+k′

√
t)2s/2) . (B.42)
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B.3.3. SHOG - Spherical Histograms of Oriented Gradients

Proof: vℓw is a spherical tensor. It is sufficient to show that the coefficients are rotating
according to Eq. (2.84) on page 62.
Assume a 3D rotation denoted by g ∈ SO(3) is acting on a volumetric image I ∈

L2(R
3) so that (gI )(x) := I(UTg x). We denote the gradient image of I by g : R3 → C3,

g = ∇I . Let SHOGw(I ) be the SHOG feature representing I . Then SHOGw(gI ), the
SHOG representation of gI can be determined quite easily by considering the fact
that the gradient directions are rotating, too; namely (gg)(x) := Ugg(U

T
g x); see Eq.

(2.45). Thus we can identify the new expansion coefficients of SHOG(gI )w to be:

SHOGw(gI ,n) =

=

∫
‖Ugg(r)‖γ
︸     ︷︷     ︸
=‖g(r)‖γ

δ2n(Ugĝ(r))w(r)dr

=

∫
‖g(r)‖γ

∞∑

ℓ=0

(2ℓ +1)(Yℓ(Ugĝ(r)))
T
Yℓ(n)

︸                                 ︷︷                                 ︸
=δ2n; see Eq. (C.11) in the appendix

w(r)dr

=
∞∑

ℓ=0

(2ℓ +1)

∫
‖g(r)‖γ (Yℓ(Ugĝ(r)))

T

︸          ︷︷          ︸
=Dℓ

gYℓ(ĝ)

w(r)drYℓ(n)

=
∞∑

ℓ=0

(2ℓ +1)

∫
‖g(r)‖γ (Dℓ

gY
ℓ(ĝ(r)))

T
w(r)dr

︸                                 ︷︷                                 ︸
=Dℓ

gvℓ
T

Yℓ(n)

=
∞∑

ℓ=0

(2ℓ +1)(Dℓ
gv
ℓ
w)
T
Yℓ(n)

︸                       ︷︷                       ︸
=expansion in Eq. (5.63)

=
∞∑

ℓ=0

(2ℓ +1)(vℓw)
T
((Dℓ

g)
∗
Yℓ(n))

=
∞∑

ℓ=0

(2ℓ +1)(vℓw)
T
(Yℓ(UTg n))=SHOGw(I ,U

T
g n) .
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C.1. Symbols

Symbol Description Page(s)

F T The Fourier transformation 39
f̃ The Fourier representation of f 39
g ∈ G A group element. Mostly a rotation g ∈ SO(n) 49
ht ∈ T (n) Denotes a translation by t 39
Dℓ Wigner D-Matrix 53
Y ℓm Spherical harmonic function 55
Yℓ Vector representation of spherical harmonic functions 55
Rℓ Vector representation of solid harmonic functions 77

Z
ℓjm
J Tensorial harmonic functions 72

(
vℓ

)‡
The spherical tensor conjugation 66

∂
ℓ,∇ℓn Spherical derivatives 97
◦ℓ,•ℓ Spherical tensor products 64
◦̃ℓ, •̃ℓ Spherical tensor convolution 65
SH,LT ,GT ,GT Dense spherical harmonic transformations 57,109

C.2. Preliminaries

Definition C.2.1 (Vector Space). A nonempty set X is called a vector space over a field
F, if for all x,y ∈ X and for all α ∈ F, there exist a sum x + y ∈ X and a product αx ∈ X
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C. Functions and Formulas

fulfilling the following vector space axioms:

• ∀x,y,z ∈ X : x+ (y+ z) = (x+ y) + z (associativity)

• ∀x,y ∈ X : x+ y = y+ x (commutativity)

• ∃0 ∈ X : ∀x ∈ X : x+ 0 = x (identity element of addition, the zero vector)

• ∀x ∈ X : ∃(−x) ∈ X : x+ (−x) = 0 (additive inverse)

• ∀x,∀α,β ∈ F : α(βx) = (αβ)x (associativity)

• ∀x,y,∀α ∈ F : α(x+ y) = αx+αy (distributivity I)

• ∀x,∀α,β ∈ F : (α + β)x = αx+ βx (distributivity II)

• ∃1 ∈ F : ∀x ∈ F : 1x = x (multiplicative identity)

Definition C.2.2 (Vector Sub Space). Let X be a vector space over the field F. A proper
(nonempty) subset Y ⊂ X of X is called sub space of X, iff

∀α,β ∈ F : x,y ∈ Y ⇒ αx+ βy ∈ Y . (C.1)

Definition C.2.3 (Inner Product Space). Let X be a vector space X over the field F. Let
F be either the complex numbers C or the real numbers R. X is called an inner product
space, if there exists a Hermitian form 〈·, ·〉 : X ×X→ F fulfilling the following properties

• ∀x,y ∈ X : 〈x,y〉 = 〈y,x〉 (conjugate symmetry, Hermitian (if R, symmetric))

• ∀x,y,z ∈ X : 〈x,y+ z〉 = 〈x,y〉+ 〈x,z〉
∀x,y ∈ X,∀α ∈ F : 〈αx,y〉 = α〈x,y〉 (linearity in the first argument)
⇒∀x,y ∈ X,∀α ∈ F : 〈x,αy〉 = α〈x,y〉 = 〈αx,y〉

• ∀(x ∈ X : 〈x,x〉 ≥ 0) ∧ (〈x,x〉 = 0⇔ x = 0) (positive definiteness)

The inner product induces a norm ‖·‖ : X→ R together with a distance measure

• ‖x‖ =
√
〈x,x〉 (the norm is induced by the inner product)

• d(x,y) = ‖x− y‖ (distance between two points in the vector space)

The vector space X together with ‖·‖ is called a normed space. The norm is positive definite
(see Def. of the inner product), it also holds that ∀x ∈ X,α ∈ F : ‖αx‖ = |α|‖x‖ and it obeys
the triangle inequality ∀x,y ∈ X : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition C.2.4 (Hilbert Space). A complete normed inner product space X is called
a Hilbert space. A normed inner product space X is complete, if every Cauchy sequence
converges with respect to the norm of X.

Example C.2.5 (n-Dimensional Vector Space over R or C). Let X be the set of all n-
tuples x ∈ Rn (or Cn, respectively), where n ∈ N>0. An element of X can be written as
vector

x = (x1,x2, · · · ,xn)T ,
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C.3. Irreducible Representation of SO(3)

where xi ∈ R (or C, respectively). The vector space addition and multiplication are defined
in an element by element manner:

x+ y = (x1 + y1,x2 + y2, · · · ,xn + yn)T ,
αx = (αx1,αx2, · · · ,αxn)T .

The inner product is defined by

〈x,y〉 = xTy =
n∑

i=1

xiyi . (C.2)

The norm and the distance measure are defined in terms of the inner product. If the vector
space is over R, then it is also called the Euclidean space.

