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Abstract—Adaptive tracking-by-detection approaches are
popular for tracking arbitrary objects. They treat the tracking
problem as a classification task and use online learning tech-
niques to update the object model. However, these approaches
are heavily invested in the efficiency and effectiveness of their
detectors. Evaluating a massive number of samples for each
frame (e.g., obtained by a sliding window) forces the detector
to trade the accuracy in favor of speed. Furthermore, mis-
classification of borderline samples in the detector introduce
accumulating errors in tracking. In this study, we propose a
co-tracking based on the efficient cooperation of two detectors:
a rapid adaptive exemplar-based detector and another more
sophisticated but slower detector with a long-term memory.
The sampling labeling and co-learning of the detectors are
conducted by an uncertainty sampling unit, which improves
the speed and accuracy of the system. We also introduce a
budgeting mechanism which prevents the unbounded growth
in the number of examples in the first detector to maintain its
rapid response. Experiments demonstrate the efficiency and
effectiveness of the proposed tracker against its baselines and
its superior performance against state-of-the-art trackers on
various benchmark videos.

I. INTRODUCTION

Nowadays, visual tracking is an inseparable compo-
nent for high-level visual tasks such as human-computer
interface, human behavior analysis, smart appliances, vir-
tual/augmented reality and surveillance. When applied to
video sequences in real-life situations, trackers should cope
with challenging appearance changes due to illumination
variations, motion blur, non-rigid deformations, rotations,
mobile imaging platforms and occlusions [1]. While some
successful generative trackers [2]–[5] models the target ob-
ject, they ignore the information hidden in the background.
On the other hand discriminative trackers [6]–[12] pose the
tracking problem as a classification task. In these models
instead of trying to build a complex model of the object,
the algorithms seek a decision boundary that best separates
the target and background. This re-formulation undermine
the inherent issues of generative models like background
clutter and model over-simplification [13].

There are many tracking-by-detection visual trackers,
which heavily rely on their detector to handle different
tracking challenges [9], such as rotations and scale changes.
Such schemes treat tracking as a binary classification
problem, which separates the object from its local back-
ground using a classifier, in which a discriminative classifier
is trained with the samples obtained from the tracking
sequence, and their performances are affected by their
sampling policy. Most trackers only utilize one positive
sample, i.e., the tracking result in the current frame [14]. If
the tracked location is not accurate, the classifier will be up-

Figure 1: Labeling dilemma in tracking-by-detection. The
classifier of the tracker can label the target and the back-
ground only when it has high confidence. Labeling the
uncertain patches may result in label noise.

dated with the contaminated appearance of the target, lead-
ing to a drift over time. To alleviate this problem, multiple
samples in the proximity of the estimated target can be used
to train the tracker [7], [9]. However, such algorithms are
heavily invested in the efficiency and effectiveness of their
detectors. Evaluating a massive number of samples for each
input frame forces the detector to trade the accuracy in favor
of speed to meet the real-time processing requirements.
While some trackers aim to enhance the detectors’ speed
while preserving their accuracy using statistical properties
of images (e.g., [12]), generally achieving an adjustable
balance between speed and accuracy is desired. Further-
more, dealing with rotations and scale changes challenges
such mechanisms. Additionally, misclassification of the
borderline input samples in the detector (Figure 1) may
introduce accumulating errors in the tracker, degrading its
performance significantly [7]. Furthermore, the growth of
sample repository in online learning schemes degrades the
speed. If not handled properly, the tracker cannot perform
long-term tracking [9].

In this study, we propose an efficient co-tracking frame-
work in which an active learning unit orchestrate the
information exchange. It consists of a rapid detector with
short-term memory, and an uncertainty sampling switcher
that query the label of the most uncertain samples of the
first detector from an accurate detector with a long-term
memory (called the “oracle”). An importance sampling
scheme combines the results of the two trackers and handles
the scale variation of the target. An exemplar-based detector
is employed as the rapid detector and we introduce a
budgeting mechanism to prevent the unbounded growth in
the number of examples in this detector to maintain its rapid
response. In summary we (i) employed active learning in
co-tracking framework that leads to increasing the speed
and generalization power of the tracker, (ii) actively con-
trol the memory of tracker by balancing between short-
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Figure 2: The flow of the proposed tracker, UST. After sampling from the region-of-interest determined by optical flow,
the samples are mapped onto a low dimension space, and collaboratively labeled by the two classifiers. This collaboration
is organized by uncertainty sampling unit. The labeled are used to localize the target through a weighted averaging, and
the two classifiers provide training data for each other.

and long-term memories and (iii) introduced an intuitive
budgeting method for the nearest neighbor classifier.

