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Abstract. Spherical harmonics are widely used in 3D image processing
due to their compactness and rotation properties. For example, it is quite
easy to obtain rotation invariance by taking the magnitudes of the rep-
resentation, similar to the power spectrum known from Fourier analysis.
We propose a novel approach extending the spherical harmonic represen-
tation to tensors of higher order in a very efficient manner. Our approach
utilises the so called tensorial harmonics [1] to overcome the restrictions
to scalar fields. In this way it is possible to represent vector and tensor
fields with all the gentle properties known from spherical harmonic the-
ory. In our experiments we have tested our system by using the most
commonly used tensors in three dimensional image analysis, namely the
gradient vector, the Hessian matrix and finally the structure tensor. For
comparable results we have used the Princeton Shape Benchmark [2] and
a database of airborne pollen, leading to very promising results.

1 Introduction

In modern image processing and classification tasks we are facing an increas-
ing number of three dimensional data. Since objects in different orientations
are usually considered to be the same, descriptors that are rotational invariant
are needed. One possible solution are features which rely on the idea of group
integration, where certain features are averaged over the whole group to be-
come invariant [3]. Here we face the problem to derive features in an efficient
manner. In the case of 3D rotations one of the most efficient and effective ap-
proaches utilises the theory of spherical harmonics [4]. This representation allows
to accomplish the group integration analytically. In implementation practice the
magnitudes of certain subbands of the spherical harmonic representation have
to be taken to become invariant.

But, there is one bottleneck that limits the creativity of designing features
based on spherical harmonics: they represent scalar functions. This means that,
for example, vector valued functions, like the gradient field, cannot be put into
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the spherical harmonics framework without loosing the nice rotation properties
(which are of particular importance for the design of invariant features). We
are restricted to features with scalar components that are not interrelated by a
global rotation. Only then, a component-wise spherical harmonic transformation
leads to rotation invariant features. Here our new approach jumps in.

Imagine that all the fantastic features which have already been proposed
on the basis of the spherical harmonic approach could be generalised to vector
valued or even tensor valued fields. What we propose is exactly this: the nat-
ural extension of the spherical harmonic framework to arbitrary ranked tensor
fields, in particular including vector fields (e.g. gradient fields or gradient vector
flow) and rank 2 tensor fields (e.g. the Hessian or the structure tensor). This is
achieved by utilising the theory of spherical tensor analysis [1]. Doing so gives
us the possibility to transform tensor fields of any rank into representations that
share all the same nice properties as ordinary spherical harmonic transforma-
tions. Additionally, we show how to compute these tensor field transformations
efficiently by using existing tools for fast computations of spherical harmonic
representations [5,6].

This paper is divided into six sections. In section 2 we introduce the funda-
mental mathematical definitions needed in the later sections. Sections 3 intro-
duces the tensorial harmonic expansion as a natural extension of the spherical
harmonic expansion. We further show how rotation invariant features can be
obtained in a manner similar to [4]. Section 4 addresses the problem of efficient
tensor expansion and offers a solution by utilising spherical harmonics. In section
5 we put all the details necessary to transform commonly used real Cartesian
tensors up to rank 2 in our framework. And finally we present our experiments
in section 6. We successfully applied our approach to commonly used tensors,
namely vectors and matrices. The promising results of the examples aim to
encourage the reader to consider the use of the approach proposed here. The
conclusion points out some ideas that were not investigated here and might be
considered in future research.

2 Preliminaries

We assume that the reader has basic knowledge in Cartesian tensor calculus.
We further assume that the reader is familiar with the basic theory and nota-
tions of the harmonic analysis of SO(3), meaning he should have knowledge both
in spherical harmonics and in Wigner D-Matrices and their natural relation to
Clebsch-Gordan coefficients. He also should know how and why we can obtain
rotation invariant features from spherical harmonic coefficients [4], because we
will adapt this approach directly to tensorial harmonics.
A good start for readers who are completely unfamiliar with the theory of the
harmonic analysis of SO(3) might be [7] where a basic understanding of spherical
harmonics is given, focused on a practical point of view. The design of rotation
invariant spherical harmonic features was first addressed in [4]. Deeper views
into the theory are given in [8,1,9]. However, we first want to recapitulate the
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mathematical constructs and definitions which we will use in the following sec-
tions.

