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Abstract. We present a method for densely computing local spherical
histograms of oriented gradients (SHOG) in volumetric images. The de-
scriptors are based on the continuous representation of the orientation
histograms in the harmonic domain, which we compute very efficiently
via spherical tensor products and the fast Fourier transformation. Build-
ing upon these local spherical histogram representations, we utilize the
Harmonic Filter to create a generic rotation invariant object detection
system that benefits from both the highly discriminative representation
of local image patches in terms of histograms of oriented gradients and
an adaptable trainable voting scheme that forms the filter. We exemplar-
ily demonstrate the effectiveness of such dense spherical 3D descriptors
in a detection task on biological 3D images. In a direct comparison to
existing approaches, our new filter reveals superior performance.

1 Introduction

The rapid development of imaging techniques has led to a dramatic increase in
the amount of volumetric image data that need to be processed. Especially in
the field of biomedical imaging the third dimension becomes more and more im-
portant as it enables studying organisms in their natural constellation. Objects
and organisms are sought to be located and analyzed in any number, at every
position, and in every orientation. This means, volumetric data yields not only
more demanding constraints regarding computational efficiency, also the inter-
relationship of neighboring intensity values becomes more complex. One of the
most relevant issues is to cope with 3D rotation.

In this paper, we aim at creating filters based on the information of lo-
cal gradient histograms that offer a robust, dense and rotation invariant object
detection in volumetric images. For this we transfer the widely used HOG [2]
features to the third dimension and show how to represent them in terms of
so-called spherical tensors. Upon this representation we are capable to benefit
from the simple rotation behavior of spherical tensors which enables the usage
of Harmonic Filters [4,8]. This leads to a trainable 3D object and landmark de-
tection system (figure 1) that benefits from both highly characteristic gradient
orientation histograms and a memory and computational efficient trainable filter
framework.
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Fig. 1. Aiming at 3D landmark-detection: Above the flow diagram of the train-
able SHOG-filter. We first compute the spherical gradient image of an input image
and split it into its spherical orientation field Y1(ĝ) : R3 → S2 and its magnitude
image ‖g‖ : R3 → R. Then the continuous spherical histograms of oriented gradients
(SHOG) are computed densely in the whole image in a recursive manner. We get an
expansion of the histograms in terms of vector-valued coefficients A`

w. We finally use
a trainable filter framework (Harmonic Filter) that learns a non-linear combination
of the SHOG coefficients A`

j such that a filter response is only given at the desired
landmark positions. Moreover, all responses on the remaining positions are suppressed.
Thanks to the continuous representation and the design of the coefficients A`

w in com-
bination with the Harmonic Filter, the filter response rotates smoothly with respect to
the orientation of the landmarks without additional computational costs.
SHOG-Filter in action: i) Optimizing the filter parameter α. For this a binary label
image is required. ii) The filter can now be applied to further objects.

Mathematical Notation: We write vectors v ∈ Cn in bold letters. We denote
the complex conjugate of v by v and the transpose of v by vT . We consider
unit-length vectors n = (x, y, z)

T ∈ R3, ‖n‖ = 1 w.l.o.g as points on the unit-
sphere which we denote by n ∈ S2. We equivalently can represent n in spherical
coordinates (θ, φ), where θ = arccos(z) and φ = atan2(y, x) (see figure 2). We
denote complex numbers by i , with i2 = −1 and denote the convolution by ∗.

2 SHOG - Spherical Histograms of Oriented Gradients

Local descriptors based on orientation histograms, such as SIFT [3] and HOG
[2], have revolutionized detection and matching in natural 2D images. Recently
in particular HOG found its way in many applications because it can be com-
puted efficiently and shows excellent performance. One step toward the third
dimension HOG based features have been used for describing 3D mesh models
[7,1]. What we propose here is a direct extension to volumetric images, where
we aim at densely computing HOG at any image position. In contrast to 2D
where a histogram is build upon gradient directions in a local neighborhood
with respect to one angle (figure 2 a) ), we must consider two angles for the
3D case (figure 2 b) ). Hence the resulting histogram can be considered to be a
histogram on a the 2-sphere (unit-sphere in 3D). We call the 3D representation
of a HOG spherical HOG, or shortly SHOG. It is worth noting that the litera-
ture differs between R-HOG (rectangular spatial window) and C-HOG (circular,
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isotropic window). Since the rotation of objects plays an important role in our
framework, we only consider the latter one. Given an image f : R3 → R. We
denote a dense field of SHOG descriptors defined over the whole image domain
as SHOG{f} : R3 × S2 → R, where S2 denotes the unit-sphere. For capturing

Fig. 2. In 3D the gradient direction is described by two angles thus a histogram of
oriented gradients (HOG) can be considered as function on the sphere.