The difference between the proposed co-tracking frame-
work and that of Tang et al. [13] is four-fold: (i) the clas-
sifiers do not exchange all the data they have problems in
labeling, instead, the most informative samples are selected
by uncertainty sampling, and exchanged. (ii) the update rate
of classifiers is different to realize a short and long-term
memory mixture, (iii) the samples that are labeled for the
target localization can be re-used for training and the need
for an extra round of sampling and labeling is revoked, (iv)
since in the proposed asymmetric co-tracking, one of the
classifiers scaffolds the other one instead of participating in
every labeling process, a more sophisticated classifier with
higher computational complexity can be used.

II. RELATED WORK

Many discriminative models have been adopted in ob-
ject tracking, where a binary classifier is learned online
to separate the target from the background. Numerous
supervised or semi-supervised classifiers have been em-
ployed for object tracking, such as SVM [15], structured
output SVM [9], boosting [14], semi-boosting [16], and
online multi-instance boosting [7]. They follow different
approaches in tackling foreground-background separation
like incorporating a trained SVM into an optical flow
tracker [15], using an ensemble of online learned weak
classifiers to decides whether a pixel belongs to the target
region or background [17], or utilizing online boosting to
select discriminative features for separation of target and
background [14]. Multiple instance learning (MIL) tracker
put all of the ambiguous positive and negative samples into
bags to learn a discriminative model [7]. In another stream
of studies, the most discriminative feature combination in
learned online to build a confidence map for foreground
detection [18]. Combining multiple supervised and semi-
supervised classifiers [6], and governing a learning method
using positive and negative constraints [11] are some other
of the most successful discriminative approaches for track-
ing. Such methods are specifically designed to resolve the
label noise problem, in which the classifier get confused by
even the smallest mistakes in the labeling process. Since
the classifier is using a self-learning loop, such mistakes

can accumulate over time and cause the tracker to drift.
One of the solutions to this problem is co-tracking [13], in
which the self-learning loop is broken and labeling is done
collaboratively.

Without model update schemes, trackers accumulate
error during run-time (drift) and typically fail if the object
disappears temporarily. To address this issue, some online
appearance update models have been proposed, e.g., incre-
mental subspace update scheme and adaptive sparse repre-
sentation update [19]. In the case of tracking-by-detection
approaches, this essentially means that the classifier should
be re-trained with the relevant samples. In such algorithms,
after selecting the samples and labeling them, they are used
to update the classifier. The classifier aims for labeling data,
while the tracker attempts to localize the target and these
two objectives are sometimes contradicting (e.g., in the
presence of target-like distractors). Increasing the accuracy
of the detector and using unlabeled samples is a typical
approach to this problem (e.g., [7], [16]), while trackers
such as STRUCK [9] couple these two objectives in a
joint learning framework. Another instance was presented
in [11] where the recent samples are added to the classifier
only if their classifier label is different from the label of
constrained classifiers that monitors the performance of the
tracker. Combining short and long-term memory to deal
with rapid changing targets, occlusions, and environmental
change in tracking is another research avenue for model
updating [20], however, the proposed schemes are hardly
integrated into general trackers.

Active learning techniques build upon such discrimi-
native models and try to improve their convergence speed
and generalization power. For instance, Fisher information
criterion evaluates the uncertainty of classification model in
the MIL tracker [7] to perform active feature selection [21].
Reducing the number of necessary labeled samples [22],
unified sample learning and feature selection procedure
[23] and reducing the sampling bias by controlling the
variance [24] are some of the improvements that active
learning provides for the discriminative trackers. Active
learner selects the samples that don’t know how to label.
Uncertainty sampling [25], as one of the most popular forms
of active learning, try to query the sample that minimizes
a utility function from the oracle. The utility function



can be classification confidence [26], margin [27], and
entropy [28]. Uncertainty sampling in this sense, optimize
the query selection with respect to the utility function.
However, this approach is a form of Gibbs sampling and
requires probabilistic learning models, it should be treated
differently for non-probabilistic classifiers. In this regard,
decision trees [26] and nearest neighbors [29] are used
with uncertainty sampling with the class label obtained by
voting, and for SVMs [30] the proximity to the decision
boundary is considered as the utility function.