We denote by {e`m}m=−`...` the standard basis of C2`+1. The standard coor-
dinate vector r = (x, y, z)T ∈ R3 has a natural relation to an element in u ∈ C3

by the unitary coordinate transformation S:

S =
1√
2

Ñ
1 −i 0

0 0
√

2
−1 −i 0

é
(1)

with u = Sr. Let D`
g be the unitary irreducible representation of a g ∈ SO(3)

of order ` ∈ N0, acting on the vector space C2`+1. They are widely known as
Wigner-D Matrices [8]. The representation of D1

g is directly related by S to the
real valued rotation matrix Ug ∈ R3×3, namely, D1

g = SUgS
∗, where S∗ is the

adjugate of S. Depending on the context we will also express the coordinate
vector r ∈ R3 in spherical coordinates (r, θ, φ), which is closer to the commonly
used notation of spherical harmonics, where:

r = |r|, θ = arccos(z/|r|), φ = atan2(y, x) (2)

e.g. we sometimes write f(r, θ, φ) instead of f(r).

Definition 1. A function f : R3 → C2`+1 is called a spherical tensor field of
rank ` if it transforms with respect to rotation:

∀g ∈ SO(3) : (gf)(r) := D`
gf(UT

g r) (3)

The space of all spherical tensor fields of rank ` is denoted by T`.

We further need to define the family of bilinear forms which we use to couple
spherical tensors of different ranks.

Definition 2. For every ` ≥ 0 we define the family of bilinear forms ◦` :
C2`1+1 × C2`2+1 → C2`+1 that only exists for those triple of `1, `2, ` ∈ N0 that
fulfil the triangle inequality |`1 − `2| ≤ ` ≤ `1 + `2.

(e`m)
T

(v ◦` w) :=

m1=`1∑
m1=−`1

m2=`2∑
m2=−`2

〈`1m1, `2m2 | `m〉vm1wm2

=
∑

m=m1+m2

〈`1m1, `2m2 | `m〉vm1
wm2

(4)

where 〈`1m1, `2m2 | `m〉 are the Clebsch-Gordan coefficients. (The Clebsch-
Gordan coefficients are zero if m1 +m2 6= m)

One of the orthogonality properties of the Clebsch-Gordan coefficients that will
be used later is given by:∑

m1,m

〈`1m1, `2m2 | `m〉〈`1m1, `
′
2m
′
2 | `m〉 =

2`+ 1

2`′2 + 1
δ`2,`′2δm2,m′

2
(5)

where δ is the Kronecker symbol.
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3 Rotation Invariant Features from Tensorial Harmonics

Combining all the previously defined pieces we can now formalise an expansion
of a spherical tensor field f ∈ TJ using the notation proposed in [1]:

f(r, θ, φ) =
∞∑
`=0

j=J∑
j=−J

a`j(r) ◦J Y`(θ, φ) (6)

with expansion coefficients a`j(r) ∈ C2(`+j)+1, and the well known spherical

harmonics Y` ∈ C2`+1. Note, that we always use the semi-Schmidt normalised
spherical harmonics. In the special case where J = 0 the expansion coincides
with the ordinary scalar spherical harmonic expansion. The important property
of the tensorial harmonic expansion is given by

(gf)(r) = DJ
g f(Ug

T r) =
∞∑
`=0

j=J∑
j=−J

(
D`+j
g a`j(r)

)
◦J Y`(θ, φ) (7)

This means, that a rotation of the tensor field by D`
g affects the expansion

coefficients a`j(r) to be transformed by D`+j
g . This is an important fact which we

will use when we aim to get rotation invariant features from tensorial harmonic
coefficients.

3.1 Designing Features

Facing the problem of designing features describing three dimensional image
data, the spherical harmonic based method proposed in [4] is widely known
and used to transform non-rotation invariant features into rotation invariant
representations, as seen e.g. in [10,11]. Considering eq. (7) it easily can be seen
that for each coefficient a`j(r) a feature c`j(r) ∈ R can be computed that is

invariant to arbitrary rotations DJ
g acting on a tensor field f ∈ TJ :

c`j(r) =‖D`+j
g a`j(r)‖ =

√
〈D`+j

g a`j(r),D
`+j
g a`j(r)〉

=

√
〈D`+j

g
∗
D`+j
g a`j(r),a

`
j(r)〉 =

»
〈a`j(r),a`j(r)〉 = ‖a`j(r)‖ (8)

