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ABSTRACT

In this paper we presented a new system for generic rotation
invariant 2D object detection based on circular Fourier HOG
features. Our system combines the advantages of a dense vot-
ing scheme as it is used in the Holomorphic Filter framework
with features based on local orientation statistics. Experi-
ments on two different biological datasets have shown supe-
rior detection performance over four state-of-the-art reference
approaches.

1. INTRODUCTION

In biomedical images the reliable detection of structures is
quite challenging. In contrast to many detection tasks con-
cerning our daily life, like pedestrian detection for surveil-
lance purposes or object detection in car safety systems, scale
invariance plays often a minor role in biomedical images. The
exact size of objects is usually given by the image acquisition
technique. In many biomedical images objects and organisms
are sought to be located and analyzed in any number, at arbi-
trary positions, and, unlike in the pedestrian scenario, in every
orientation.

In this paper we introduce a new way to compute and rep-
resent HOG (histograms of oriented gradients) features. We
show how to use them to build up a trainable filter that can be
used for rotation invariant object detection in 2D images.

HOG features [1] are widely used for e.g. object detection
or for solving point matching problems [2] because they can
be densely computed efficiently [3] and are highly discrim-
inative. However, they neither show rotation invariance nor
show a well defined rotation behavior. While being sensitive
to rotations is often a wanted feature for many computer vi-
sion tasks it hinders a detection of arbitrary oriented organism
in biological images.

We overcome the problem by representing circular HOG-
features in Fourier domain. This offers a well defined rotation
behavior (a rotation is just a multiplication with a complex
number) while still allowing a dense computation and show-
ing a very discriminative representation of local image fea-
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Fig. 1. a) Representation of circular HOG (here 32 bins). b)
Fourier HOG with increasing number of coefficients: it de-
scribes the local gradient orientation statistic very precisely
without discretization artifacts. When neglecting higher or-
der coefficients we still have a valid, continuous representa-
tion of the histogram which is not the case for the standard
representation a).

tures. Upon these features we build a new framework for 2D
object detection in 2D images that comprises the Holomor-
phic Filter [4] framework. Since Fourier HOG are related to
SHOG (spherical HOG) [5] which can be used for 3D object
detection in volumetric images, we call this framework the
CHOG-Filter, since it is based on Circular HOG-features. In
contrast to SHOG, CHOG is much less computational expen-
sive and since it deals with 2D images it might be useful for a
much broader community.

The basic idea of the resulting system is that densely com-
puted local HOG features are steering a voting function pixel
by pixel. This means, each pixel votes for an object position
hypothesis by casting votes in a certain direction based on
the orientation and appearance of the local HOG feature. The
idea is highly related to the generalized Hough transform [6]
and implicit shape models [7]. Such voting based systems are
widely used because they can deal with partial occlusions and
high intra class variations which is of particular interest when
working with biological data.

The CHOG-Filter densely computes HOG features and
densely casts votes to ensure that no objects have been left
out. Moreover, the proposed approach learns a discrimina-
tive voting scheme based on the Holomorphic Filter [4] that
actively suppresses responses to regions not supporting an ob-
ject hypothesis. The CHOG-Filter can be trained in a discrim-
inative manner to detect arbitrary shaped structures.

We exemplarily demonstrate the effectiveness of the ap-
proach in two detection tasks on biological images. In a di-
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rect comparison to existing approaches (among them SIFT
[8]), our new filter reveals superior performance.

2. FOURIER CIRCULAR HOG

Local descriptors based on orientation histograms, such as
SIFT [8] and HOG [1], have revolutionized detection and
matching in natural 2D images. Recently in particular HOG
found its way in many applications because it can be com-
puted efficiently and shows excellent performance.

What we propose here is a computation and representa-
tion of circular HOG in Fourier domain offering a well de-
fined rotation behavior while still allowing a dense, efficient
computation. Since Fourier HOG encodes the same informa-
tion like ordinary HOG they both encode local image features
in the same very discriminative way.