only the structure in a voxel’s surrounding a window function w : R3 → R is
required. Such a window function is e.g. the 3D Gaussian function. We compute
a local SHOG at position x by collecting all magnitudes of gradients within the
window function w contributing to orientation n according to the continuous
distribution function

SHOG{f}w(x,n) =

∫
r∈R3

‖g(r)‖δn(ĝ(r))w(x− r)dr , (1)

where g : R3 → R3, g = ∇f is the gradient field of the volumetric image f ,
ĝ := g/‖g‖, ĝ : R3 → S2 the gradient orientation field and n ∈ S2 is the current
histogram entry (the direction) taken into account. δn : S2 → R denotes the
Dirac delta function on the unit sphere (see figure 5) that selects those gradients
out of g with orientation n. A direct extension to the 2D HOG descriptor would
require discrete sampling of the orientation space which is trivial in 2D, but in
general a non-trivial task in 3D. A discretization would require an equidistant
sampling of the sphere which in general can not be solved explicitly (known
as Thomson problem [10]). To overcome this problem we propose to keep the
histogram continuous and realize the ”binning“ in frequency domain instead.
Due to this reason we gain the following advantages: First, no interpolation is
required because our SHOG descriptor is based on the true continuous distri-
bution function. Furthermore, if the window function is isotropic, the descriptor
rotates with respect to rotation of its underlying data without leading to any
discretization artifacts in the histogram. This plays a very important role when
aiming at detecting objects in volumetric images at any position and in any
orientation using the Harmonic Filter framework.

SHOG Decomposition: The Racah normalized spherical harmonic functions[6]
Y `m : S2 → C build a complete orthogonal basis for functions on the unit sphere
f : S2 → C. Similar to the Cartesian Fourier basis, spherical harmonics represent
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Fig. 3. Key property of •` and Y: higher order spherical harmonics Y`+1 can be
obtained by element-wise coupling of spherical tensor fields Y` with Y1.

the different frequency components of spherical functions. We always have 2`+1
functions Y `m={−`,··· ,`} : S2 → C representing a basis function of frequency `,

which can be arranged in a vector-valued function Y` : S2 → C2`+1.
Since a SHOG is a function on the sphere we can represent SHOGw(x) in

terms of the orthogonal basis functions Y`, namely

SHOG{f}w(x,n) =
∞∑
`=0

(A`
w(x))

T
Y`(n) , (2)

where A`
w(x) ∈ C2`+1 are the vector valued expansion coefficients completely

representing the SHOG at image position x in the spherical harmonic domain.
How to compute the coefficients A`

w(x) densely for all image positions in an
efficient manner? We identify the coefficients A`

w(x) by plugging the spherical
expansion of the Dirac delta function ( figure 5 ) into eq. (2):

SHOG{f}w(x,n) :=

∫
r∈R3

‖g(r)‖δn(ĝ(r))w(x− r)dr

=
∞∑
`=0

∫
(2`+ 1)‖g(r)‖(Y`(ĝ(r)))

T
w(x− r)drY`(n)

=
∞∑
`=0

(2`+ 1)
((
‖g‖(Y`(ĝ))

T
)
∗ w
)

(x)︸ ︷︷ ︸
=A`

w(x)∈C2`+1

Y`(n) =
∞∑
`=0

(A`
w(x))

T
Y`(n) . (3)

Fig. 4. The most left image shows a quantized SHOG. A band limited expansion in
terms of spherical harmonics offers a smooth rotation with the underlying data and a
memory efficient representation (here for ` ≤ 5).
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For a fast computation of SHOG we utilize so-called spherical tensor products
•` : C2`1+1×C2`2+1 → C2`+1 [4] which can be used for coupling spherical tensors
associated with different orders `1, `2 to form new tensors of higher or lower order
` i.e. in our scenario here for (point-wise) coupling different functions Y` or for
coupling the expansion coefficients A`

w of SHOGw. Most important, we can use
•` for recursively deriving spherical harmonics of order ` + 1 by coupling two
spherical harmonics of order ` and 1 with Y`+1 = Y` •`+1Y

1 for ` ≥ 1. In Fig. 3
we illustrate how higher order spherical harmonics can be computed recursively.
Utilizing this property we gain a recursive rule with which we avoid an explicit,
expensive computation of Y`(ĝ), namely

Y`+1(ĝ) = Y`(ĝ) •`+1 Y
1(ĝ) . (4)

Moreover, it turns out that ‖g‖Y1(ĝ) = ( 1√
2
(∂f∂x − i ∂f∂y ), ∂f∂z ,−

1√
2
(∂f∂x + i ∂f∂y ))

T

is just the spherical gradient of f which we compute in an initial step. The
remaining computations are just the convolutions with the window function w
that can be realized very efficiently by utilizing the Fast Fourier Transform.

