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Abstract

Adaptive tracking-by-detection is a popular approach
to track arbitrary objects in various situations. Such ap-
proaches treat tracking as a classification task and con-
stantly update the object model. The update procedure re-
quires a set of labeled examples, where samples are col-
lected from the last observation, and then labeled. However,
these intermediate steps typically follow a set of heuris-
tic rules for labeling and uninformed search in the sam-
ple space, which decrease the effectiveness of model up-
date. In this study, we present a framework for adaptive
tracking that utilizes active learning for effective sample se-
lection and labeling them. The active sampler employs a
committee of randomized-classifiers to select the most in-
formative samples and query their label from an auxiliary
detector with a long-term memory. The committee is then
updated with the obtained labels. Experiments show that
our algorithm outperforms state-of-the-art trackers on var-
ious benchmark videos.

1. Introduction
In visual object tracking, robustness against ever-

changing object in complex environments is an essential
requirement in video surveillance, human-machine inter-
faces, driving-assistant systems and robotics applications.
Although some settings allow for strong assumptions about
the target, in real-world applications it is desired to track
arbitrary objects with little a-priori knowledge. Such model
free tracker consist of learning and adjusting the represen-
tation of the target on-the-fly. Using tracking-by-detection
approaches is a popular trend in recent years, due to sig-
nificant breakthroughs in object detection domain, yielding
strong discriminative power wih offline training. Adopted
for visual tracking, many of such trackers are adjusted for
online training and accumulate knowledge about a target
with each successful detection.

However, there are a multitude of drawbacks in the
tracking-by-detection setting: (i) The sampling in search

Figure 1. Schematic of the system. The proposed tracker, QBT,
utilizes a novel adaptive sampling strategy and collect samples
for the active labeler. The labeler performs bagging on an en-
semble of randomized classifiers, and query the disputed sam-
ples from a complete classifier. The labels are then propagated
to the next stage, where the location and scale of the target is esti-
mated. Finally, the ensembe classifiers of the system are updated
in a query-by-bagging [1] fashion. To robustify the tracker against
motion and appearance jitters, the complete classifier is updated
with longer intervals.

space is sparse [13], uninformed and ignores the informa-
tion contained in each sample about its local neighborhood.
In this way, the tracker miss the promising regions of the
search space, and blindly examine many possible transfor-
mations before finding the optimal one. (ii) Classifier is
trained using all the examples with equal weights, meaning
that negative examples which overlap very little with the tar-
get bounding box are treated equally as those negative ex-
amples with significant overlaps. Even the slightest track-
ing error, may lead to poorly labeled examples that cause
the tracker to drift. (iii) The labeler is typically build upon
heuristics and intuitions, rather than using the accumulated
knowledge about the target for example. Mistakes in la-
beling confuses the classifier and is known as label noise
problem [11]. (iv) Adaptive trackers inherently suffer from
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Figure 2. Different adaptive tracking-by-detection paradigms:
given the current estimated object location, these approaches gen-
erate a set of samples and, depending on the type of learner, pro-
duce training labels. Active learning, utilizes the most informative
samples to efficiently and effectively update the learner. Unlike
others, Struck and operates directly on the tracking output [11].

drifting problem, if the update rate is small, the changes of
the target are not reflected into target’s template, whereas
rapid update of the tracker render it vulnerable to data noise
and small target localization errors. This is another instance
of stability plasticity dilemma [9].