Definition C.2.6 (The n-Dimensional Local Linear (compact) Lie Groups). LetW be
an open connected set containing the zero tuple e = (0, · · · ,0) in the space Fn of all n-
tuples g = (g1, · · · , gn). The tuples g can be real or complex valued. Given a set V build
upon m ×m non-singular matrices A(g) = A(g1, · · · , gn) defined for each g ∈W . We call
such a set an n-dimensional local linear Lie algebra, if

1. A(e) = I (the matrix identity)

2. The matrix elements of A(g) are analytic functions of the parameters g1, · · · , gn and
the map g→A(g) is injective.

3. The n derivatives of A(g), which are the matrices
∂A(g)
∂gj

, j = 1, · · · ,n, are linearly

independent for each g ∈ W . As a result, these matrices span an n-dimensional
subspace of the m2-dimensional space of all m×m matrices.

4. There exists a neighborhood w′ of e in Fn, W
′ ⊂ W , with the property that for

every pair of n-tuples g,h ∈W ′ there exists an n-tuple k in W satisfying the matrix
product A(g)A(h) =A(k).

If V is bounded and closed, then V is called compact. (Bounded means that ∃k ∈ R>0 :
∀A(g) ∈ V ,1 ≤ i, j ≤ m : |A(g)i,j | ≤ k. Closed means that each Cauchy sequence in V
converges to a matrix in V , (also in a matrix component by component manner))
For further details we refer to the lecture notes of Miller (1991), on which this definition

is based on.

C.3. Irreducible Representation of SO(3)

C.3.1. Volume of SO(3) and Surface Area of S2

Volume(SO(3)) =

∫

SO(3)
dg =

∫ 2π

ϕ=0
dϕ

︸   ︷︷   ︸
=2π

∫ π

θ=0
sin(θ)dθ

︸           ︷︷           ︸
=2

∫ 2π

ψ=0
dψ

︸   ︷︷   ︸
=2π

= 8π2 . (C.3)

Area(S2) =

∫

S2

dg =

∫ 2π

ϕ=0
dϕ

︸   ︷︷   ︸
=2π

∫ π

θ=0
sin(θ)dθ

︸           ︷︷           ︸
=2

= 4π . (C.4)
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(a) Pmℓ (x) for ℓ = 0, · · · ,5 and m = 0
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(c) Pmℓ (x) for ℓ = 0, · · · ,5 and m = 1
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Figure C.1.: Associated Legendre Polynomials for ℓ = 0, · · · ,5 and m = 0,1.

C.3.2. Legendre Polynomials

For details see e.g. Abramowitz and Stegun (1964).

Definition C.3.1 (Legendre Polynomials). The Legendre polynomials are defined by

Pn(x) :=
1
2n

n∑

k=0

(
n
k

)2
(x − 1)n−k(x +1)k , (C.5)

where n ≥ 0.

Definition C.3.2 (Associated Legendre Polynomials). The associated Legendre polyno-
mials are defined by

Pmℓ (x) := (−1)m(1− x2)m/2 ∂
m

∂xm
Pℓ(x) , (C.6)

where Pℓ are the ordinary Legendre polynomials and m ≥ 0. We have depicted some Leg-
endre polynomials in Fig. C.1. The Legendre polynomials for m < 0 are then defined by

P
(−m)
ℓ (x) = (−1)m (l −m)!

(l +m)!
Pmℓ (x) . (C.7)
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Figure C.2.: Band limited expansion of the Dirac delta δ2n : S2 → R on the unit-
sphere. A limit of ℓ ≤ L determines the granularity of the binning of our
representation of the spherical histograms of oriented gradients (SHOG,
see chapter 5.3 on page 138).

For 0 ≤m ≤min(ℓ,ℓ′) the associated Legendre polynomials are orthogonal according to

∫ 1

x=−1
Pmℓ (x)Pmℓ′ (x)dx =

2(ℓ +m)!
(2ℓ +1)!(ℓ −m)!

δℓ′ℓ . (C.8)

The parity of Legendre polynomials is given by

Pmℓ (x) = (−1)ℓ−mPmℓ (−x) . (C.9)

C.3.3. Cartesian representation of Spherical Harmonics

For r = (x,y,z)T the spherical harmonics are defined by

Y ℓm(r) =

√
(ℓ −m)!(ℓ +m)!

(
√
x2 + y2 + z2)ℓ

ℓ∑

i=0

ℓ∑

j=0

ℓ∑

k=0

δi+j+k,ℓδi−j,m
i!j!k!2i2j

(x − iy)j (−x − iy)izk . (C.10)

(TheWolfram Functions Site, http://functions.wolfram.com/05.10.06.0027.01)

C.3.4. Spherical Expansion of the Dirac Delta Function

Let n,n′ ∈ S2 be two unit-length vectors representing points on the 2-sphere. We
denote by δ2n : S2 → R the delta function on the 2-sphere, whereas δ2n(n

′) = δ(θ −
θ′)δ(ϕ −ϕ′) and

∫
S2
δ2n(n

′)dn′ = 1. According to Arfken and Weber (2005, p. 792) we

have the following expansion of δ2n in terms of spherical harmonics:

δ2n(n
′) :=

∞∑

ℓ=0

(2ℓ+1)
4π (Yℓ(n′))

T
Yℓ(n) . (C.11)

A limit of ℓ ≤ L leads to the best-approximation of δ2n in a finite subspace spanned
by Y ℓm, ℓ ≤ L (see figure C.2).

C.3.5. Spherical Bessel Functions

Definition C.3.3 (The spherical Bessel functions). The spherical Bessel functions jℓ :
R≥0→ R are related to the Bessel functions of the first kind Jν (For further details see. e.g.
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Abramowitz and Stegun (1964)) by jℓ(r) :=
√
π
2r Jℓ+1/2(r) and can be expanded by

jℓ(r) = r
ℓ
∞∑

m=0

(−1)m
2mm!(2(ℓ +m) + 1)!!

r2m, (C.12)

where
∫ ∞

0
jℓ(kr)jℓ(k

′r)r2dr =
π

2k2
δ(k − k′) . (C.13)

In Fig. C.3 on page 219 you can find plots of the Bessel functions for order ℓ =
0,1,2. For the spherical Bessel functions we have the following differential relations:

∂
∂r [r

−ν jν ] = −r−ν jν+1 and (C.14)

∂
∂r

[
rν+1jν

]
= rν+1jν−1 . (C.15)

The Hankel Transform (also known as Fourier-Bessel transform, Bronshtein and Se-
mendyayev (1997)) of order ℓ in terms of the spherical Bessel functions is given by

αℓ(k) =

√
2
π

∫ ∞

0
f (r)jℓ(kr)r

2dr , (C.16)

and its corresponding inverse transformation is given by

f (r) =

√
2
π

∫ ∞

0
αℓ(k)jℓ(rk)k

2dk , (C.17)

which both follows from Eq. (C.13).