III. PROPOSED METHOD

A. Architecture of the System

The proposed tracker (Figure 2) consists of two classi-
fiers θ(1)

t and θ
(2)
t , who exchange their information using

an uncertainty sampling scheme. The samples are obtained
from the region-of-interest (ROI) defined by optical flow
with Gaussian probability. Then, the samples are labeled by
a collaborative effort of the classifiers. Later, these samples
and their labels are employed to update the classifiers.
The first classifier (θ(1)

t ) is a short-memory highly adaptive
exemplar-based classifier that is updated (with respect to a
memory budget) with the most informative samples in each
tracking episode. The second classifier, the oracle (θ(2)

t ), is
a long-term memory tracker that is updated with all the
samples at fixed intervals to grant the robustness against
occlusions and temporal target changes to the tracker.

Sampling: In each frame Ft, t ∈ {1, . . . , T}, a set of n
random samples pjt is generated. These samples are selected
from a region-of-interest Rt determined by optical flow
[31]. To handle still objects, the last known target area
is added to the ROI New samples are selected from ROI,
based on a Gaussian distribution centered on the last target
position N (pt−1,Σsearch). In each frame, an additional n′
samples are selected uniformly from distant locations of the
frame (distance larger than 3× Σsearch), to sample global
background, and are automatically labeled as the back-
ground. This sampling scheme empowers the foreground-
background separability in short term by exploiting the
locality of the target [9]. Furthermore, it enables the tracker
to handle in-scene distractors (e.g., the moving non-target
objects in the ROI) and potential occluders using the global
sampling for negative exemplars.

Labeling: In the proposed asymmetric co-tracking
framework, one classifier attempts to label the sample,
and it queries the label from the other classifier if a
certain condition is met. This is in contrast with using a
linear combination of both classifiers based on their general
classification accuracy, as adopted in [13]. The proposed
tracker can decide for each sample based on the classifier
confidence, i.e., for sample pjt we define a score sjt

sjt = h
(
x
pj

t
t |θ

(1)
t

)
(1)

that reflects the classification score for the image patch
x
pj

t
t , with values closer to +1 as possible targets and values

closer to -1 as background. Based on uncertainty sampling
(elaborated in section III-D), the samples for which the
classification score is more uncertain (i.e., sjt → 0), contains
more information for the classifier if they are labeled by the
other classifier (i.e., the oracle). Therefore, the scores of all
samples are sorted, and m samples with the closest values
to 0 are selected to be queried from θ

(2)
t . To handle the

Algorithm 1: Uncertainty Sampling co-Tracker (UST)
input : Target position in last frame pt−1

output: Target position in current frame pt

ROI Rt ← OpticalF low(Ft−1, Ft) ∪Area(pt−1)
for j ← 1 to n do

Make a sample pjt ∼ N (pt−1,Σsearch)

if pjt ∈ Rt then
Calculate sjt ← h

(
x
pj

t
t |θ

(1)
t

)
(eq(1))

Distinguish uncertain samples Ut (eq(2))
if pjt ∈ Ut then θ

(1)
t is uncertain

Query θ(2)
t : `jt ← Sign

(
h
(
x
pj

t
t |θ

(2)
t

))
else

Label using θ(1)
t : `jt ← Sign(sjt )

else Sample not in ROI
`jt ← −1 (local background)

Dt ← Dt ∪ 〈x
pj

t
t , `

j
t 〉

Create n′ global background samples and add to Dt
Update θ(2)

t with Dt−∆,..,t every ∆ frames (eq(6))
if
∑n
j=1 1(`jt > 0) > τp and

∑n
j=1 π

j
t > τa then

Approximate target state p̂t (eq(4))
Update θ(1)

t with Ut (eq(5))
else target occluded

p̂t ← pt−1

situations for which the number of highly uncertain samples
are more then m, a range of scores are defined by lower
and higher thresholds (τl and τu) and all the samples in this
range are considered highly uncertain.