By now the generation of features is just the natural extension of the features
proposed in [4], adapted to tensor fields of arbitrary order. In addition to that
we can also consider the interrelation of different coefficients with equal rank.
For a tensor field of order J we can combine 2J+1 coefficients. For two different
coefficients a`j(r) and a`

′

j′(r) with `′+ j′ = `+ j we can easily extend the feature
defined above such that the following feature is also unaffected by arbitrary
rotations:

c``
′

jj′(r) =
√
|〈D`+j

g a`j(r),D
`′+j′
g a`

′
j′(r)〉| =

»
|〈a`j(r),a`

′
j′(r)〉| (9)
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4 Fast Computation of Tensorial Harmonic Coefficients

In the current section we want to derive a computation rule for the tensorial
harmonic coefficients based on the ordinary spherical harmonic expansion. This
is very important, since spherical harmonic expansions can be realized in a very
efficient manner [6].

It is obvious that each of the M components (eJM )
T
f(r) of a spherical tensor field

f ∈ TJ can be separately expanded by an ordinary spherical harmonic expansion:

(e`M )
T
f(r, θ, φ) =

∞∑
`=0

b`M (r)
T
Y`(θ, φ) (10)

where the b`M ∈ T` are the spherical harmonic coefficients. Combining eq. (10)
and eq. (6) we obtain a system of equations which allow us to determine the rela-
tion between the tensorial harmonic coefficients a`j(r) and the spherical harmonic

coefficients b`M (r):

(eJM )
T
f(r, θ, φ) =(eJM )

T
∞∑
`=0

j=J∑
j=−J

a`j(r) ◦J Y`(θ, φ)

=
∞∑
`=0

j=J∑
j=−J

∑
M=m+n

a`jm(r)〈(`+ j)m, `n |JM〉Y `n(θ, φ)

=
∞∑
`=0

j=J∑
j=−J

m=(`+j)∑
m=−(`+j)

n=∑̀
n=−`

a`jm(r)〈(`+ j)m, `n |JM〉Y `n(θ, φ)

=
∞∑
`=0

n=∑̀
n=−`

Y `n(θ, φ)

j=J∑
j=−J

m=(`+j)∑
m=−(`+j)

a`jm(r)〈(`+ j)m, `n |JM〉

︸ ︷︷ ︸
=b`

M,n
(r)

=
∞∑
`=0

n=∑̀
n=−`

b`M,n(r)Y `n(θ, φ) =
∞∑
`=0

b`M (r)
T
Y`(θ, φ) (11)

With use of eq. (11) we can directly observe that

b`M,n(r) =

j=J∑
j=−J

m=(`+j)∑
m=−(`+j)

a`jm(r)〈(`+ j)m, `n |JM〉 (12)

Multiplying both sides with 〈(`+ j′)m′, `n |JM〉 results in

b`M,n(r)〈(`+ j′)m′, `n |JM〉

=

j=J∑
j=−J

m=(`+j)∑
m=−(`+j)

a`jm(r)〈(`+ j)m, `n |JM〉〈(`+ j′)m′, `n |JM〉 (13)
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Summarising over all n and M leads to∑
M,n

b`M,n(r)〈(`+ j′)m′, `n |JM〉

=
∑
M,n

j=J∑
j=−J

m=(`+j)∑
m=−(`+j)

a`jm(r)〈(`+ j)m, `n |JM〉〈(`+ j′)m′, `n |JM〉

=

j=J∑
j=−J

m=(`+j)∑
m=−(`+j)

a`jm(r)
∑
M,n

〈(`+ j)m, `n |JM〉〈(`+ j′)m′, `n |JM〉︸ ︷︷ ︸
δj,j′δm,m′

2J+1

2(`+j′)+1

(14)

Due to the orthogonality of the Clebsch-Gordon coefficients (5) all addends with
m 6= m′ or j 6= j′ vanish:∑

M,n

b`M,n(r)〈(`+ j′)m′, `n |JM〉 =
2J + 1

2(`+ j′) + 1
a`j′m′ (15)

Finally, we obtain our computation rule which allows us to easily and efficiently
compute the tensorial harmonic coefficients a`j′ ∈ T`+j′ based on the spherical
harmonic expansion of the individual components of a given tensor field f :

a`j′m′ =
2(`+ j′) + 1

2J + 1

M=J∑
M=−J

n=∑̀
n=−`

b`M,n(r)〈(`+ j′)m′, `n |JM〉

=
M=J∑
M=−J

n=∑̀
n=−`

(−1)`+nb`M,n〈`(−n), JM | (`+ j)m〉 (16)