Fig. 5. Band limited expansion of the Dirac delta δn : S2 → R on the unit-sphere:

δn(n′) :=
∑∞

`=0(2`+ 1)(Y`(n′))
T
Y`(n). For our experiments we use ` ≤ 5.

Object Detection in 3D - SHOG Features for Harmonic Filters: The
Harmonic Filter [4,8] is a nonlinear polynomial filter that is designed for de-
tecting arbitrary structures in volumetric images. The most important charac-
teristic of this filter is a trainable voting scheme. The scheme comprises local
image features to train a voting function such that the filter responses only to
certain structures while responses to all remaining structures in the image are
suppressed. This is achieved in an initial training step where the voting scheme
is learned by providing a reference image together with a binary-valued label
image (see our introductory example in figure 1). The local features of the orig-
inal Harmonic Filter are the spherical derivatives of the 3D Gaussian encoding
the intensity values of a voxel’s surrounding in some kind of Taylor expansion
coefficients. These features are then combined in a weighted, non-linear way.
These weights are the free parameters that are optimized during the training
step. Because of the spherical representation of the derivatives the features show
a special, very simple rotation behavior depending on the rotation state of the
underlying data. The filter comprises the rotation state of the features to steer
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the voting function wherefore the filter response itself rotates smoothly with
respect to the underlying data. Hence structures like objects or landmarks can
be detected in any orientation. Since the spherical expansion coefficients A`

w of
the SHOG obey the same rotation behavior like the expansion coefficients of the
spherical Gaussian derivatives in the original filter we propose to simply replace
the Gaussian derivatives by SHOG in the Harmonic Filter framework. In ad-
dition to a non-linear combination of all expansion coefficients A`

w we propose
to additional compute and combine coefficients derived from different window
functions wn (an angular cross-correlation of different local SHOG). Accordingly
the voting function of the harmonic filter (eq. (6) in [4]) changes to

V`(x) :=
∑

|`1−`2|≤`≤`1+`2
`1+`2+` even
`1,`2,`≤N

n,m

αn,m`1,`2,`(A
`1
wn(x) •` A`2

wm(x))︸ ︷︷ ︸
non-linear combination

of coefficients

; (5)

αn,m`1,`2,` ∈ R are the new weighting parameters that are learned in a training step.

(a) Center Z-slices and renderings of the training data sets (b) Window functions

Fig. 6. Our Database: Alder pollen (4 porates for training, 56 for testing), Birch
pollen (3 train, 42 test), Beech pollen (4 train, 65 test), Lime pollen (3 train, 42 test),
Murgwort pollen (3 train, 42 test). Figure b) illustrates the size and shape of the two
window functions that we use in our experiments (two nested smoothed spheres).

3 Experiments

For evaluating the performance of the SHOG-filter we aim at detecting land-
marks in volumetric confocal recordings of airborne pollen. In particular we aim
at detecting porates in 5 different kinds of pollen species [5], namely (see figure
6) Alder, Birch, Beech, Lime and Murgwort pollen. Each dataset consists of 15
volumetric images where the porates have been manually labeled by an expert
for training and evaluation. Note that the number of porates varies between but
also within the different species. The image sizes for the Alder, Birch and Murg-
wort pollen are about 803 voxels. For the Beech and Lime pollen we have about
1103 and 1203, respectively. One voxel corresponds to 0.4µm.
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Table 1. a) Filter parameters in our Experiments. The filter parameters are given
in voxel size (voxel size ≈ 0.4µm). b) Performance on the Birch dataset when using
different normalization strategies.

(a) Filter Parameters

data Filter L Filter Parameter Feature Parameters

a) Alder SHOG 5 η = 5 {d, σ} = {2, 1}, {4, 2}
b) Birch SHOG 5 η = 5 {d, σ} = {2, 1}, {4, 2}
c) Beech SHOG 5 η = 6 {d, σ} = {2, 1}, {4, 2}
d) Lime SHOG 5 η = 7 {d, σ} = {4, 2}, {6, 2}
e) Mugwort SHOG 5 η = 4 {d, σ} = {2, 1}, {4, 2}

(b) Different Normalizations
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Apart from our SHOG-Filter, we consider two other trainable filters, namely
the original Harmonic Filter [4] and the Bessel Filter [9]. For all filters the ex-
perimental setup is as follows: We conduct 5 different experiments based on the
different pollen datasets. For each experiment we use one single dataset for train-
ing. The training sets are depicted in figure 6 (the labels for training are marked
by a red circle). In this step the filters optimize their parameter (least square
fit) such that the filter response is most similar to the labeling. The filters are
then applied to the remaining datasets for evaluation.