C.3.6. The Plane Wave

Using the addition theorem of the spherical harmonics we can express the spherical
expansion of the plane wave (see e.g Rose (1995), p. 136) in terms of the tensor
product •0 leading to:

eik
T r =

∞∑

ℓ=0

(i)ℓ(2ℓ +1)jℓ(kr)Y
ℓ(r) •0 Yℓ(k)

=
∑

ℓ

(i)ℓ(2ℓ +1)jℓ(kr)
m=ℓ∑

m=−ℓ
Y ℓm(r)Y

ℓ
m(k)

=
∑

ℓ

(i)ℓ(2ℓ +1)jℓ(kr)
m=ℓ∑

m=−ℓ
Y ℓm(r)Y

ℓ
m(k)

=
∑

ℓ

(i)ℓ(2ℓ +1)jℓ(kr)Pℓ(r
Tk)

=
∑

ℓ

(i)ℓ(2ℓ +1)〈jℓ(kr)Yℓ(r),Yℓ(k)〉 , (C.18)

where Yℓ = (Y ℓ−ℓ, . . . ,Y
ℓ
ℓ )
T
are the semi-Schmidt normalized spherical harmonics writ-

ten as vector.

216



C.3. Irreducible Representation of SO(3)

C.3.7. Spherical Gabor Kernels

TheoremC.3.4. The spherical derivativesBℓs of the Gaussian windowed 0-ordered Bessel

functions B0
s (r, k) := j0(k

r√
t
)e
−r2
(2ts) are given by

B
ℓ
s (r, k) = Yℓ(r)



ℓ∑

i=0

(
ℓ
i

)
( rts )

ℓ−i( k√
t
)i ji(k

r√
t
)


e
−r2
2ts . (C.19)

(See Fig. C.3 on page 219)

Proof. In the following we prove the explicit representation of the derivatives of the
Gaussian windowed Bessel functions (theorem C.3.4) using mathematical induction.
Consider the spherical derivatives (see lemma 4.1.1) acting on the radial component

(inductive step ℓ→ ℓ +1) (rℓ ∂
∂r

1
rℓ
)rℓ



ℓ∑

i=0

(
ℓ
i

)
( 1ts )

ℓ−i( k
r
√
t
)i ji(k

r√
t
)


e
−r2
2ts =

· · ·+ rℓ ∂
∂r

(
ℓ
i

)
( 1ts )

ℓ−i( k
r
√
t
)i ji(k

r√
t
)e
−r2
(2ts)

+ rℓ
∂

∂r

(
ℓ

i +1

)
( 1ts )

ℓ−(i+1)( k
r
√
t
)i+1ji+1(k

r√
t
)e
−r2
(2ts) · · ·

Due to the product rule we derivate with respect to both the Gaussian and the Bessel
functions (Eq. (C.14)), splitting each addend into two new addends, here exemplar-
ily shown for i and i +1, with

· · · − rℓ+1
(
ℓ
i

)
( 1ts )

ℓ−(i−1)( k
r
√
t
)i ji(k

r√
t
)e
−r2
(2ts)

− rℓ+1
(
ℓ
i

)
( 1ts )

ℓ−i( k
r
√
t
)i+1ji+1(k

r√
t
)e
−r2
(2ts)

− rℓ+1
(
ℓ

i +1

)
( 1ts )

ℓ−i( k
r
√
t
)i+1ji+1(k

r√
t
)e
−r2
(2ts)

− rℓ+1
(
ℓ

i +1

)
( 1ts )

ℓ−i( k
r
√
t
)i+2ji+2(k

r√
t
)e
−r2
(2ts) − · · · .

Neighboring addends having Bessel functions of equal rank (in the term above the
two middle terms) can be merged as shown in the next step, where

· · · − rℓ+1
(
ℓ
i

)
( 1ts )

ℓ−(i−1)( k
r
√
t
)i ji(k

r√
t
)e
−r2
(2ts)

− rℓ+1
(
ℓ +1
i +1

)
( 1ts )

(ℓ+1)−(i+1)( k
r
√
t
)i+1ji+1(k

r√
t
)e
−r2
(2ts)

− rℓ+1
(
ℓ

i +1

)
( 1ts )

ℓ−i( k
r
√
t
)i+2ji+2(k

r√
t
)e
−r2
(2ts) − · · · .

Doing so for all pairs of addends associated with a Bessel function of equal rank
leads to the final sum showing our assumption, namely

−rℓ+1


ℓ+1∑

i=0

(
ℓ +1
i

)
( 1ts )

ℓ+1−i( k
r
√
t
)i ji(k

r√
t
)


e
−r2
2ts .
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C.3.8. Associated Laguerre Polynomials

Definition C.3.5 (The Associated Laguerre Polynomials). The associated Laguerre
polynomials are defined by

Lkn(x) =
n∑

i=0

(−1)i
(
n+ k
n− i

)
xi

i!
. (C.20)

For details see Abramowitz and Stegun (1964).
The following 3-point-rule is used in this work:

nLkn(x) = (n+ k)Lkn−1(x)− xLk+1n−1(x) . (C.21)

We further need the following differential equation:

1
m!

dm

dxm x
kLkn(x) =

(
n+ k
m

)
x(k−m)L

(k−m)
n (x) . (C.22)

The polynomials are orthogonal over [0,∞) with respect to the weight xke−x, namely
∫ ∞

0
xke−xLkn(x)L

k
n′ (x)dx =

Γ(n+ k +1)
n!

δn,n′ . (C.23)

Substituting x→ r2

2t and k→ 1
2 we get

∫ ∞

0
(r2)

k
L
k+ 1

2
n ( r

2

2t )L
k+ 1

2
n′ ( r

2

2t )e
−r2
2t r2dr = 2(k+1+

1
2 )t(k+1+

1
2 )

Γ(n+k+1+ 1
2 )

2n! δn,n′ . (C.24)

There exists the following scaling rule:

Lkn(αx) =
n∑

i=0

(
n+ k
n− i

)
αi(1−α)(n−i)Lki (x) . (C.25)

(TheWolfram Functions Site, http://functions.wolfram.com/07.03.16.0005.01)
Setting k = (ℓ −n) + 1

2 , x =
r2

2t and α = 2 we get

L
(ℓ−n)+ 1

2
n ( r

2

t ) = (−1)n
n∑

i=0

(
ℓ + 1

2
n− i

)
(−2)iL(ℓ−n)+

1
2

i ( r
2

2t ) . (C.26)

C.3.9. Clebsch Gordan Coefficients

Definition C.3.6 (Explicit Expressions of Clebsch Gordan Coefficients). The Clebsch
Gordan coefficients are defined by

〈ℓ1m1, ℓ2m2 | ℓm〉 = δm,(m1+m2)

