

Abstract

Addressed challenges of ensemble discriminative tracking:

Creation	Random subsets of negative samples					
Diversity	Generating effective artificial samples					
Stability-Plasticity	Dual memory + query optimization					
Model Drift	Online bagging + artificial samples					

Promoting Diversity

of diversity samples with labels that is intentionally set to oppose the ensemble label. If $\epsilon' \leq \epsilon$ then the update is accepted.

Efficient Diverse Ensemble for Discriminative Co-Tracking

Kourosh Meshgi, Shigeyuki Oba, Shin Ishii

meshgi-k@sys.i.kyoto-u.ac.jp, {oba, ishii}@i.kyoto-u.ac.jp

References:

[1] K. Meshgi, S. Oba, and S. Ishii, Robust Discriminative Tracking via Query-by-Bagging, AVSS'16. [2] P. Melville and R. J. Mooney. Constructing diverse classifier ensembles using artificial training examples. IJCAI'03. [3] A. Lapedriza, H. Pirsiavash, Z. Bylinskii, and A. Torralba. Are all training examples equally valuable? arXiv, 2013 [4] A. Krogh, J. Vedelsby, et al. Neural network ensembles, cross validation, and active learning. NIPS'95. [5] F. Tang, S. Brennan, Q. Zhao, and H. Tao. Co-tracking using semi-supervised support vector machines. ICCV'07 Acknowledgement: This study is supported by the Japan NEDO and the "Post-K application development for exploratory challenges" project of the Japan MEXT.

Results

V(

O

O

- · · · · · · · · · · · · · · · · · · ·		-									
OT 2015:				STRK	TGPR	MEEM	STPL	CMT	SRDCF	ССОТ	Ours
		Accu	iracy	0.47	0.48	0.50	0.53	0.49	0.56	0.54	0.58
		Robu	istness	1.26	2.31	1.85	1.35	1.81	1.24	0.82	1.36
					OTDIZ	א גידידא ג	OTDI		ODDOD		
			0		STRK	MEEM	STPL		SRDCF		Ours
TB-100:		Avg.	Succ	0.46	0.48	0.65	0.62	0.63	0.64	0.74	0.69
		Avg.	Prec	0.58	0.59	0.62	0.73	0.74	0.71	0.85	0.81
		IoU	> 0.5	0.52	0.52	0.62	0.71	0.72	0.75	0.88	0.78
TB-50:	Attribute	TLD	STRK	TGPR	MEEM	I MSTR	STPL	CMT	SRDCF	F CCOT	Ours
	IV	0.48	0.53	0.54	0.62	0.73	0.68	0.73	0.70	0.75	0.75
	DEF	0.38	0.51	0.61	0.62	0.69	0.70	0.69	0.67	0.69	0.69
	OCC	0.46	0.50	0.51	0.61	0.69	0.69	0.69	0.70	0.76	0.72
	SV	0.49	0.51	0.50	0.58	0.71	0.68	0.72	0.71	0.76	0.74
	IPR	0.50	0.54	0.56	0.58	0.69	0.69	0.74	0.70	0.72	0.73
	OPR	0.48	0.53	0.54	0.62	0.70	0.67	0.73	0.69	0.74	0.74
	OV	0.54	0.52	0.44	0.68	0.73	0.62	0.71	0.66	0.79	0.76
	LR	0.36	0.33	0.38	0.43	0.50	0.47	0.55	0.58	0.70	0.58
	BC	0.39	0.52	0.57	0.67	0.72	0.67	0.69	0.70	0.70	0.73
	FM	0.45	0.52	0.46	0.65	0.65	0.56	0.70	0.63	0.72	0.74
	MB	0.41	0.47	0.44	0.63	0.65	0.61	0.65	0.69	0.72	0.72
	Avg. Succ	0.49	0.55	0.56	0.62	0.72	0.69	0.72	0.70	0.75	0.74
	Avg. Prec	0.60	0.66	0.68	0.74	0.82	0.76	0.83	0.78	0.84	0.84
	IoU > 0.5	0.59	0.64	0.66	0.75	0.86	0.82	0.83	0.83	0.90	0.89
	Avg FPS	21.2	11.3	3.7	14.2	8.3	48.1	21.9	4.3	0.2	21.9

The effect of the "activeness" parameter balancing stability-plasticity equilibrium.

Using artificial data (compared to real data with similar data dist.) does not degrade the performance of the tracker.

