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Abstract. Modern clinical image acquisition techniques like diffusion
magnetic resonance imaging (dMRI) or functional MRI (fMRI) allow us
to study tissue and organisms in their natural volumetric configuration.
Group studies often require the co-registration of images or partial image
structures of different individuals. In such applications the detection of
characteristic landmarks is often an indispensable prerequisite. However,
the reliable detection of unique anatomical landmarks in medical images
is a challenging problem which is often solved in a semi-automated or
even manually manner. Landmarks are often sought to be located and
analyzed at every position, and in any orientation. In particular the latter
makes landmark detection challenging in 3D. In this paper we propose a
new landmark detection system that reliably detects arbitrarily placed
landmarks in High Angular Resolution Diffusion Images (HARDI) of the
human brain.

1 Introduction

The study of Magnetic Resonance (MR) imaging modalities is of great interest
in fundamental neuroscience and medicine. MR imaging offers a wide range of
different contrasts, providing scientists insights into anatomical and functional
properties of the human brain. In this paper we focus on High Angular Resolu-
tion Diffusion Images (HARDI [8]) of the human brain. The HARDI-technique
combines different measurement parameters to infer underlying tissue proper-
ties and allows for studying the neuronal fiber architecture in the human brain
without harming the patient.

In this paper we introduce a new approach for detecting unique point land-
marks in HARDI images of the human brain. The reliable detection of landmarks
[2] plays an indispensable role in registering brain structures from different im-
ages and thus is an important prerequisite for many registration and segmenta-
tion algorithms [3]. Our approach is based on the computation of a dense feature
map of the HARDI signal. Similar to [9], where features are used to find corre-
spondences in scalar valued MR contrasts, we propose features offering a unique
signature of a voxel’s surrounding in tensor-valued HARDI signals. Thanks to
these features a large number of corresponding points can be reliably found in
images of different individuals using a linear classifier. The parameters for the
linear classifier are learned from a training set of landmarked images.



The challenges in our scenario are manifold: the HARDI technique leads
to images with poor quality in terms of resolution and signal to noise ratio.
Furthermore, the tensor valued HARDI signal can be considered as function
f : R3×S2 → R, where S2 denotes the unit sphere in R3. This means at each voxel
position x ∈ R3 we have an angular dependent measurement f(x,n) represented
as a function on the unit sphere. This function represents the diffusion weighted
MR signal with respect to different diffusion directions n. Due to this fact we
cannot use intensity based standard techniques to describe a landmark; suitable
representations of the signal are required in order to uniquely detect landmarks
within the images.

The contributions of the present paper are the following: (1) we derive new
rotation invariant features for HARDI images of the human brain. These fea-
tures are yielding a unique description of each voxel in the images which allows
for reliably detecting landmarks within images of different individuals. Position-
ing landmarks is not restricted to specific areas or points; landmarks can be
positioned anywhere in the brain. (2) We propose a linear coarse to fine clas-
sification scheme to detect a large number (more than several thousands) of
different, unique landmarks in reasonable time. (3) We demonstrate the effec-
tiveness of our method in an experiment based on a dataset of brain images of 21
healthy volunteers. Furthermore, preliminary results on datasets of patients with
pathologies are promising. (4) The source code will be made publicly available
upon acceptance of this paper.
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Fig. 1. a) Differently weighted linear combinations of the feature images lead to dif-
ferent detection results (Maximum intensity projection). b) The outcome of the linear
classifier at the desired landmark position (green) together with the white matter mask
(red). c) Position of the global maximum of Hl. d) The landmark reference position.

2 Landmark Detection in HARDI Images

Our landmark detection method is based on local, rotation invariant feature im-
ages. The idea is that corresponding to each voxel position x ∈ R3 in the HARDI
signal there exists a feature vector F(x) := (F1(x), F2(x), · · · , FN (x))T ∈ RN
that uniquely describes the appearance of a voxel’s surrounding. This includes
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features describing the surrounding of a voxel in a coarser scale, thus the rough
position of the voxel in the brain can be determined. On the other hand, the fea-
ture vector comprises features describing finer details of the close neighborhood
of a voxel. Our experiments will show that the resulting features are highly dis-
criminative. Such feature images of a HARDI signal of a human brain are shown
in figure 2. Details are given later in this section.