√(
2ℓ1

−ℓ + ℓ1 + ℓ2

)(
2ℓ2

−ℓ + ℓ1 + ℓ2

)

√(
ℓ + ℓ1 + ℓ2 +1
−ℓ + ℓ1 + ℓ2

)(
2ℓ1

ℓ1 −m1

)(
2ℓ2

ℓ2 −m2

)(
2ℓ
ℓ −m

) ×

k=min(−ℓ+ℓ1+ℓ2,ℓ1−m1,ℓ2+m2)∑

k=max(0,−ℓ+ℓ2−m1,−ℓ+ℓ1+m2)

(−1)k
(
−ℓ + ℓ1 + ℓ2

k

)(
ℓ + ℓ1 − ℓ2
−k + ℓ1 −m1

)(
ℓ − ℓ1 + ℓ2
−k + ℓ2 +m2

)
. (C.27)

See e.g. (The Wolfram Functions Site, http://functions.wolfram.com/07.38.06.
0003.01 or Abramowitz and Stegun (1964)).
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Corresponding to a spherical harmonic of order ℓ = 0
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(a) B0s (r, k) for ℓ = 0 and k = 1π,2π,3π,4π
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Corresponding to a spherical harmonic of order ℓ = 1

0.5 1.0 1.5 2.0 2.5

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) B0s (r, k) for ℓ = 1 and k = 1π,2π,3π,4π

0.5 1.0 1.5 2.0 2.5

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d) jℓ(kr) for ℓ = 1 and k = 1π,2π,3π,4π

Corresponding to a spherical harmonic of order ℓ = 2
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Figure C.3.: The radial profile of the Gauss-Bessel functions (our proposed spherical
Gabor kernels) on the left, together with the ordinary non-vanishing
spherical Bessel functions on the right. Their profiles of the waves are
very similar.
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C.3.9.1. Symmetry Properties

〈ℓ1m1, ℓ2m2 |LM〉 = (−1)ℓ1+ℓ2−L〈ℓ1(−m1), ℓ2(−m2) |L(−M)〉
= (−1)ℓ1+ℓ2−L〈ℓ2m2, ℓ1m1 |LM〉

= (−1)ℓ1−m1

√
2L+1
2ℓ2 +1

〈ℓ1m1,L(−M) | ℓ2(−m2)〉

= (−1)ℓ2+m2

√
2L+1
2ℓ1 +1

〈L(−M), ℓ2m2 | ℓ1(−m1)〉

= (−1)ℓ1−m1

√
2L+1
2ℓ2 +1

〈LM,ℓ1(−m1) | ℓ2m2〉

= (−1)ℓ2+m2

√
2L+1
2ℓ1 +1

〈ℓ2(−m2),LM | ℓ1m1〉 (C.28)

(The Wolfram Functions Site,
http://functions.wolfram.com/HypergeometricFunctions/ClebschGordan/17/

02/07/)

C.3.9.2. Special Cases

〈ℓ1m1, ℓ2m2 |00〉 =
(−1)ℓ1−m1

√
2ℓ1 +1

δm1,(−m2)δℓ1,ℓ2 (C.29)

(TheWolfram Functions Site, http://functions.wolfram.com/07.38.03.0002.01)
From Eq. (C.28) and Eq (C.29) we can conclude that

〈ℓ1m1,00 | ℓ2m2〉 =
√

2ℓ2 +1
2ℓ1 +1

δm1,m2
δℓ1,ℓ2 = δm1,m2

δℓ1,ℓ2 . (C.30)

〈ℓ1m1, ℓ2m2 | (ℓ1 − ℓ2)(m1 +m2)〉 =

=
(−1)ℓ2+m2

√
(ℓ1+m1)!(ℓ1−m1)!(2ℓ2)!(2ℓ1−2ℓ2+1)!√

(2ℓ1+1)!(ℓ2+m2)!(ℓ2−m2)!(ℓ1−ℓ2+m1+m2)!(ℓ1−ℓ2−m1−m2)!
(C.31)

(TheWolfram Functions Site, http://functions.wolfram.com/07.38.03.0008.01)

〈ℓ1m1, ℓ2m2 | (ℓ1 + ℓ2)(m1 +m2)〉 =

=
√
(2ℓ1)!(2ℓ2)!(ℓ1+ℓ2+m1+m2)!(ℓ1+ℓ2−m1−m2)!√
(2ℓ1+2ℓ2)!(ℓ1+m1)!(ℓ1−m1)!(ℓ2+m2)!(ℓ2−m2)!

(C.32)

(TheWolfram Functions Site, http://functions.wolfram.com/07.38.03.0003.01)
The Clebsch-Gordan coefficients are orthogonal according to

∑

m1,m

〈ℓ1m1, ℓ2m2 | ℓm〉〈ℓ1m1, ℓ
′
2m
′
2 | ℓm〉 =

2ℓ +1
2ℓ′2 +1

δℓ2,ℓ′2δm2,m
′
2
. (C.33)
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C.3.10. Wigner 6j-Symbols

Definition C.3.7 (Wigner 6j-Symbols). The Wigner 6j-Symbols are defined by

{
ℓ1 ℓ2 ℓ4
J ℓ3 ℓ5

}
=

(−1)ℓ1+ℓ2+ℓ3+J
√
(2ℓ4 +1)(2ℓ5 +1)

∑

m1,m2,m3
m4,m5

〈ℓ1m1, ℓ2m2 | ℓ4m4〉

× 〈ℓ3m3, ℓ4m4 | JM〉〈ℓ1m1, ℓ3m3 | ℓ5m5〉〈ℓ2m2, ℓ5m5 | JM〉 . (C.34)

(Taken from Krainov et al. (2005), page 1, Eq. (D.2))

The permutation of any pairs

ℓ1
ℓ2

}
⇄

{
ℓ3
ℓ4

or
ℓ1
ℓ2

}
⇄

{
ℓ2
ℓ1

(C.35)

leaves the value of the 6j symbol unaltered (see Krainov et al. (2005)).