Current state-of-the-art tracking-by-detection algorithms
are trying to overcome some of these shortcomings. Label
noise problem is tackled by robust loss functions [17, 19],
semi-supervised learning [9, 24], or multi-instance learn-
ing [4, 32]. Some other trackers utilize the efficient sparse
sampling [13], context information of the examples [7, 10]
or sample informativeness for the classifier [34] to bolster
the sampling procedure. Furthermore, Struck [11] com-
bines the labeling and learning step by reformulating the
tracking-by-detection framework to resolve the label noise
problem. Drifting problem have been tackled by utilizing
leaky memories [21], online mixture model [14], dictionary
updating [35] and incremental subspace update [23]. Some
researchers believe in the necessity of having a “teacher”
to train the classifier [9]. Adaptive ensemble of classifiers
[3] and co-learning [29] in which multiple trackers with dif-
ferent features or inference engines train each other aimed
to address this need using other detectors or trackers. Fur-
thermore, some approaches selected the most discriminative
feature selection [8, 6] or combined generative and discrim-
inative models [30] to overcome this problem. Generally,
discriminative models strongly depend on the sample col-
lection part to robustify the trained classifier. To address all
of the aforementioned issues, we propose a framework, in
which the contents of the samples are utilized to guide the
tracker in sampling and labeling processes, the need for a
teacher is minimized for the classifier, and weigh the exam-
ples based on their information value.

Having a strong classifier for a general tracking-by-
detection requires embedding a lot of prior knowledge to
the tracker (e.g., a pre-trained detector) or sophisticated on-
line learning mechanism. Lets assume we have a trained
classifier (hereafter Oracle). We wish to minimize the need
of querying this oracle in the course of our tracking that is
known as query selection problem.

One of the most theoretically-motivated query selec-
tion frameworks is Query-by-Committee (QBC) algorithm
[26, 25] that maintain a committee of models which are all
trained on the current labeled set, but represent competing
hypotheses. Each committee member is then allowed to
vote on the labeling of query candidates. The most infor-
mative query is considered to be the instance about which
they most disagree. The premise behind the QBC frame-
work is minimizing the version space, which is the set of
hypotheses that are consistent with data.

The original QBC was built upon randomized compo-
nent learning algorithm. For other model classes, such
as discriminative or non-probabilistic models, Abe and
Mamitsuka [1] have proposed Query-by-Bagging (QBag),
which employ the popular ensemble learning model bag-
ging [5] to construct committees. Bagging is a technique to
enhance the performance of the existing learning algorithm
by running it many times on a set of re-sampled governed by
a uniform distribution and the final hypothesis is obtained
by taking majority vote over the output of predictions of
the output hypotheses. QBag introduces the randomness in
the form of re-sampling from the input data, and is based on
the idea that prediction error consist of the bias, which is the
estimation error due to the smaller input size, and the vari-
ance which is explained by the statistical variation existing
in specific data. Bagging can isolate bias from variance and
minimize the latter [1].

We propose Query-by-Bagging Tracker (QBT), which
adjust QBag algorithm for online training to solve the label
noise problem. Additionally, the drift problem is handled
with the use of a dual-memory strategy, where the commit-
tee adapts to the changes of target rapidly, whereas the or-
acle possesses a longer memory to promote the stability of
the target template. Furthermore, a k-means-like approach
is proposed to improve the sampling process and the tracker
considers a weighted vote of the samples to estimate the
target location and scale. The proposed approach shows ex-
cellent performance in comparison with 15 state-of-the-art
trackers on 100 challenging video sequences.

2. Proposed Framework

In the following section, an overview of adaptive
tracking-by-detection approaches is provided, their issues
are discussed, and the proposed framework to overcome that
shortcomings is elaborated.



2.1. Tracking by Detection

A tracking-by-detection algorithm attempts to learn a
classifier to distinguish a target object from its local back-
ground. The position of the target is denoted by bound-
ing box pt, that contains the image patch xp

t of frame It
where t = 1, . . . , T is the time. The features φpt extracted
from the image patch xp

t ∈ Xt are given to the classifier.
Formally, the classifier is trained with example pairs (x, z),
where z = ±1 is the binary label, and makes its predictions
according to ẑ = sign(h(x)) with h : X → R denotes the
classification confidence function.