Our assumption is that the features guarantee a unique representation of
each landmark. Hence we can use the maximum response of a linear classifier to
determine the landmark positions. This is probably the fastest way to detect the
landmarks. In a supervised training step we learn weights for the linear classifier
for all landmarks l = {1, · · · ,M}. We denote by Hl ∈ R3 → R the evidence
image for the position of landmark l:

Hl(x) :=
∑
i αi(l)Fi(x) = α(l)TF(x) . (1)

See figure 1 a) for some examples ofHl for different landmarks l. With α(l) ∈ RN
we denote the weights corresponding to landmark l. The global maximum of
Hl is considered as the prediction for a landmark position. It is worth noting
that due to the fact that eq. (1) is linear we can use a simple least square fit

argmin
α(l)

‖
∑

xHtrain
l (x)−α(l)TFtrain(x)‖2 to compute the weights in a training

step. Ftrain are features of training images and Htrain
l are binary valued label

images where the desired landmark position has been set to 1. Note that due to
the sparseness of Htrain

l the system of equations can be solved for all landmarks
simultaneously in a memory efficient way within seconds. Once the weights are
determined we can find the landmarks in any new image by computing the
features and attaching the weights according to eq. (1).

In our experiment we aim at detecting more than 104 landmarks. Successively
computing the evidence images Hl followed by the determination of the global
maximum for each single landmark is far too computational expensive. Since the
landmarks are unique we can determine the predicted landmark position in two
steps: 1) We down-sample the feature images by a factor of 4 (we just consider
every fourth voxel). We then compute the evidence Hl(x) for each landmark
voxel by voxel “on the fly” and store the position of the highest result for each
landmark. 2) We then search for the precise location of the maxima in the
surrounding of each previously stored position. Given the feature images we can
find about 22000 landmarks in a 100×100×69 brain image in about 5 minutes1.

Computing the feature images F: We utilize spherical tensor algebra (STA)
[4, 5], which allows to compute dense, multi-scale feature images from HARDI
data in an efficient and rotation invariant way. The use of STA is quite reason-
able, because it is common to represent HARDI images by Spherical Harmonics
(SH). The orientation distribution in each voxel is encoded in the SH basis pro-
viding a memory efficient and smooth way to handle the data.

1 using 4 cores of an Intel Xeon CPU X7560 with 2.27GHz
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Fig. 2. a) Rotation invariant features according to eq. (4) of a human brain (center
slice). They are invariant with respect to reflection symmetry, too. b) We additionally
use features that can clearly distinguish between the left and right hemisphere (the
sign differs, eq. (5)) c) Features for a landmark i) are computed in two steps: We first
densely compute local nonlinear image features ii). Based on these features in a larger
neighborhood iii) around i) we form the final rotation invariant features.

We first decompose the HARDI signal f : R3 × S2 → R into its basic angu-
lar frequency components by orthogonal projection onto the SH basis functions
Y` : S2 → C2`+1 voxel by voxel [4]. With each index ` a certain angular frequency
is represented. Since diffusion is symmetric, the HARDI signals are symmetric,
too. Hence we only need to consider SH associated with an even index. Conse-

quently we can represent f in terms of Y` by f(x,n) =
∑∞

`=0
` even

a`(x)
T
Y`(n). We

denote by a`(x) ∈ C2`+1 the vector valued expansion coefficients representing
the HARDI signal of f at image position x ∈ R3 in the SH-domain.

In our framework we only use the coefficient images a0 : R3 → C and
a2 : R3 → C5. a0 represents the mean of the signal. a2 gives us information
about the diffusion directions and heavily contributes in the white matter re-
gions to the HARDI signal. Considering higher frequency components, i.e. a4 in
our experiments did not lead to better results.

The raw coefficients a0 and a2 are only describing the very local properties of
the tissue and thus are far not sufficient to yield enough information to uniquely
represent a landmark in the HARDI signal. Due to this reason we designed new
nonlinear features for representing the neighborhood around a respective voxel.
The resulting features are rotation invariant thus no pre-alignment of the images
is required. The features are computed in two steps: First, non-linear local image
features are densely computed in a close neighborhood of a voxel (Fig. 2 ii) ). A
second step combines the non-linear features in a larger surrounding of a voxel
and forms its unique feature signature (Fig. 2 iii) ).

STA provides two basic operations to deal with the coefficient images a0 and
a2. These operations do not alter the rotation behavior of the SH representa-
tion, that is, they allow to compute rotation invariant features in a systematic
way. The first class of operations are finite difference operators that connect SH
representations of different degrees by differentiations, so-called spherical ten-
sor derivatives ∇n [5]. We distinguish between spherical up-derivatives, where
n > 0 and spherical down-derivatives where n < 0. The first operator increases
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the tensor rank by n, the latter one decreases the tensor rank by n. The sec-
ond class of operations are products that connect two different SH represen-
tations to form a new field with a different degree, called spherical products
◦` : C2`1+1 ×C2`2+1 → C2`+1 [5]. They couple spherical tensors associated with
different orders `1, `2 to form new tensors of higher or lower order `.