{
ℓ1 ℓ2 (ℓ1 + ℓ2)

(ℓ1 + ℓ2 + ℓ5) ℓ5 (ℓ1 + ℓ5)

}
=

(−1)2ℓ1+2ℓ2+2ℓ5
√
2(ℓ1 + ℓ2) + 1

√
2(ℓ1 + ℓ5) + 1

(C.36)

(TheWolfram Functions Site, http://functions.wolfram.com/07.40.03.0017.01)

{
ℓ1 ℓ2 ℓ3
0 ℓ5 ℓ6

}
=
(−1)ℓ1+ℓ2+ℓ5δℓ2,ℓ6δℓ3,ℓ5√

2ℓ2 +1
√
ℓ3 +1

(C.37)

(TheWolfram Functions Site, http://functions.wolfram.com/07.40.03.0006.01)

{
ℓ1 ℓ2 (ℓ1 + ℓ2)

(ℓ3 − ℓ2 − ℓ1) ℓ3 (ℓ3 − ℓ1)

}
=

1√
2(ℓ1 + ℓ2) + 1

√
2(ℓ3 − ℓ1) + 1

(C.38)

(A direct conclusion from Eq (2.2.31))

C.3.11. Wigner D-Matrix

The small Wigner d-matrix (Wigner 1931; Wigner and Griffin 1959) is defined by

dℓmn(θ) =
√
(ℓ +m)!(ℓ −m)!(ℓ +n)!(ℓ −n)! × (C.39)

∑

k

(−1)m−n+k
(ℓ +n− k)!k!(m−n+ s)!(ℓ −m− k)! (cos(

θ
2 ))

2ℓ+n−m−2k(sin(θ2 ))
m−n+2k

The Wigner D-Matrices obey the following parity

[Dℓ
g]mn = (−1)m−n[Dℓ

g](−m),(−n) (C.40)

Recursive relation of Wigner D-matrices:

[Dℓ1
g ]m1,n1[D

ℓ2
g ]m2,n2 =

∑

ℓ,m,n

〈ℓ1m1, ℓ2m2 | ℓm〉〈ℓ1n1, ℓ2n2 | ℓn〉[Dℓ
g]m,n . (C.41)
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Utilizing the orthogonality relation of Wigner D-matrices (Eq. (2.22) on page 45) we
get

∫

SO(3)
[Dℓ1

g ]m1,n1[D
ℓ2
g ]m2,n2[D

ℓ3
g ]m3,n3dg

=

∫

SO(3)
[Dℓ1

g ]m1,n1

∑

ℓ,m,n

〈ℓ2m2, ℓ3m3 | ℓm〉〈ℓ2n2, ℓ3n3 | ℓn〉[Dℓ
g]m,ndg

=
∑

ℓ,m,n

〈ℓ2m2, ℓ3m3 | ℓm〉〈ℓ2n2, ℓ3n3 | ℓn〉
∫

SO(3)
[Dℓ1

g ]m1,n1[D
ℓ
g]m,ndg

= 〈ℓ2m2, ℓ3m3 | ℓ1m1〉〈ℓ2n2, ℓ3n3 | ℓ1n1〉
8π2

2ℓ1 +1
. (C.42)
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C.3.12. Spherical Derivatives

Algorithm 2 (spherical up-derivatives) ∇1 : Tℓ→T(ℓ+1)
input: fℓ ∈ Tℓ
for ∀r ∈N3 do
for m = −(ℓ +1) to (ℓ +1) do
fℓ+1m (r) = 0
if |m+1| ≤ ℓ then
fℓ+1m (r) = fℓ+1m (r) +

√
(ℓ−m)(1+ℓ−m)

2(ℓ+1) (∂xf
ℓ
(m+1) − i∂yf

ℓ
(m+1))(r)

end if
if |m| ≤ ℓ then
fℓ+1m (r) = fℓ+1m (r) +

√
(ℓ+m+1)(ℓ−m+1)

ℓ+1 (∂zf
ℓ
m)(r)

end if
if |m− 1| ≤ ℓ then
fℓ+1m (r) = fℓ+1m (r)−

√
(ℓ+m)(1+ℓ+m)

2(ℓ+1) (∂xf
ℓ
(m−1) + i∂yf

ℓ
(m−1))(r)

end if
end for

end for
return fℓ+1

Algorithm 3 (spherical down-derivatives) ∇1 : Tℓ→T(ℓ−1)
input: fℓ ∈ Tℓ, ℓ ≥ 1
for ∀r ∈N3 do
for m = −(ℓ − 1) to (ℓ − 1) do
fℓ−1m (r) = 0
if |m+1| ≤ ℓ then
fℓ−1m (r) = fℓ−1m (r) +

√
(ℓ+m)(1+ℓ−m)

2(ℓ−1) (∂xf
ℓ
(m+1) − i∂yf

ℓ
(m+1))(r)

end if
if |m| ≤ ℓ then
fℓ−1m (r) = fℓ−1m (r) +

√
(ℓ+m)(ℓ−m)
ℓ−1 (∂zf

ℓ
m)(r)

end if
if |m− 1| ≤ ℓ then
fℓ−1m (r) = fℓ−1m (r)−

√
(ℓ−m)(1+ℓ+m)

2(ℓ−1) (∂xf
ℓ
(m−1) + i∂yf

ℓ
(m−1))(r)

end if
end for

end for
return fℓ−1
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DHarmonic Filters

D.1. SE(3) Covariant Filters

In this thesis we proposed filtersmapping images to locally rotation invariant saliency
maps. The elements of these saliency maps are power-spectrum and bi-spectrum
features; rotation invariant image patch representations that are analytically derived
from spherical tensor valued expansion coefficients. Each feature represents the sur-
rounding of an image point. In a second step, a trainable classifier evaluates the
saliency map in a voxel-by-voxel manner. In this way, objects or structures can be
detected in an SE(3) covariant way.
The proposed spectra based invariant features are collecting informations in a

voxel’s neighborhood and encoding them in a rotation invariant way. That is, the
process can be regarded as some kind of information implosion: concentrating all
information in one point. The harmonic filters (Reisert and Burkhardt 2009a) can
be regarded as an extension to such power- and bi-spectrum based filters. These
harmonic filters however do not directly compute invariant features from expansion
coefficients, but combine the information at each image point in a nonlinear manner.
Afterwards they spread this information into a points neighborhood in a steerable
way. This can be regarded as a kind of feature collection followed by a voting step.
The steerability of the votes can be utilized to build a filter

H : L2(R
3)→ L2(R

3) , (D.1)

mapping images to SE(3) covariant saliency maps. These maps are directly rep-
resenting the evidence for the presence or absence of objects; see Fig. D.1 for an
example.
The trainable harmonic filter for generic object detection in 3D is an extension of

the 2D holomorphic filter (Reisert and Burkhardt 2008c) and has been invented by
Reisert and Burkhardt (2009a). The harmonic filter and its variations have been suc-

Figure D.1.: Saliency map of a filter for pore detection in microscopical images of
pollen-grains; Image shows results presented in Skibbe and Reisert
(2012a).
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Figure D.2.: Voting function of the filter.

cessfully used for the detection of landmarks and objects in a broad variety of appli-
cations. This includes the detection of mitoses in colorectal cancer (Schlachter et al.
2010), the detection of landmarks in zebrafish embryos (Liu et al. 2012; Ronneberger
et al. 2012), the detection of landmarks in airborne pollen (Skibbe and Reisert 2013;
Skibbe et al. 2011b; Skibbe et al. April, 2011), or the detection of landmarks in MRI
data of human brains (Skibbe and Reisert 2012b; Skibbe and Reisert 2013).