The target position in next frame, is assumed to be found
in the local neighborhood of its previous location pt−1,
where the value of h is maximized. The tracker aims to find
the transformation yt ∈ Y , where Y is called the search
space and its form depends on the expected transformation
of the target (e.g., 2D affine transformation [16]). Typically,
in tracking-by-detection algorithms the case of 2D transla-
tion is used, in which Y = {(u, v)|u2 + v2 < r2} where
r is search radius [11]. With transformation yt, the new
position of the object is approximated by the composition
pt = pt−1 ◦ yt, thus the classifier estimates the relative
transformation between two frames with

yt = argmax
y∈Y

h(xpt−1◦yt). (1)

Having located the target object, a set of training examples
are selected from the current frame to update the classifier
to reflect the recent changes of target appearance. This pro-
cess is separated into sampling and labeling phases. The
sampling process generates a set of n different transforma-
tions {y1

t , . . . ,y
n
t } that yields the set of training examples

{xpt◦y1
t

t , . . . ,x
pt◦yn

t
t }. Depending on the type of classifier,

the labels {z1t , . . . , znt } are selected for these samples and
the classifier is updated using these samples and their labels.

The labeling process typically employs a transformation
similarity function to determine the label of sampled posi-
tion pt ◦yit. Such function take the form of sp(yit,y

j
t ) ∈ R,

that measures the similarity of two patches that are obtained
from transformations yit and yjt with respect to p. In order
to determine the label zit of a sample generated by trans-
formation yit, a labeling function `(.) is utilized such that
zit = `(sp(yit,y

j
t )). This function is expressed as

`(sp(y0,yit))) =


+1 sp(y0,yit)) > τu

−1 sp(y0,yit)) < τl

0 otherwise
(2)

where τu and τl are upper and lower thresholds, and y0 is
considered as null transformation such that p = p ◦ y0.
Most, if not all, variants of tracking-by-detection algorithms
use a labeler which can be expressed in a similar fashion
[11].

Algorithm 1: Query-by-Bagging Tracker
input : Target position in last frame pt−1
output: Target position in current frame pt

Initiate search center µt ← pt−1
for j ← 1 to n do

Sample transformation yjt ∼ N (µt,Σsearch)
Update search center µt (eq(4))
if soverlapt (y0,yjt ) < τbkg then Sample is too far

Label the sample zjt ← −1
else Sample worth investigating

Label the sample zjt ← `(sp(y0,yjt ))) (eq(6))
if τl < sp(y0,yjt )) < τu then
Ut ← Ut ∪ {〈xpt−1◦yj

t , zjt 〉}

for c← 1 to C do
Draw m samples from Ut
Update committee model θ(c) with them

Update oracle model θ∗ with all samples of Xt
Approximate transformation ŷt (eq(7))
Calculate target position pt = pt−1 ◦ ŷt

Many of the tracking-by-detection schemes use spatial
distance function as their transformation similarity func-
tions, where closer patches are assumed as positive samples
and further ones are considered as background and serve as
negative samples, i.e., sdistp (yit,y

j
t )) = −dist(yit,y

j
t ). An-

other example of such function is based on overlap between
two bounding boxes,

soverlapp (yit,y
j
t )) =

(pt ◦ yit) ∩ (pt ◦ yjt )
(pt ◦ yit) ∪ (pt ◦ yjt )

(3)

where based on labeler function in eq (2), the boxes with
large overlap with current estimated target are selected as
positive samples. The unlabeled examples are generally ig-
nored in binary classifiers [8], whereas in trackers based on
semi-supervised learning they are used to update the clas-
sifier [9, 24]. Labelers in trackers based on multi-instance
learning [4, 32, 34] collect examples in bags and assigns the
label to the bag based on the majority vote of the examples
inside them (Figure 2).

2.2. Query-by-Bagging Tracker (QBT)

We propose an online query selection mechanism called
QBT. QBT is made of an ensemble of classifiers C =
{θ(1), . . . , θ(C)}, called the committee, and a fine special
classifier θ∗, called the oracle. We throe=w a query to the
oracle when the ensemble classifiers show the highest de-
gree of uncertainty (Figure 1).