5 Transforming Cartesian Tensors into Spherical Tensors

The question that has not been answered yet is how these spherical tensor fields
are related to Cartesian tensor fields like scalars, vectors and matrices. In the fol-
lowing we show how Cartesian tensors up to rank two can easily be transformed
into a spherical tensor representation which then can be used to obtain rotation
invariant features. For scalars the answer is trivial. For rank 1 it is the unitary
transformation S that directly maps the real-valued Cartesian vector r ∈ R3 to
its spherical counterpart. More complicated is the case of real valued tensors
T3×3 of rank 2. Nevertheless, we will see that the vector space of real Cartesian
tensors of rank 2 covers tensors of rank 1 and 0, too. Due to this fact we can
build up our system covering all three cases by just considering the current case.
There exists a unique Cartesian tensor decomposition for tensors T ∈ R3×3:

T = αI3×3 + Tanti + Tsym (17)
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Fig. 1. The 26 classes of the spherically normalised airborne pollen dataset.

where Tanti is an antisymmetric matrix, Tsym a traceless symmetric matrix and
α ∈ R. The corresponding spherical decomposition is then given by:

vjm =
∑

m=m1+m2

(−1)m1〈1m1, 1m2 | jm〉Ts
1−m1,1+m2

(18)

where Ts = STS∗ and v` ∈ C2`+1, ` = 0, 1, 2. Note that the spherical tensor v0

corresponds to α, namely a scalar. The real valued Cartesian representation of
v1 is the antisymmetric matrix Tanti or equivalently a vector in R3, and v2 has
its Cartesian representation in R3×3 by a traceless symmetric matrix Tsym.

Proposition 1. The spherical tensors v0,v1,v2 are the results of the spherical

decomposition of the real valued Cartesian tensor T =

Ñ
t00 t01 t02
t10 t11 t12
t20 t21 t22

é
of rank 2, with:

v0 = −(t00+t11+t22)√
3

,

v1 =

Ñ 1
2 (t20 − t02 + i(t21 − t12))

i√
2

(t10 − t01)
1
2 (t20 − t02 − i(t21 − t12))

é
, v2 =

à 1
2 (t00 − t11 + i(t01 + t10))

1
2 ((t02 + t20) + i(t12 + t21))

−1√
6

(t00 + t11 − 2t22)
1
2 (−(t02 + t20) + i(t12 + t21))

1
2 (t00 − t11 − i(t01 + t10))

í
where v0 ∈ C1,v1 ∈ C2 and v2 ∈ C3.

6 Experiments

We perform experiments comparing tensorial harmonic descriptors derived from
different tensors. For testing we use the Princeton Shape Benchmark (PSB)
[2] based on 1814 triangulated objects divided into 161 classes. We present the
models in a 1503 voxel grid. The objects are translational normalised with respect
to their centre of gravity. We further perform experiments based on an airborne
pollen database containing 389 files equally divided into 26 classes [12,11]. All
pollen are normalised to a spherical representation with a radius of 85 voxel
(figure 1). In both experiments we compute the first and second order derivatives
for each object and do a discrete coordinate transform according to eq. (2) for
the intensity values and the derivatives. For each radius in voxel step size the
longitude θ and the colatitude φ are sampled in 64 steps for models of the PSB.
In case of the pollen database we use a spherical resolution of 128 steps for
the longitude θ and 128 steps for the colatitude φ. In addtition to the ordinary
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Fig. 2. PSB containing 1814 models divided into 161 classes.

spherical harmonic expansion (denoted as SH) of the scalar valued intensity fields
we do the tensorial harmonic expansion of the following Cartesian tensor fields
according to proposition 1 and eq. (16):

Vectorial Harmonic Expansion (VH) Similar to spherical harmonics the
vectorial harmonics have been used first in a physical context [13]. For conve-
nience we prefer the representation of 2nd order tensors using the axiator, despite
the fact that gradient vectors only have rank 1 (eq. (18)). Using proposition 1
we transform the Cartesian gradient vector field into its spherical counterpart
and do the tensorial harmonic expansion.

b∇Ic× =

Ñ
0 −Iz Iy
Iz 0 −Ix
−Iy Ix 0

é
(19)

where ∇ is the nabla operator, b c× denotes the axiator and using the notation

Ix := ∂I
∂x .