The harmonic filter can be derived from nonlinear polynomial filters via group
integration techniques (see Reisert and Burkhardt (2008c)). We will focus on a more
intuitive interpretation as an SE(3) covariant voting filter for generic object detec-
tion. We further extend the originally used spherical Gaussian derivatives via a com-
plete basis spanned by the Gauss-Laguerre polynomials in the following derivation.

Suppose we want to detect the center of an image of a fly as illustrated in Fig.
D.2. In this scenario we are considering the voting scenario from an image point
r ∈ R3. Since the center of the fly is at position x ∈ R3, we aim at creating a voting
function that casts votes from r to x. The Gauss-Laguerre functions {Lℓn( t2 )} provide
an orthogonal basis for freely designing such a voting function. We denote the voting
function at position r by Vr ∈ L2(R3), defined by

Vr(x) :=
∑

n≤ℓ
bℓn(r)

T
Lℓn(r− x, t2 ) . (D.2)

With bℓn(r) ∈ C2(ℓ−n)+1 we denote the expansion coefficients steering the shape of the
voting function. Since the basis functions {Lℓn( t2 )} and {Lℓn(t) ·Gt} are spanning the
same function space (Thm. 5.1.2 on page 118), we can rewrite the voting function
into
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Vr(x) =
∑

n≤ℓ
bℓn(r)

T
Lℓn(r− x, t2 )

Vr(x) =
∑

n≤ℓ
(−1)(ℓ+n)bℓn(r)

T
Lℓn(x− r, t2 )

=
∑

n≤ℓ
Vℓn(r)

T
L
ℓ
n(x− r, t)e−

‖x−r‖2
2t (according to Eq. (5.1.2))

=
∑

n≤ℓ
Vℓn(r) •0Lℓn(x− r, t)e−

‖x−r‖2
2t , (D.3)

whereVℓn(r) ∈ C2(ℓ−n)+1 are new expansion coefficients (this will allow for an efficient
implementation via tensor derivatives ). We skip the discussion about the determina-
tion of these expansion coefficients and implementation details for the moment. The
idea of the filter is that every voxel casts votes for the absence or presence of objects.
The filter response itself is a superposition of all votes from all image points. This
can be formulated as an integral which, plugging into it the spherical expansions of
the voting function, turns out to be

H(x) :=
∫

R3
Vr(x)dr =



∑

n≤ℓ
Vℓn•̃0Lℓn(t)e

−r2
2t


 (x) . (D.4)

At this point the filter is just a pure application of tensor operations. The steering
of the function is done via the coefficients Vℓn(r). For simple filtering purposes, the
coefficients Vℓn(r) might be even chosen manually (Reisert and Burkhardt 2009a).
However, for the generic detection of objects, the coefficients are learned in a data
driven way. Moreover, the filter output should depend on its input image in a co-
variant manner. Let I ∈ L2(R3) be an input image. Then the expansion coefficients
are typically themselves the result of an SE(3) covariant mapping

Vℓn : L2(R
3)→T(ℓ−n) (D.5)

fulfilling

Vℓn{gI }(x) =D
(ℓ−n)
g Vℓn{I }(UTg x) . (D.6)

The trainable filter becomes

H{I } :=


∑

n≤ℓ
Vℓn{I ,ξℓ,n} •̃0Lℓn(t)e

−r2
2t


 , (D.7)

where ξℓ,n is a coefficient dependent parameter vector. These parameter vectors are
the free filter parameters that can be adapted to specific detection tasks. The perfor-
mance of the filter highly depends on the design of Vℓn.
For instance, the following non-linear mapping Vℓ0 : L2(R

3)→ Tℓ is proposed by
Reisert and Burkhardt (2009a). It is based on summarizing over second order tensor
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products of spherical harmonic expansion coefficients with equal rank:

Vℓ {I ,αi}
i=0,··· ,N

:=
∑

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2
ℓ1+ℓ2+ℓ even

αℓℓ1,ℓ2(a
ℓ1 ◦ℓ aℓ2) . (D.8)

Each addend is weighted with a scalar valued factor αℓℓ1,ℓ2 ∈ R. The weights are
initially determined in a training step via least square fit to a (manually) labeled
ground truth image representing the “optimal“ filter response. Note that in this case,
the radial polynomial degree n has been set to zero, resulting in a simplified voting
function purely based on Gaussian derivatives. This is a good trade-of regarding
detection performance and computation time.
The voting process is illustrated in Figs. D.3 on page 230- D.7 on page 234.

Alternatives for a mapping Vℓn have been proposed by Schlachter et al. (2010),
where microscopical images with multiple fluorescent markers have been combined
to form multichannel features. They further extended the feature extraction to vec-
tor valued fields. It is also possible to use higher order tensor fields as input and us-
ing third order products to cope with object symmetries (Skibbe and Reisert 2012b).
Recent work by Liu et al. (2012) has shown a remarkable performance gain by in-
corporating power-spectrum features in combination with unsupervised clustering
techniques into a covariant mapping.
One big advantage for the filter is its fast application. Thanks to the linearity of

convolution and differentiation, the voting itself can also be formalized in terms of
spherical tensor derivatives and one single convolution:

H{I } =
∑

n≤ℓ
Vℓn{I }̃•0Lℓn(t)Gt =

∑

n≤ℓ
Vℓn{I }̃•0

(
(−t)ℓ
n!2n ∇

ℓ
nGt

)

=
∑

n≤ℓ
Vℓn{I }̃•0

(
(−t)ℓ
n!2n (∂

(ℓ−n) •(ℓ−n) (∆nGt))
)

=
∑

n≤ℓ
∆n

(
∂
(ℓ−n) •0 ( (−t)

ℓ

n!2n V
ℓ
n{I })

)
•̃0Gt) (using Eq. (2.2.31))

=
∑

n≤ℓ

(
∆n∇(ℓ−n)V

′ℓ
n{I }

)
•̃0Gt = Gt ∗

∑

n≤ℓ

(
∆n∇(ℓ−n)V

′ℓ
n{I }

)
. (D.9)

D.1.1. Region Descriptors

The non-linear mappings Vℓn{I } used for forming the voting function in combination
with the final smoothing Gt ∗

(
∆n∇(ℓ−n)V

′ℓ
n

)
can be regarded as SE(3) covariant filters

by them selves. The output is a scalar valued saliency map. The filter output of
H{I } is indeed just a linear combination of several of such saliency maps. Hence
similar to the power- and bi-spectrum based filters, the output of several filters can
be concatenated to create descriptor images. The vector valued components of such
descriptor images do not mix under rotations.
In the consideration above, the final smoothing step in the filter distributes the

nonlinear spherical tensor features into a voxel’s surrounding. On the other hand,
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this convolution can be considered as an aggregation of features. In this consider-
ation, first, local spherical harmonic expansion coefficients are combined in a non-
linear way. The following smoothing step collects all these features in a voxel’s sur-
rounding and forms a scalar valued quantity representing a voxel’s region. Because
the features combine several spherical harmonic expansion coefficients over a small
region, we call them region features (in contrast with the pure power- and bi-spectra
invariants considering each only expansion coefficients at one single voxel).