It is worth noting that the literature differs between R-
HOG (rectangular spatial window) and C-HOG (circular,
isotropic window) [1]. Since the rotation of objects plays an
important role in our framework, we only consider the latter
one. Given an image f : R2 → R. We denote a dense field
of Fourier CHOG descriptors defined over the whole image
domain as CHOG{f} : R2 × S1 → R, where S1 denotes the
unit-circle.

For capturing only the structure in a pixel’s surrounding
a window function w : R2 → R is required. Such a win-
dow function is e.g. the 2D Gaussian function. We compute
a local CHOG at position x ∈ R2 by collecting all magni-
tudes of gradients within the window function w contributing
to orientation n ∈ R2, ‖n‖ = 1 according to the continuous
distribution function

CHOG{f}w(x,n) =
∫
r∈R2

‖g(r)‖δn(ĝ(r))w(x− r)dr , (1)

where g : R2 → R2, g = ∇f is the gradient field of the
image f , ĝ := g/‖g‖, ĝ : R2 → S1 the gradient orientation
field and n ∈ S1 is the current histogram entry (the direc-
tion) taken into account. δn : S1 → R denotes the Dirac
delta function on the circle that selects those gradients out of
g with orientation n. In the following we consider unit-length
vectors n = (x, y)

T ∈ R2, ‖n‖ = 1 w.l.o.g as points on the
unit-circle n ∈ S1. We equivalently can represent n as angle
φ, where φ = atan2(y, x).

In contrast to the standard representation of HOG we
propose to keep the histogram continuous and realize the
”binning“ in the frequency domain by using the 1D periodic
Fourier basis. We gain the following advantages: First, no
interpolation is required because the descriptor is based on
the true continuous distribution function. Furthermore, if
the window function is isotropic, the descriptor rotates with
respect to rotation of its underlying data without leading to
any discrete binning artifacts in the histogram. This plays a
very important role when aiming at detecting objects in at any

position and in any orientation using the Holomorphic Filter
framework.

2.0.1. Computing Circular HOG in Fourier Domain

Since a CHOG is a function on the circle we can represent
CHOGw(x) in terms of the orthogonal (periodic) circular
Fourier basis functions e`(n) = e`(φ) = e−φi`, namely

CHOG{f}w(x,n) = 1
2π

∑∞
`=−∞ a`w(x) e

`(n) , (2)

where a`w(x) ∈ C are the complex valued expansion coeffi-
cients completely representing the CHOG at image position
x in the Fourier domain. When neglecting higher frequency
components by limiting the band ` ≤ L we obtain the best-
approximation of CHOGw in the finite subspace spanned by
{e0 . . . eL}.

In figure 1 we exemplarily depict the band limited expan-
sion of a gradient histogram for an increasing number of fre-
quency components.

To compute the coefficients a`w(x) we plug the circular
expansion of the Dirac delta function δn(n′) =

∑ e`(n′)e`(n)
2π

in eq. (1) and get

CHOG{f}w(x,n) =
∫
r∈R2 ‖g(r)‖δn(ĝ(r))w(x− r)dr

=
1

2π

∞∑
`=−∞

(
Ä
‖g‖ e`(ĝ) ∗ w

ä
(x)︸ ︷︷ ︸

=a`w(x)∈C

e`(n) (3)

Hence we can densely compute the coefficients a`w :
R2 → C representing the expansion coefficients of order `
for all image positions by convolving the ’higher order’ gra-
dient orientation states ‖g(r)‖e`(ĝ(r)) ∈ C with the window
function w component by component.