For all filters some parameters must be set manually. For finding the optimal
parameters we follow the way proposed in [9]. The optimization is done by
varying the parameters during several training steps until the Euclidean distance
of the filter responses to the training label-images cannot be further reduced
significantly. For the SHOG-Filter we must determine the following parameters:
A filter degree L ∈ N that limits the number of expansion coefficients of the
SHOG filter A`

w, ` ≤ L. Furthermore, for the Harmonic Filter framework we need
to set the parameter η that steers the size of a Gaussian window that restricts
the SHOG features that can contribute to a local filter response. We finally must
define one or more window function w for the SHOG itself. We observed that for

the given data two nested Gaussian windowed spheres w(r, d, σ) := e
−(‖r‖−d)2

2σ2

lead to the best performance. We exemplarily illustrate the size and shape of
the window functions we use for Alder datasets in figure 6(b). The parameters
for all filters are summarized in table 1(a).

The gradient magnitude highly varies over a wide range due to variations in
illuminations and in particular in volumetric biomedical images due to absorp-
tion and occlusion effects. Similar to [2] we observed that unnormalized gradients
lead to poor performance. See figure 1(b) for results on the Birch dataset. Nor-
malizing SHOG with respect to the l2-norm or with respect to the standard
deviation of the local intensity values [4] increases the performance significantly.
However, we achieve the best performance when almost neglecting the gradient
magnitude and only considering the gradient orientation by performing a gamma
correction of the gradient field, whereas gγ = ‖g‖γ ĝ. For our experiments we
use γ = 0.1.
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Figure 7 lists the PR graphs showing the performance of the filters in all 5
experiments for both tolerating a 8 voxel (≈ 3.27µm) displacement to the ground
truth and tolerating only a more strict 4 voxel (≈ 1.64µm) displacement. For a
better comparison we list the equal error rate (EER) for all experiments in table
1(a). We additionally show qualitative results of the SHOG filter in figure 8. The
SHOG-Filter produces only clear responses at the correct porate positions. All
remaining regions of the pollen are successfully suppressed. Moreover, thanks
to the SHOG-Filter we detected a pollen belonging to a related but different
species that accidentally found its way into the database. The structure of the
porates differ strongly from the training set and thus the filter didn’t respond
at all (figure 8 d) ).

In figure 9 we expemplarily show detections on the Beech dataset correspond-
ing to the Harmonic Filter. Here we can observe that the harmonic filter clearly
can detect the porates but produces a lot of false positive detections within the
pollen. Similar for the remaining pollen species having high variations within
the pollen. We observed similar problems for the Bessel Filter. We were not
able to suppress responses on the inner structures of the Beech and Lime pollen
while still getting clear responses at porate positions. The main difference of
the SHOG-Filter is that the gamma normalized SHOG features are manly com-
prising the gradient orientations. Thus SHOG is very robust against non-linear,
local illumination and contrast changes. In contrast, the Bessel and Harmonic
Filters are both indirectly encoding the gradient magnitudes in their features
and thus are sensitive to non-linear illumination changes and noise.

Fig. 7. The PR-curves are showing the performance of our SHOG-Filter compared
to two existing state-of-the-art approaches for all 5 datasets. The dashed lines show
the performance when tolerating an 8-voxel displacement to the ground-truth. The
straight line shows the performance when only tolerating a 4-voxel displacement. We
additionally show the maximum intensity projections of the raw filter responses of the
SHOG filter in figure 8, clearly emphasizing the superior performance the SHOG Filter.
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4 Conclusions

In this paper, we have presented a way to efficiently compute dense spherical
HOG (SHOG) descriptors in volumetric images. Upon theses descriptors we
extended the Harmonic Filter to comprise the SHOG features instead of simple
Gaussian derivatives to benefit from both a dense, robust and discriminative
description in terms of gradient histograms and the trainable voting scheme
of the Harmonic Filter which can be realized very computational and memory
efficient.

We have shown the superior detection performance of our filter compared to
previous state-of-the-art trainable 3D filters. These results are very promising
in connection with the growing importance of volumetric data especially in the
life sciences. In order to foster further research and experiments, we will provide
public executables for using the proposed filter upon acceptance of this paper.
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Fig. 8. Detection of airborne-pollen porates in 5 different datasets (see figure 6). We
show the maximum intensity projection (MIP) of the raw filter responds of the SHOG
Filter together with the MIP of the detections (colored images) after thresholding (local
maxima, threshold selected with respect to the ERR). The SHOG-Filter clearly only
response to the porates. Furthermore, the SHOG-Filter didn’t respond to a pollen that
has accidentally found its way into the database (red mark).

Fig. 9. Detection of a Harmonic Filter for the Beech dataset (compare to figure 8
c)). The Harmonic Filter detects the porates. However, we where not able to avoid
responses on inner-pollen structures. Similar for the Bessel Filter on the Lime and
Beech dataset.


	SHOG - Spherical HOG Descriptors for Rotation Invariant 3D Object Detection