Definition D.1.1 (Covariant Filters based on Region Features). In our applications
we mainly consider two types of such filters F J : TJ → T0, mapping tensor fields to scalar
valued saliency maps. We call the elements of these maps region features. A counterpart
of the power-spectrum based filters are the filters involving a second order product,

F L{fJ , ℓ1, ℓ2,ν} := Gν ∗
(
∇L(a

ℓ1 ◦L aℓ2)
)

. (D.10)

The counterpart of the bi-spectrum is a filter involving a triple product:

F L{fJ , ℓ1, ℓ2, ℓ3, ℓ,ν} := Gν ∗
(
∇L(a

ℓ1 ◦L (aℓ2 ◦ℓ aℓ3))
)

. (D.11)

Note that similar to the angular power-spectrum and the angular bi-spectrum, the
feature vectors of filters involving second order products (Eq. (D.10)) are invariant
to reflections, while odd filters involving triple products (Eq. (D.11)) are variant to
reflections. We call a filter odd, iff ℓ1 + ℓ2 + ℓ3 + L is odd. Otherwise it will be called
even because it then will not resolve reflections.

Proof: Variant to Reflections. Our proof is based on the assumptions and definitions
in section 3.1.1.3 on page 90. So let I , I ′ ∈ L2(R3) and I ′ be the mirrored version of I .
The expansion coefficients of I at image position x are aℓ(x), consequently the expan-
sion coefficients of I ′ are bℓ(x) = (−1)ℓaℓ(−x). We consider two scenarios. First, the
odd derivatives of a mirrored function are pointing in the opposite direction of its
original counterpart. Since the tensor derivatives are just a combination of Cartesian
derivatives, we can conclude that (∇ℓf

′ℓ)(x) = (−1)ℓ(∇ℓfℓ)(−x) for some spherical ten-
sor fields fℓ,f′ℓ with f′ℓ(x) := fℓ(−x). The second scenario is the triple product, which
is odd if ℓ1 + ℓ2 + ℓ3 is odd (see Eq. (3.23) on page 91). Consequently

(∇L(b
ℓ1 ◦L (bℓ2 ◦ℓ bℓ3)))(x) = (−1)(ℓ1+ℓ2+ℓ3+L)(∇L(aℓ1 ◦L (aℓ2 ◦ℓ aℓ3)))(−x). (D.12)
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(a) Computing features from local image patches via a local spherical harmonic transform.

(b) The coefficients are combined in a non-linear manner and form expansion coefficients
for a spherical voting function.

Figure D.3.: The Harmonic Filter Framework Fig. D.3(a): Local image patches are repre-
sented in terms of spherical tensor coefficients using, e.g. the Gauss-Laguerre transform,
Gabor transform or SHOG. The coefficients are densely computed for the whole image using
the proposed algorithms. Fig. D.3(b): The expansion coefficients of the patches are combined
in a non-linear way forming new spherical tensor coefficients. The resulting coefficients are
again (together with trainable filter parameters alphai ) used as expansion coefficients for a
volumetric spherical harmonic basis (like the Gauss-Laguerre or Gauss-Bessel functions).
The weights αi are used to steer the shape of the voting function.)
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(a) Thanks to the spherical tensor representation: if the local image patch rotates, ...

(b) ... the rotation transforms the expansion coefficients.

Figure D.4.: (see Fig. D.3 on the preceding page) Fig. D.4(a): If the image rotates,
then the rotation is acting on the expansion coefficients in form of
Wigner-D rotation matrices; Fig. D.4(b).
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(a) A rotation of the expansion coefficients let the basis function of the voting function rotate.

(b) As a result, the voting function rotates.

Figure D.5.: (see Fig. D.4 on the preceding page) The computation of non-linear features
must be rotation covariant thus the rotation is acting on the basis functions of the voting
function, too; Fig. D.5(a). As a result, the voting function is rotating according to its corre-
sponding image patch; Fig. D.5(b).
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(a) We compute rotation covariant features ....

(b) ... via tensor products.

Figure D.6.:One solution for combining the expansion coefficients in a non-linear way while
fulfilling the covariance criteria are spherical tensor products, see Fig. D.6(a) and Fig. D.6(b).
Depending on the type of expansion there arise many non-linearly dependent possible prod-
ucts.
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(a) Each tensor product influences the shape and orientation of the voting function via a
weighting factor αm. The weights are learned in a training step.

Figure D.7.: Moreover, third order products can be used to solve reflection symmetries
within local structures, Fig. D.7(a): each non-linear feature is itself a spherical tensor of
order ℓ having a direction and magnitude. Therefore, we can use this information to alter
the ℓth order expansion coefficient of the voting function. This influences the voting func-
tion’s shape. The amount of contribution (the free filter parameter αm) of each coefficient is
learned in a training step.
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E.1. Plots and Figures: PSB Dataset
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(b) ordering: Dimension

Figure E.1.: PR curves for the PSB dataset with a SNR 20
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Figure E.2.: PR curves for the PSB dataset with a SNR 6.5
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Figure E.3.: PR curves for the PSB dataset with a SNR 6.5. Classification results for
the Laguerre descriptors, 3D SIFT and 3D SURF with a linear classifier
and with a random forest classifier (postfix RF).
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Figure E.4.: PR curves for the PSB dataset with a SNR 40
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Figure E.5.: PR curves for the PSB dataset with a SNR 6.5
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Figure E.6.: The test dataset of the PSB dataset (In total: 682 objects)
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Figure E.7.: SHOG-Inv-o3 descriptor with varying settings for γ (1 for HOG-like,
2 for generalized structure tensor-like and 0.5) in combination with no
normalization, L2, and using a normalization of the gradients with re-
spect to the local standard deviation denoted by the postfix “std”.
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Figure E.8.: SHOG-Inv-o3 descriptor with varying settings for γ (1 for HOG-like,
2 for generalized structure tensor-like and 0.5) in combination with no
normalization, L2, and using a normalization of the gradients with re-
spect to the local standard deviation denoted by the postfix “std”.
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Figure E.9.: Evaluating single classes of the PSB dataset (SNR 40). Comparing La-
guerre descriptors with SIFT and SURF. The bi-spectrum descriptor (o3)
clearly outperforms 3D SIFT and SURF, while the power spectrum based
descriptor (o2) is not discriminative enough for distinguishing all 24
classes.
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Figure E.10.: Evaluating single classes of the PSB dataset (SNR 40). Comparing La-
guerre descriptors with SIFT and SURF. The bi-spectrum descriptor
(o3) clearly outperforms 3D SIFT and SURF, while the power spec-
trum based descriptor (o2) is not discriminative enough discriminative
enough for distinguishing all 24 classes.
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Figure E.11.: Evaluating single classes of the PSB dataset (SNR 40). Comparing La-
guerre descriptors with SIFT and SURF. The bi-spectrum descriptor
(o3) clearly outperforms 3D SIFT and SURF, while the power spec-
trum based descriptor (o2) is not discriminative enough discriminative
enough for distinguishing all 24 classes.
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E.1. Plots and Figures: PSB Dataset

saliency map image

7) 8)