To localize the target at time t, n samples are drawn from
the Gaussian distribution N (µt,Σsearch) where µt is the
mean of distribution (the mean of target bounding box loca-
tion and its scale), and Σsearch is the search space variance.
To guide the search space toward obtaining better samples,
the search center should start from last known position of
the target pt−1, then move towards the positive samples
and away from negative samples. Every sampling phase
involves sampling n new samples from the frame It+1. In
our approach, half of these samples are drawn with the cen-
ter of last know target position pt, and after that, with ev-
ery new sample, based on its label from the committee, the
search space is slightly shifted. For sample j = 1, . . . , n,
the search center is updated as

µt =

{
pt , j < n

2

µt + αsign(sqbagp (y0,yjt ))
pt−(pt◦yj

t )

‖pt−(pt◦yj
t )‖2

, j ≥ n
2

(4)

where α is a constant, the sign of the sqbagp (y0,yjt ) that is
defined later in eq(5), determines the orientation of the step,
and the step size is proportional to the sample distance from
the search center (‖ . ‖2 denotes Euclidean distance).

Having a committee, the transformation similarity ma-
trix is reduced to the vote score of the different classifiers of
committee C,

sqbagp (yit,y
0) =

C∑
c=1

sign
(
h(xpt◦yi

t |θ(c))
)
. (5)

If the committee is somewhat unanimous about the label
of a sample j, it is used as the label of the sample zjt . On
the other hand, if the committee disagrees about the label
of this sample, based on the principle of query-by-bagging,
the sample is labeled by the oracle and is added to the list
of uncertain samples Ut.

`(sp(y0,yit))) =


+1 sp(y0,yit)) > τu

−1 sp(y0,yit)) < τl

sign(h(xpt◦yi
t)|θ∗) otherwise

(6)

where τu and τl are thresholds with which the tracker con-
trols its reliance on the oracle. It should be mentioned that
we automatically assign negative labels to the patches that
has a small overlap with the target patch pt based on eq(3).

After sampling and labeling, the classifiers should be up-
dated to reflect the recent changes of the target. Inspired
by query-by-bagging framework, we randomly re-sample
m samples from Ut to train every model θ(i) of committee
C (m < n). Additionally, all samples are stacked and ev-
ery 10 frames, the oracle model θ∗ is updated with these

Figure 3. Quantitative comparison of the proposed tracker, QBT,
with the state-of-the-art trackers using success plot and its AUC.

samples. This strategy, update the committee in a frame-
by-frame basis to reflect the latest target changes, but grant
a longer-memory to oracle to navigate the tracker through
occlusions and other temporal inconsistencies of target ap-
pearance.

Finally, the target transformation is approximated by
weighted averaging of all positive samples (the weight is
their committee score):

ŷt =

∑
yt∈Y R(sqbagp (yit,y

0))yt∑
yt∈Y R(sqbagp (yit,y

0))
(7)

where R(x) is the ramp function that equals x for x > 0 and
0 otherwise. Algorithm 1 summarizes the proposed tracker.

3. Experiments

This section reports on the experiments comparing the
QBT with relevant algorithms on benchmark sequences that
are commonly used in the literature. The experiment is
conducted on 100 challenging video sequences from [31],
which involves many visual tracking challenges such as il-
lumination variation (IV), scale variation (SV), occlusions
(OCC), deformations (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), out-of-play rotation (OPR),
out-of-view problem (OV), background clutter (BC) and
low resolution (LR). The performance of the occlusion is
measures by the area under the surface of its success plot
(AUC). The performance of the tracker is measured by the
area under the surface of its success plot. A tracker in time
t succeed to track the object if its response pt overlaps with
the ground truth p∗t more than a threshold τov . Success plot,
graphs the success of the tracker against different values of



(a) IV (b) SV (c) OCC (d) DEF

(e) MB (f) FM (g) IPR (h) OPR

(i) OV (j) BC (k) LR

Figure 4. Quantitative evaluation of trackers under different visual tracking challenges. The best performance is plotted with red, while the
second and third best performance is depicted with green and blue lines respectively. QBT outperformed other trackers when dealing with
different tracking challenges at all the panels except 4(d) in which QBT achieved the second place.

the threshold τov and its AUC is obtained from

AUC =
1

T

∫ 1

0

T∑
t=1

u

(
|pt ∩ p∗t |
|p∗t ∪ p∗t |

> τov

)
dτ (8)

where T is the length of sequence, |.| denotes the area of
the region, ∩ and ∪ stands for intersection and union of the
regions respectively, and u(.) denotes the step function that
returns 1 iff its argument is positive and 0 otherwise.