Hessian Harmonic Expansion (HH) The Hessian tensor field can be trans-
formed in a manner similar to vectorial harmonics. But in contrast we obtain
two harmonic expansions according to proposition 1.

Structural Harmonic Expansion (StrH) The structure tensor is widely
used in the 2D and 3D image analysis. It is derived by an outer product of
a gradient vector, followed by a componentwise convolution with an isotropic
gaussian kernel gσ.

gσ ∗
Ñ

I2x IxIy IxIz
IxIy I2y IyIz
IxIz IyIz I2z

é
(20)

In our experiments we use a standard deviation σ of 3.5 (in voxel diameter).
In the experiments related to the PSB we found best to cut off the expansions

by band width 25. We compute rotation invariant features according to section
3.1. All features are normalised with respect to the L1 norm. In case of the
HH and the StrH expansion we obtain two separate features for each expansion
which we concatenate. In order to keep the results comparable to those given in
[2], we perform our experiments on the test and training set of the PSB at the
finest granularity. For a description of the used performance measures Nearest-
Neighbour/1st-Tier/2nd-Tier/E-Measure/Discounted-Cumulative-Gain see [2].
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Table 1. PSB: Results of the test-set (left) and training set (right). The subscribed
number 2 means features based on eq. (9), other wise based on eq. (8). To show the
superiority of tensorial harmonics over the spherical harmonics we also give the results
for the best corresponding SH-feature (SH∗) from [2].

Method NN 1stT 2ndT EM DCG

StrH2 61.6% 34.3% 44.2% 26.1% 60.9%
StrH 61.0% 33.5% 43.6% 25.4% 60.2%
HH2 58.5% 31.5% 40.5% 24.5% 58.5%
VH2 58.0% 31.6% 40.7% 24.5% 58.5%
VH 57.7% 30.8% 39.9% 23.7% 57.6%
HH 56.9% 30.5% 39.7% 23.8% 57.5%
SH 52.5% 27.2% 36.2% 21.6% 54.5%

SH∗ 55.6% 30.9% 41.1% 24.1% 58.4%

Method NN 1stT 2ndT EM DCG

StrH2 61.7% 34.6% 44.5% 25.1% 61.9%
StrH 61.4% 33.8% 43.5% 24.4% 61.3%
HH2 59.3% 31.8% 42.2% 23.7% 60.2%
VH2 58.9% 31.6% 42.0% 23.6% 59.7%
VH 56.6% 30.4% 40.0% 22.5% 58.4%
HH 57.6% 30.7% 40.3% 22.6% 58.9%
SH 55.8% 26.8% 36.2% 20.2% 55.9%

Table 1 depicts our results. Results based on features considering the inter-
relation of different coefficients (eq. (9)) are marked with a subscripted 2, e.g.
VH2. The results of further experiments conducting a LOOCV1 considering all
1814 objects are depicted in the left hand graph of figure 3.
We secondly perform experiments on the airborne pollen database. The expan-
sions are done up to the 40th band. We compute features based on eq. (8) in the
same manner as for the PSB experiment. The results of a LOOCV showing the
performance of the features are depicted in the right graph of figure 3.

1 NN 2 NN 3 NN 4 NN
0

10

20

30

40

50

60

minimum number of correct nearest neighbours

co
rr

e
ct

ly
 c

la
ss

ifi
e

d
 in

 %

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

minimum number of correct nearest neighbours

co
rr

e
ct

ly
 c

la
s
si

fie
d
 in

 %

Fig. 3. (left): LOOCV of the whole PSB dataset, demanding 1, 2, 3 and 4 correct
NN. (right): LOOCV results of the pollen dataset, showing the performance when
demanding up to 10 correct nearest neighbours.

7 Conclusion

We presented a new method with which tensor fields of higher order can be de-
scribed in a rotation invariant manner. We further have shown how to compute

1 leave-one-out cross-validation
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tensor field transformations efficiently using a componentwise spherical harmon-
ics transformation. The conducted experiments concerning higher order tensors
led to the highest results and have prooven our assumption that the consideration
of higher order tensors for feature design is very promising. Taking advantage
of the presence of different expansion coefficient with equal rank of higher order
tensors additionally improved our results. But we also observed that we can’t
give a fixed ranking of the performance of the investigated tensors. Considering
the results of the PSB the structural harmonic features performed best. In con-
trast they have shown the worst performance in the pollen classification task.
For future work we want to apply our method to tensors based on biological
multi channel data. We further aim to examine features based on the gradient
vector flow.
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