We can archieve robustness against nonlinear illumination
and contrast changes by amplifying the influence of gradi-
ent orientations and suppressing the influence of the gradient
magnitudes by introducing an initial gamma correction of the
gradient:

gγ := ‖g‖γ ĝ , where γ ∈ (0, 1]. (4)

For densely computing higher order gradient orientation
states e`(ĝ) in an efficient manner we utilize complex multi-
plications pixel by pixel. Important in our case is that we can
recursively derive Fourier basis functions of order ` + 1 by
multiplying two basis functions of order ` and 1 with e`+1 =
e` · e1, for ` ≥ 1. Utilizing this property we gain a recursive
rule with which we avoid an explicit, expensive computation
of e`(ĝ(n)), namely e`+1(ĝ) = e`(ĝ) ·e1(ĝ). The basis case
is the gradient in complex notation: ‖g‖e1(ĝ) = ∂f

∂x + i ∂f∂y .
Once the gradient orientation states e`(ĝ) are computed,

the remaining computations are the convolutions with the
window function w that can be realized efficiently by utiliz-
ing the Fast Fourier Transform.
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2.1. The CHOG-Filter: Dense Voting with CHOG

The Holomorphic Filter [4] is a nonlinear polynomial filter
that is designed to detect arbitrary structures in volumetric
images. The most important characteristic of this filter is a
trainable voting scheme. The scheme comprises local image
features to train a voting function such that the filter responds
only to certain structures of interest while responses to all re-
maining structures in the image are actively suppressed. This
is achieved by learning a voting scheme in an initial training
step by providing a reference image together with a binary-
valued label image. The Holomorphic Filter uses Gaussian
derivatives as local features (in complex notation). In the vot-
ing step these features are combined in a nonlinear way. The
involved free coefficients are the filter parameters that are op-
timized during the training step. Since the angular expansion
coefficients a`w of the CHOG obey the same rotation behavior
like the Gaussian derivatives in the original filter, we replace
the Gaussian derivatives by the CHOG features.

In addition to a non-linear combination of all expan-
sion coefficients a`w (following [4]) we compute and com-
bine coefficients derived from different window functions
wn={1,··· ,M} (an angular cross-correlation of different lo-
cal CHOG). According to section B in [4] the expansion
coefficients of the voting functions are now

h`[a0w0
, · · · ,aLwM ] :=

∑
`0+`1−`2=`,`≤L
n,m∈{1,··· ,M}

αw0,w1,w2

`0,`1,`2
a`0w0
· a`1w1

· a`2w2 (5)

where αw0,w1,w2

`0,`1,`2
∈ R are the coefficients (the filter param-

eters) that are learned in an initial training step. Thanks to
the rotation preserving characteristic of the complex multipli-
cation the expansion coefficients h` are “rotating” according
to the rotation acting on the coefficients a`w and thus the fil-
ter’s voting function is rotating, too. Consequently the filter
response on an image f rotates smoothly with respect to the
underlying image data.

It is worth noting that once the coefficients a`w have been
computed, the application of the filter only requires one con-
volution per window function. Considering our experiments
were we have an expansion up to order L = 6 and two differ-
ent window functions we have 2(L+ 1) convolutions for the
features and 2 convolutions for the filter part. All remaining
operations are local differentiations and point-wise complex
multiplications. The whole system needs for a 166 × 158
image about 0.3 seconds using an unoptimized Matlab imple-
mentation 1.

3. EXPERIMENTS

For evaluating the performance of the CHOG-filter we aim
at detecting landmarks and organisms in biological images in
two experiments. For a comparison to existing methods we
use the same datasets as in [4]:

1System: Intel i7 870, 2.93 GHz

Holomorphic Filter CHOG Filter

Fig. 2. Comparing the detection performance of Holomorphic
Filters and our CHOG Filter. The green circles are indicating
the ground-truth, the red circles the local maxima considered
as detection in the experiments. The CHOG-Filter clearly
suppresses responses to dust and other unwanted structures.