We obtain the local non-linear image descriptors (Fig. 2 ii) ) in the following
way: We first expand the local neighborhood of voxels in a0 and a2 in terms of
spherical Gaussian derivatives by initially convolving the coefficient images with
a Gaussian Gσ followed by successively computing the tensor derivatives [7]:

b`0 := ∇`(Gσ ∗ a0), 0 ≤ ` < L, b`0(x) ∈ C2`+1 (2)

b`2 := ∇`−2(Gσ ∗ a2), 0 ≤ ` < L, b`2(x) ∈ C2(2+`)+1 . (3)

We denote by b`0(x),b`2(x) the expansion coefficients of the local neighborhood
of a0(x) and a2(x), respectively. The upper bound L ∈ N restricts the number
of expansion coefficients. The size of the local neighborhood representations is
defines by σ, the size of the Gaussian. Then we use the spherical tensor products
◦` to form new, nonlinear representations (b`1a (x) ◦` b`2a (x)) ∈ C2`+1 voxel by
voxel.

Finally, we follow ideas proposed by the Harmonic Filter framework (HF) [5]
to form the final rotation invariant large neighborhood descriptors (Fig. 2 iii)
). The HF is some kind of voting based approach for generic object detection
where local image descriptors are voting for the presence of objects. Voting
offers several advantages: The detection of objects is very robust with respect to
occlusions, intra-class variations and deformations! In our framework we adopt
the idea of voting and consider it as a collection of local descriptors in a voxel’s
surrounding. Mathematically this step coincides with the voting of the HF thus
we gain rotation invariant features in the following way:

Fi(x) := Gη ∗ (∇(−`)(b`1a ◦` b`2a )) ` ≤ L . (4)

A larger choice of η leads to image descriptors representing the rough position
of the voxel in the brain. As small η leads to features representing local details
of the HARDI signal. Figure 2 a) shows some examples of such features based
on the HARDI signal of a human brain. Note that L ∈ N restricts the number
of possible products i.e. the number of feature images.

Considering our aims there exists one significant drawback of these features:
they are invariant against reflection about an axis. Hence they can’t distinguish
the left and the right hemisphere. Figure 2 a) illustrates this problem. It is
known that the spherical triple-correlation [1] yields complete rotation invariant
features. Hence they must solve this issue. Based on this idea we designed new
3rd order rotation invariant differential features fitting into our framework that
are variant with respect to reflections about an axis:

Fj(x) := Gη ∗ (∇(−`4)((b`1a ◦` b`2a )) ◦`4 b`3a )),
`1 + `2 + `3 + `4 is odd
and `4, ` ≤ L

. (5)

The proof is given in the appendix. Figure 2 b) shows some examples.
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Experiments For our experiments 21 in vivo diffusion acquisitions of human
brains were acquired on a Siemens 3T TIM Trio using an SE EPI sequence with
a TE of 95 ms and a TR of 8.5 s and an effective b-value of 1000. One voxel
corresponds to 2mm3. We used 67 directions which we entirely fit to spherical
harmonics. For evaluating the performance of our detection system we conducted
the following experiment: The 21 HARDI images of healthy volunteers have been
co-registered using the SPM2 toolkit. Based on this co-registration we found the
position of 20685 landmarks (per image) in the original image domain. The
landmarks were densely distributed in the brain white and gray matter (one
landmark at every second voxel position with respect to X,Y, and Z direction).
We consider these co-registered landmarks as a reference which we use for train-
ing the classifier and for evaluating our approach. It is worth noting that it is
difficult to co-register the noisy, tensor-valued HARDI images thus that the true
“ground-truth” can hardly be provided. But if the positions of the landmarks
detected by our algorithm are similar to the co-registered positions, than there
is high evidence that most of the landmarks have been detected correctly.

The HARDI images have been transformed to the SH-domain and features
have been computed for each image as described above. We first computed the
expansion coefficients based on eq. (2) and eq. (3) using a Gaussian with σ =
6mm. We experienced that the signal corresponding to the brain white matter
leads to the most reliable features thus we additionally expanded a2 with respect
to a larger neighborhood σ = 5mm (eq. (3)). We then computed features based
on eq. (4) and eq. (5) using L = 5 and three different scales, namely with
respect to η = 4, 8 and 12mm. We found these parameters via a leave-one-out
parameter grid-search on the training set. Using these parameters we gained 528
discriminative feature images per HARDI signal.