To establish a fair comparison with the state-of-the-art,
we select some of the most popular discriminative and
generative trackers (according to a recent large benchmark
[31]): BSBT [28], CSK [13], CT [33], CXT [7], DFT [27],
FOT [20], FRAG [2], LOT [22], LSHT [12], LSK [18], MIL
[4], SBT [10], STRUCK [11], TLD [15], and VR [6]. We
perform a benchmark on the whole videos of the dataset,
along with partial subsets of the dataset with a distinguish-
ing attribute to evaluate the tracker performance under dif-
ferent situations.

Figure 3 depicts the overall performance of the proposed
tracker against other benchmarked algorithms on the all se-
quences of the dataset. The plots shows that QBT has a
superior performance on this dataset. It also reveals that the
tracker has many accurate estimations of the target (sharp
slope between 0.9 ≥ τov > 1). Furthermore, the other
steep slope around τov ≈ 0.4 and high value when τov → 0
suggest that tracker was able to keep track of the target in
most cases, and the devised scheme effectively reduced the
drift problem.

Figure 4 present the performance of the trackers, in
the case of prominent tracking challenges. The proposed
tracker, significantly perform better than its competitors
in the cases of illumination variation (Fig.4(a)), occlu-
sion (Fig.4(c)), in-plane and out-of-plane rotations (Fig.4(g)
and 4(h)), out-of-view target (Fig.4(i)), background clutter
(Fig.4(j)), and low resolution (Fig.4(k)) because of its effec-
tive use of a committee of classifiers and long-memory ora-
cle that handle a variety of appearance changes. It is consid-



(a) Tracking results of sequence FaceOcc2 and Walking2 with severe occlusions

(b) Tracking results of sequence Deer and Jumping with motion blur

(c) Tracking results of sequence Girl and Ironman with in-plane and out-of-plane rotations

(d) Tracking results of sequence Singer1, Shaking and CarDark with drastic illumination changes

(e) Tracking results of sequence Board with background clutter

Figure 5. Sample tracking results of evaluated algorithms on several challenging video sequences. In these sequences the red box depicts
the QBT against other trackers (blue). The ground truth is illustrated with yellow dashed box. The results are available in the webpage.

erably successful in cases of scale variation (Fig.4(b)), mo-
tion blur (Fig.4(e)) and fast motion (Fig.4(f)) thanks to the
informed search scheme and sample averaging that robus-
tify the tracker to changes in target size, velocity changes,
and its motion trail blur in the sequences. The performance
of QBT is comparable to that of STRUCK in deformation
case (Fig.4(d)), however, there is room for improvement by
allowing QBT to sample from more general forms of trans-
formations (e.g. 3D translations or affine transformations).
Nevertheless, even in this plot, QBT shows high accuracy
tracking more than other trackers (look at the sharp slope
between 0.9 ≥ τov > 1). A qualitative comparison of the
QBT and other trackers is presented in Figure 5.

4. Conclusions

This study proposed to employ a committee of classi-
fiers, each trained incrementally on a randomized portion

of the latest obtained training samples, to enhance the dis-
criminative power of the tracker. This idea is inspired from
query-by-bagging framework that follow the version-space
shrinking strategy to distinguish the most informative sam-
ples. Such samples are then queried from an auxiliary clas-
sifier with longer memory that is robust against fluctuations
in target appearance and occlusions. Another novelty of this
study is to use a guided search in sample space, to find more
suitable and relevant samples for better training the tracker
classifiers. Furthermore, a solution is proposed to compen-
sate of over-reliance of the tracker on the classifiers con-
fidence function. The proposed tracker, QBT, incorporates
all of these solutions in a discriminative tracking framework
and outperform state-of-the-art discriminative and genera-
tive trackers on a large video dataset with various types of
tracking challenges such as appearance changes and occlu-
sions.
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