Fig. 3. We get a clear response despite the cluttered back-
ground (here a spore image left, response right)

Detection of Pollen-Porates: Palynology, the study and
analysis of pollen, is an interesting topic with very diverse
applications like in paleoclimatology or forensics. In the first
experiment we aim at detecting porates in pollen grains [9] ,
small pores on the surface of the grain which are crucial for
the determination of the species. We define a detection to be
successful if the local maxima of the filter response is at most
ten pixels apart from the labeled center (a porate has a length
of about 40 pixels). All local maxima of the filter responses
are collected as detection hypotheses. The filter strength at
the putative detection sites are assigned to each hypothesis.
This database consists of 150 segmented pollen grains with
about 500 porates at all.

Detection of Fungal Spores: Asthma is one of the ma-
jor respiratory diseases. There may be multiple factors, but it
seems that sensitivity to Alternaria spores plays an important
role with the onset asthma in certain areas [10]. This makes
the counting, detection and forecasting of Alternaria an im-
portant task. In this experiment we used four spores in four
images for training and a very challenging test set of 50 man-
ually labeled spores in 20 images (details and images can be
found in [4]).

We compared our method with the following four ap-
proaches (see [4] for implementation details and parameters)
SIFT & PCASIFT: A probabilistic voting procedure as done
in the implicit shape model [7] based on SIFT features [8].
Invfeat: We extract a dense set of rotation invariant features
based on the power spectrum of an expansion in terms of
complex Gaussian derivatives. For each pixel we classify
them whether they are an object center or not.
Holo: The original Holomorphic Filter [4]

The proposed CHOG-Filter: For the CHOG-Filter we
must determine the following parameters: A filter degree L ∈
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Fig. 4. Precision/Recall graphs for the pollen data set (left)
and the spore data set (right).

N that limits the number of expansion coefficients. Further-
more, we need to set a parameter η ∈ R>0 that steers the
scale of the voting function [4] or in other words, the size of
a Gaussian window that restricts the CHOG features that can
contribute to a local filter response. For the pollen and spore
experiment we used L = 6 and η = 12 which we determined
experimentally using the training set.

Another issue is the choice of the window function w.
We first tested isotropic Gaussian windows of different scales
showing promising results. However, finally, we found that
the idea to use nested circles with different radii d ∈ R>0

worked best in our context. The radial profile of the circles

is Gaussian smoothed (e
−(r−d)2

2σ2 , σ ∈ R>0) ensuring that the
corresponding CHOG descriptors are neither suffering from
discretization effects nor from small deformations. For the
pollen experiment we used two window functions with w1 :=
{d=0, σ=2.5} and w2 :={d=2.5, σ=2.5}. For the spore ex-
periment we usedw1 :={d=0, σ=3} andw2 :={d=4, σ=3}.

We observed that our filter performs best when using a
gamma corrected gradient with γ = 0.8 (see eq. (4)).

Figure 4 shows the PR graphs for the pollen and spore
experiment,respectively. We additionally show qualitative re-
sults of the CHOG-Filter and the Holomorphic Filter in figure
2. The CHOG-Filter clearly responds for the correct porate
positions. All remaining regions of a pollen are successfully
suppressed. This was also true for the spore experiments (see
figure 3). Moreover, our Fourier CHOG-Filter significantly
outperforms all reference approaches, manly due to two rea-
sons: First, it benefits from the highly discriminative repre-
sentation of local image patches in terms of gradient orien-
tation histograms. Furthermore, it highly benefits from the
dense computation of features and the dense voting scheme
ensuring that no objects are left out during the evaluation step.

4. CONCLUSIONS

In this paper we presented an efficient way to compute dense
circular Fourier-HOG (CHOG) descriptors. Upon theses
descriptors we have built the CHOG-Filter, a dense voting
scheme for generic 2D object detection. Our system com-

bines the advantages of a dense voting scheme with features
based on local orientation statistics.

We have shown the superior detection performance of our
filter compared to state-of-the-art rotation invariant 2D object
detection methods. Our approach outperforms other dense
voting schemes based on wavelet-like features and shows bet-
ter performance than sparse voting systems based on orienta-
tion statistics. Source-code of the filter is publicly available.
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