We used one third of the images (7 images) for training the linear classifier
(eq. 1). The co-registered landmark positions where used for determining the
filter parameters α(l) for all landmarks. The remaining 14 images were used for
evaluation.

Results & Discussion The displacements of the filter responses with respect to
the co-registered reference positions can be found in table 1. The results clearly
show that most of the detected landmark positions are very close to the ground

2 SPM (Statistical Parametric Mapping version 5), http://www.fil.ion.ucl.ac.uk/spm/

Table 1. Correctly detected landmarks. Correctly means the detected landmark po-
sition is similar to its reference position. The column in red corresponds to the worst
results. The table shows results for an increasing tolerated displacement.

tolerance correctly detected landmarks for the 14 test datasets (totally 20685 unique landmarks)

1 voxel 39.0% 26.6% 39.2% 36.5% 51.9% 40.4% 37.2% 51.0% 38.7% 49.4% 46.1% 38.7% 51.8% 44.7%
2 voxel 81.5% 65.7% 79.8% 77.0% 90.1% 81.1% 79.3% 89.3% 81.0% 88.6% 86.6% 79.1% 88.5% 85.8%
3 voxel 96.9% 90.7% 96.3% 95.4% 98.9% 96.7% 96.1% 98.5% 95.8% 97.5% 98.7% 95.7% 98.2% 97,8%
4 voxel 99.4% 96.1% 99.4% 98.7% 99.8% 99.4% 99.0% 99.6% 98.1% 99.1% 99.8% 98.3% 99.4% 99.6%
5 voxel 99.9% 97.9% 99.9% 99.6% 99.9% 99.9% 99.7% 99.9% 99.0% 99.4% 99.9% 99.3% 99.7% 100%
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Fig. 3. The white matter mask of the HARDI signal [6] together with the landmark
positions. We counted a detection as successful if the predicted landmark position was
close to its reference position. Since the filter encodes the appearance of local structures
in several granularities it can use coarser representations to find the global position in
the brain while finer representations are used to adapt the position according to the
local neighborhood configuration. This often shows more plausible results than the
reference positions as exemplarily shown in the second row. the last row).

truth. Only a very small number (in the worst case < 2.1%) of the landmark
positions differ by more than 5 voxel, which corresponds to a displacement of
1cm.

For a qualitative analysis of the results we computed a white matter mask
directly from the HARDI signal [6]. This ensures consistency with the data.
Figure 3 gives qualitative results. We observed that the detected landmarks were
often more consistent with the local structure of the HARDI images than the
co-registered reference location (Fig. 3). The detection of all 20685 landmarks
takes about 16 minutes1 per image.

We further conducted experiments based on five images of patients showing
pathologies. Since no ground truth was available we visually compared the detec-
tion results of 50 landmarks with their position in images of healthy volunteers.
Our approach was able to successfully detect all landmarks in the healthy areas
of the brain. It is worth noting that we also detected the landmarks located very
close to pathological areas (Fig. 4).

3 Conclusion

In this paper, we have presented a new framework that allows the detection
of a large number of unique point landmarks within the tensor valued HARDI
images of the human brain. Our experiment has shown that based on new image
features in combination with a fast linear classifier the landmarks can be reliably
detected in reasonable time. We make the source code publicly available after
acceptance of this paper.

Appendix Eq. (5) is variant with respect to reflection about an axis: We con-
sider w.o.l.g the reflection about the origin. It holds that Y`(−n) = (−1)`Y`(n).
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Fig. 4. Detected landmarks in patients with pathologies and healthy volunteers. Al-
though the images strongly differ, the landmarks have been detected correctly in the
healthy areas of the patients images.

Let f(r,n) : R3×S2 → R. When f(r,n) =
∑
` (a`(r))

T
Y`(n) we have f ′(r,n) =

f(−r,−n) =
∑
` (b`(−r))

T
Y`(n), with b`(−r) = (−1)`a`(r). If `1 + `2 +

`3 is odd, then ((b`1(−r) ◦` b`2(−r)) ◦`4 b`3(−r)) = (−1)`1+`2+`3((a`1(r) ◦`
a`2(r)) ◦`4 a`3(r)). With (∇(−`)b`)(−r) = (−1)`(∇(−`)a`)(r) we can conclude

that if `1 + `2 + `3 + `4 is odd, then (∇(−`4)((b`1 ◦` b`2) ◦`4 b`3))(−r) =

−(∇(−`4)((a`1 ◦` a`2) ◦`4 a`3))(r).
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