9) 10)

11) 12)

Figure E.12.: Detection of single classes of the PSB dataset (SNR 40) using the La-
guerre descriptor based on bi-spectrum invariants. The slice close to
a detection or ground-truth label is shown for both the filter response
(saliency map, darker represents higher values for better readability)
and the image (without noise and absorption). Yellow lines are indi-
cating the ground truth labels, magenta lines detections (after classifi-
cation). Results for the categories 7-12 are shown. The corresponding
PR curves can be found on pages 244–245. The filter responses for the
first six classes on page 168
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saliency map image

13) 14)

15) 16)

17) 18)

Figure E.13.: Detection of single classes of the PSB dataset (SNR 40) using the La-
guerre descriptor based on bi-spectrum invariants. The slice close to
a detection or ground-truth label is shown for both the filter response
(saliency map, darker represents higher values for better readability)
and the image (without noise and absorption). Yellow lines are indicat-
ing the ground truth labels, magenta lines detections (after classifica-
tion). Results for the categories 13-18 are shown. The corresponding
PR curves can be found on pages 245–246.
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saliency map image

19) 20)

21) 22)

23) 24)

Figure E.14.: Detection of single classes of the PSB dataset (SNR 40) using the La-
guerre descriptor based on bi-spectrum invariants. The slice close to
a detection or ground-truth label is shown for both the filter response
(saliency map, darker represents higher values for better readability)
and the image (without noise and absorption). Yellow lines are indicat-
ing the ground truth labels, magenta lines detections (after classifica-
tion). Results for the categories 18-24 are shown. The corresponding
PR curves can be found on page 246.
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Figure E.15.: Evaluating single classes of the PSB dataset (SNR 40). Comparing La-
guerre descriptors with Gabor descriptors. We observed that Gabor
confounded the classes (16-22) which manly differ in the leg poses and
leg lengths. Laguerre confounded the classes 6,13 and 14, which all
are rabbit shaped images. Overall, Laguerre performed sightly better
than Gabor.
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Figure E.16.: Evaluating single classes of the PSB dataset (SNR 40). Comparing La-
guerre descriptors with Gabor descriptors. We observed that Gabor
confounded the classes (16-22) which manly differ in the leg poses and
leg lengths. Laguerre confounded the classes 6,13 and 14, which all
are rabbit shaped images. Overall, Laguerre performed sightly better
than Gabor.
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Figure E.17.: Evaluating single classes of the PSB dataset (SNR 40). Comparing La-
guerre descriptors with Gabor descriptors. We observed that Gabor
confounded the classes (16-22) which manly differ in the leg poses and
leg lengths. Laguerre confounded the classes 6,13 and 14, which all
are rabbit shaped images. Overall, Laguerre performed sightly better
than Gabor.
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E.2. Plots and Figures: Simulated Pollen Dataset
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Figure E.18.: We exemplarily show two slices for each landmark of the simulated
pollen database. The size of the green circle indicates the distance to a landmark (if
close to the current slice). A red circle indicates that the landmark is in the current
slice.
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Figure E.19.: We exemplarily show two slices for each landmark of the simulated
pollen database. The size of the green circle indicates the distance to a landmark (if
close to the current slice). A red circle indicates that the landmark is in the current
slice.
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Figure E.20.: We exemplarily show two slices for each landmark of the simulated
pollen database. The size of the green circle indicates the distance to a landmark (if
close to the current slice). A red circle indicates that the landmark is in the current
slice.
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Figure E.21.: We exemplarily show two slices for each landmark of the simulated
pollen database. The size of the green circle indicates the distance to a landmark (if
close to the current slice). A red circle indicates that the landmark is in the current
slice.
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Figure E.22.: PR curves for the simulated pollen database with a SNR 40
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Figure E.23.: PR curves for the simulated pollen database with a SNR 6.5
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Figure E.24.: PR curves for the simulated pollen database with a SNR 6.5
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Figure E.25.: Evaluating single classes of the simulated pollen dataset (SNR 40).
Comparing Laguerre descriptors with SIFT and SURF. The bi-spectrum
descriptor (o3) clearly outperforms 3D SIFT and SURF.
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(a) pollen 1 (generated images)

(b) pollen 1 (grayscaled)

Figure E.26.: The Simulated Pollen Dataset
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(a) pollen 2 (generated images)

(b) pollen 2 (grayscaled)

Figure E.27.: The Simulated Pollen Dataset
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(a) pollen 3 (generated images)

(b) pollen 3 (grayscaled)

Figure E.28.: The Simulated Pollen Dataset
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(a) pollen 4 (generated images)

(b) pollen 4 (grayscaled)

Figure E.29.: The Simulated Pollen Dataset
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(a) pollen 5 (generated images)

(b) pollen 5 (grayscaled)

Figure E.30.: The Simulated Pollen Dataset
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E.2. Plots and Figures: Simulated Pollen Dataset

(a) pollen 6 (generated images)

(b) pollen 6 (grayscaled)

Figure E.31.: The Simulated Pollen Dataset
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(a) pollen 7 (generated images)

(b) pollen 7 (grayscaled)

Figure E.32.: The Simulated Pollen Dataset
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(a) pollen 8 (generated images) (b) pollen 8 (grayscaled)

(c) pollen 9 (generated images) (d) pollen 9 (grayscaled)

(e) pollen 10 (generated images) (f) pollen 10 (grayscaled)

Figure E.33.: (Additional Negative Datasets)
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E.3. Plots and Figures: Real Pollen Dataset
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Figure E.34.: PR curves for the real pollen dataset
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Figure E.35.: Slices from the images in the training set of the real pollen dataset. The
size of the green circle indicates the distance to a landmark (if close to
the current slice). A red circle indicates that the landmark is in the
current slice.
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Figure E.36.: Slices from the images in the training set of the real pollen dataset. The
size of the green circle indicates the distance to a landmark (if close to
the current slice). A red circle indicates that the landmark is in the
current slice.
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Figure E.37.: Slices from the images in the test set of the real pollen dataset. The size
of the green circle indicates the distance to a landmark (if close to the
current slice). A red circle indicates that the landmark is in the current
slice.
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Figure E.38.: Slices from the images in the test set of the real pollen dataset. The size
of the green circle indicates the distance to a landmark (if close to the
current slice). A red circle indicates that the landmark is in the current
slice.
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