Ut = {pit|τl < sit < τu or
∣∣∣ {∃j 6= i|sjt ≤ sit}

∣∣∣< m} (2)

in which Ut is the list of uncertain samples. The label of
the samples `jt ∈ Lt are then determined by

`jt =

sign
(
h
(
x
pj

t
t |θ

(1)
t

))
,pjt ∈ Ut

sign
(
h
(
x
pj

t
t |θ

(2)
t

))
,pjt /∈ Ut

(3)

and all image patches x
pj

t
t and labels `jt are stored in Dt.

Localizing: To determine the state of the target p̂t,
we follow the importance sampling mechanism originally
employed by particle filter trackers,

p̂t =

∑n
j=1 π

j
tp

j
t∑1

j=1 π
j
t

. (4)

where πjt = sjt1(`jt > 0) and 1(.) is the indicator function,
1 if true, zero otherwise. This mechanism approximate the
state of the target, based on the effect of positive samples, in
which samples with higher scores gravitates the final results
more toward themselves. Upon the events such as massive
occlusion or target loss, this sampling mechanism degen-
erates [19]. In such cases, the number of positive samples
and their corresponding weights shrinks significantly, and
the importance sampling is prone to outliers, distractors and
occluded patches. To address this issue, two thresholds (τp
and τa) are set on the number and average scores of positive
samples. If either of thresholds are not exceeded, the target
is deemed occluded to avoid tracker degeneracy.



Figure 3: An ever growing example-space of a KNN and the
budgeting mechanism to discard the most futile samples.
Without budgeting, some samples are added/kept by the
classifier that has no effect on the discrimination border.

Updating: In the proposed tracker, the first classifier,
θ

(1)
t is updated using the samples that it queried from
θ

(2)
t , i.e, with the those it was uncertain about and had

oracle label them (Ut). This uncertainty is either due
to the model shortcomings of the classifier (e.g., simple
observation model) or because of intrinsic ambiguity of
the sample. Using a sophisticated classifier as the oracle
alleviate these issues, and by providing the label back to
the first classifier, it scaffolds it for better classification in
similar circumstances, potentially improving the speed of
future sample evaluation as well as the generalization.

θ
(1)
t+1 = ψ(θ

(1)
t ,Ut,Lt) (5)

in which ψ(.) is the update function (r.t. III-C). On the other
hand, to realize a dual-memory scheme to handle temporal
target changes and occlusions, the oracle is equipped with
a non-volatile memory and updated less frequently (every
∆ frames) with all the data sampled during this period,

θ
(2)
t+1 =

{
u(θ

(2)
t ,Dt−∆,..,t) , if t 6= k∆

θ
(2)
t , if t = k∆

(6)

in which u(.) is a classifier re-train function. In summary,
the first detector rapidly adapts to the target in order to
estimate the target location considering its recent changes.
The second detector, however, cares for best object detec-
tion performance, has a long-term memory and is robust to
noise and temporal occlusions. The co-training of these two
detectors balances the desired level of speed and accuracy
for the tracker. This differs from the dual memory scheme
of MUSTer [20], in which the short-term memory is based
on the information obtained from the current frame, and the
long-term memory that has exponential forgetting curve and
get updated only when no occlusion is detected.

B. Realization

In this study, the short-term memory classifier is imple-
mented using a k-nearest neighbor classifier in which all the
samples have a short lifetime to realize the budgeting mech-
anism. The histogram of colors and bag of visual words
(of SIFT) forms the feature vector of every patch x

pj
t
t , and

its dimensionality is reduced to 20 using PCA. The KD-
tree-based KNN classifier, its budgeted memory, the lazy
update behavior of KNNs, and the reduced dimensionality
of the feature space render the KNN suitable for real-time
tracking. The oracle in this study is a part-based detector
[32]. The features, part-base detector dictionary, and the
parameters (k of KNN, thresholds τl, τu, τa, τp, number of
samples n, n′, search radius Σsearch, and update latency ∆)
are trained/tuned via a cross-validation approach.

C. Budgeting

Online learning of discriminative trackers has its own
challenges. The sample size of most of the adaptive clas-

Figure 4: KNN local minima and the budgeting method
that help solving it. The budgeting prevent the distractor
to reinforce itself by influencing the neighbors and spread
throughout the sample space.

sifiers is constantly growing, making them slower by the
time. For a KNN classifier, even with a robust KD-tree
architecture, the computation cost rapidly increase over
time. This is similar to the curse of kernelization, in which
the number of support vectors increases with the amount
of training data in kernel classifiers. To allow for real-time
operation, there is a need to control the number of support
vectors. Recently, approaches have been proposed for online
learning of classification SVMs on a fixed budget, meaning
that the number of support vectors is constrained to remain
within a specified limit as it is employed in [9]).

