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Tracker Concept ResultsAbstract

Promoting Diversity

Addressed challenges of ensemble discriminative tracking:

Random subsets of negative samples

Generating effective artificial samples

Dual memory + query optimization

Online bagging + artificial samples

Creation

Diversity

Stability-Plasticity

Model Drift

Here, is a diversified classifier, because it has a set

of diversity samples with labels that is intentionally set to

oppose the ensemble label. If then the update is

accepted.
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The effect of different update schemes:

bagging, artificial diversity data, both.

The effect of the “activeness” parameter,

balancing stability-plasticity equilibrium.

The effect of dual memory schemes:

ensembles with no update, no data

exchange, and no long-term memory

have inferior performance.

Using artificial data (compared to real

data with similar data dist.) does not

degrade the performance of the tracker.
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Using active learning to select which samples

to query from long-memory auxiliary classifier,

based on the uncertainty metric

 Gaining generalization and speed-up by

querying only the most informative samples

from the long-memory complex classifier

 Balances between long and short term

memory automatically

 Reduce label classification uncertainty

 Breaks self learning loop

 Accurate (Comparable with state-of-the-art)

 Reliable (Graceful degradation)

 Real-time Processing (~ 22 fps)

 Robust (High performance under various

challenges)

 Compatible with Embedded Systems
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TRACKER PROPERTIESBENEFITS OF ACTIVE CO-TRAINING