Reducing the dataset for KNN classification has been
studied in the literature (e.g., the condensed nearest neigh-
bor [33]), yet it is not suitable for tracking in which the
distribution of target and background is non-stationary,
and there is a need to keep/remove the samples based
on the temporal properties of tracking task. We propose a
simple accounting method for a sample x with the nearest
neighborhood η(x) as KNN budgeting rules:

1) Discard the new sample x for which all η(x) have
similar labels (absorbed);

2) Attach a timer α to each new x that counts down
upon processing each new frame. If the timer goes
off (α→ 0), the sample is flagged;

3) Mark the sample for which all neighbors have
opposite labels as outlier;

4) For each added sample x, increment the timer of
all η(x) whose labels differ with the new sample;

5) For each flagged sample if all of η(x) has similar
labels to x it is discarded (absorbed), if x is an
outlier and none of η(x) has the same label, it
should also be discarded. The remaining flagged
samples are called prototypes.

This scheme tends to discard the most futile samples from
the sample pool while preserving the recent or essential
ones. Figure 3 depicts the sample 2D feature space of
a KNN classifier and demonstrate how this budgeting
mechanism preserve the classification power while reducing
the number of samples. This budgeting scheme serves as a
forgetting mechanism for the KNN classifier as well. If a
distractor is very similar to the target in the feature space,
the samples obtained from it will be labeled positive and
added again to the KNN classifier, reinforcing the classifier
false belief about the label of such samples. Such cases act
as local minima for feature space in KNN classifier and
can only be resolved if the oracle investigates and disprove
them. To rescue the KNN classifier from its local minima,
it requires a forgetting mechanism such as the proposed
budgeting scheme. This concept is illustrated in Figure 4.

D. Uncertainty Sampling

When using a probabilistic model for binary classifica-
tion, target/non-target in the case of tracking-by-detection,



uncertainty sampling simply queries the instance whose
posterior probability of being is halfway between posi-
tive values and negative values [25]. Uncertainty sampling
strategies may also be employed with non-probabilistic
algorithms like memory-based classifiers [29]. Inspired by
these studies, we calculated the score of a sample as the
KNN classifier confidence score, i.e., we allow the k nearest
neighbors to vote on the class label of pit, and the sum of
these votes representing the score.

As mentioned earlier, UST queries the m most uncertain
samples (having the closest scores to 0) from the oracle. To
handle a large number of uncertain samples, we decided to
query all the samples in the range of (τl, τp) from the oracle.
This backup mechanism along with forgetting mechanism
realized by the budgeting helps the KNN detector to escape
from its local minima induced by feature-space similar
objects and partial occlusions (Figure 4).

IV. EVALUATION

This section reports on a set of quantitative experiments
comparing the UST with relevant algorithms. To evaluate
the performance of the proposed tracker, the experiments
is conducted on 100 challenging video sequences from [1].
These sequences include many of the visual tracking chal-
lenges such as scale variation, fast motion and motion blur,
illumination variations, in-plane and out-of-plane rotations,
low resolution and shear problem, background clutter and
various types of occlusion. The performance of the tracker
is measured by the area under the surface of its success
plot. A tracker in time t succeed to track the object if its
response p̂t overlaps with the ground truth p∗t more than a
threshold τo. Success plot, graphs the success of the tracker
against different values of the threshold τo and its AUC is

AUC =
1

T

∫ 1

0

T∑
t=1

1

[
|p̂t ∩ p∗t |
|p̂t ∪ p∗t |

> τo

]
dτo (7)

where τ is the length of sequence, |.| denotes the area of
the region, ∩ and ∪ stands for intersection and union of
the regions respectively. Since UST has non-deterministic
sampling parts, we run it 5 times and the average of the
results is reported.

A. Comparison with Baseline

This experiment strives to demonstrate the advantages
of the proposed tracker in comparison to the trackers that
consists of either of its detectors in isolation. To this end,
we construct several trackers from the components of this
tracker to serve as the baselines for this experiment. In all
of these trackers, the ROI detection and input sampling are
similar to the UST tracker. KNN(10) and KNN(25) trackers
utilize only the feature-based nearest neighbor detector for
the tracking with the neighborhood size of k = 10 and
k = 25 respectively. KNN+(10) and KNN+(25) trackers
additionally incorporate the proposed budgeting mechanism
into their detector. SVM tracker employs the oracle to track
the target whereas SVM+ include the classifier update in
its framework. Figure 5 compares the performance of these
baseline tracker with that of UST, and demonstrates that the
uncertainty sampling data exchange, effectively connect the
classifiers to construct a robust and efficient tracker.

Figure 5: Quantitative comparison of UST with its baselines

Figure 6: Quantitative comparison of the proposed tracker,
UST, with the state-of-the-art trackers using success plot

B. Comparison with state-of-the-art

To establish a fair comparison with the state-of-the-
art, we select some of the most popular discriminative
trackers based on [1] and perform a benchmark on the
whole videos of the dataset, along with partial subsets of the
dataset with a distinguishing attribute to evaluate the tracker
performance under different situations. These trackers are
BSBT [6], CSK [12], CT [3], CXT [10], DFT [34], FOT
[35], FRAG [2], LOT [4], LSHT [36], LSK [37], MIL [7],
SBT [8], STRUCK [9], TLD [11], and VR [18].

Figure 6 depicts the performance of all of the in-
vestigated trackers. As it is evident from this plot, UST
outperforms the other trackers by having the highest AUC.
Interestingly, UST also outperform these trackers when
facing illumination, scale and shape changes that show the
resilience of this double appearance model used by the two
detectors (Table I). Rotations, shear and fast motions are
well addressed by the proposed tracker and only STRUCK
handled motion blur as good as UST. However, background
clutter and low resolution targets challenged the UST. Not
equipped with the means to handle LR, the results seems
acceptable (Figure 7). In the case of background clutter,
the use of context information in CXT and local sparsity
in LSK outperforms our proposed tracker, shedding some
light on the future direction of research.

Finally, it is prudent to note that UST achieved an
average speed of 28.3 fps on a Pentium 4 Core i7 @
3.2 GHz by Matlab/C++ implementation.This experiment
demonstrated that with a adequate information exchange
in co-tracking, it is possible to balance a good trade-off
between speed and accuracy, while the tracker is capable
of properly under various tracking challenges.



Table I: Quantitative evaluation of five best trackers under
different visual tracking challenges using AUC of success
plot. The best performance for each attribute is bold.

Attribute CSK TLD LSK STRK CXT UST
Illumination Variation 0.40 0.49 0.50 0.46 0.52 0.52
Deformation 0.36 0.32 0.38 0.41 0.32 0.47
Occlusion 0.36 0.42 0.44 0.44 0.40 0.53
Scale Variation 0.34 0.44 0.46 0.43 0.45 0.51
In-plane Rotation 0.43 0.50 0.46 0.51 0.53 0.59
Out-of-plane Rotation 0.39 0.43 0.45 0.48 0.45 0.56
Out-of-View 0.32 0.45 0.39 0.44 0.38 0.52
Low Resolution 0.29 0.37 0.39 0.39 0.38 0.38
Background Clutter 0.42 0.40 0.45 0.39 0.45 0.41
Fast Motion 0.39 0.45 0.42 0.52 0.44 0.53
Motion Blur 0.32 0.42 0.37 0.48 0.38 0.46
ALL 0.41 0.46 0.46 0.48 0.48 0.52

Figure 7: Sample tracking results of evaluated algorithms on
several challenging video sequences. (from top) FaceOcc2
with severe occlusions, Deer with fast motion, Ironman
with in-plane and out-of-plane rotations, and Board with
background clutter. In these sequences the orange box
depicts the UTS, the yellow dashed line indicates the
ground truth, and the rest depict the result of other trackers.

V. CONCLUSION

The key component is a co-tracking framework con-
sisting of a frequently updated (KNN-based) classifier and
a more conservative (part-based) detector. Built upon un-
certainty sampling foundation, samples deemed uncertain
by the KNN classification are labeled by the part-based
detector (the oracle). A memory budgeting mechanism keep
classifier updates tractable. This accounting method, along
with an optical-flow based ROI detection ensures that the
proposed tracker, UST, meet th ereal-time criteria for track-
ing. Experimental results on challenging video sequences
demonstrated that the UTS tracker achieve comparable ac-
curacy to the state-of-the-art trackers, while outperforming
them in terms of efficiency and robustness.
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