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Abstract

Ensemble discriminative tracking utilizes a committee of
classifiers, to label data samples, which are in turn, used for
retraining the tracker to localize the target using the collec-
tive knowledge of the committee. Committee members could
vary in their features, memory update schemes, or training
data, however, it is inevitable to have committee members
that excessively agree because of large overlaps in their
version space. To remove this redundancy and have an ef-
fective ensemble learning, it is critical for the committee to
include consistent hypotheses that differ from one-another,
covering the version space with minimum overlaps. In this
study, we propose an online ensemble tracker that directly
generates a diverse committee by generating an efficient set
of artificial training. The artificial data is sampled from the
empirical distribution of the samples taken from both tar-
get and background, whereas the process is governed by
query-by-committee to shrink the overlap between classi-
fiers. The experimental results demonstrate that the pro-
posed scheme outperforms conventional ensemble trackers
on public benchmarks.

1. Introduction
Tracking-by-detection [3,5,19,20,22,25] as one the most

popular approaches of discriminative tracking utilizes clas-
sifier(s) to perform the classification task using object de-
tectors. In a tracking-by-detection pipeline, several samples
are obtained from each frame of the video sequence, to be
classified and labeled by the target detector, and this infor-
mation is used to re-train the classifier in a closed feedback
loop. This approach advantages from the overwhelming
maturity of the object detection literature, both in the terms
of accuracy and speed [11,13], yet struggles to keep up with
the target evolution as it rises issues such as proper strategy,
rate, and extent of the model update [32,46,55]. To adapt to
object appearance changes, the tracking-by-detection meth-
ods update the decision boundary as opposed to object ap-
pearance model in generative trackers. Imperfections of

(a) Typical ensemble state (b) Conventional update

(c) Partial update (d) Diversified update

Figure 1. Version space examples for ensemble classifiers. (a) All
hypotheses are consistent with the previous labeled data, but each
represents a different classifier in the version space Vt. In the next
time step, the models are updated with the new data (boxed). (b)
Updating with all of the data tend to make the hypothesis more
overlapping. (c) Random subsets of training data are given to
the hypotheses and they update without considering the rest of the
data, the hypotheses cover random areas of the version space. (d)
Random subsets of training data plus artificial generated data (pro-
posed), trains the hypothese to be mutually uncorrelated as much
as possible, while encouraging them to cover more (unexplored)
area of the version space.

target detection and model update throughout the tracking,
manifest themselves as accumulating errors, which essen-
tially drifts the model from the real target distribution, hence
leads to target loss and tracking failure. Such imperfections
can be caused by labeling noise, self-learning loop, sensi-
tive online-learning schemes, improper update frequency,
non-realistic assumption about the target distribution, and
equal weights for all training samples.

Misclassification of a sample due to drastic target trans-
formations, visual artifacts (such occlusion) or model er-
rors not only degrades target localization accuracy, but also
confuses the classifier [22] when trained by this erroneous
label. Typically in tracking-by-detection, the classifier is
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retrained using its own output from the earlier tracking
episodes (the self-learning loop), which amplitudes a train-
ing noise in the classifier and accumulate the error over
time. The problem amplifies when the tracker lacks a for-
getting mechanism or is unable to obtain external scaf-
folds. Some researchers believe in the necessity of having a
“teacher” to train the classifier [20]. This inspired the use of
co-tracking [50], ensemble tracking [44, 57], disabling up-
dates during occlusions, or label verification schemes [24]
to break the self-learning loop using auxiliary classifiers.

Ensemble tracking framework provides effective frame-
works to tackle one or more of these challenges. In such
frameworks, the self-learning loop is broken, and the label-
ing process is performed by leveraging a group of classi-
fiers with different views [19, 21, 44], subsets of training
data [39] or memories [38, 57]. The main challenge in en-
semble methods is how to decorrelate ensemble members
and diversify learned models [21]. Combining the outputs
of multiple classifiers is only useful if they disagree on some
inputs [27], however, individual learners with similar train-
ing data are usually highly correlated [60] (Fig. 1).

Contributions: We propose a diversified ensemble dis-
criminative tracker (DEDT) for real-time object tracking.
We construct an ensemble using various subsamples of the
tracking data and maintain the ensemble throughout the
tracking. This is possible by devising methods to update
the ensemble to reflect target changes while keeping its di-
versity to achieve good accuracy and generalization. In ad-
dition, breaking the self-learning loop to avoid the potential
drift of the ensemble is applied in a co-tracking framework
with an auxiliary classifier. However, to avoid unnecessary
computation and boost the accuracy of the tracker, an ef-
fective data exchange scheme is required. We demonstrate
that learning ensembles with randomized subsets of train-
ing data along with artificial data with diverse labels in a
co-tracking framework achieve superior accuracy. This pa-
per offers the following contributions:

• We propose a novel ensemble update scheme that gen-
erates necessary samples to diversify the ensemble.
Unlike the other model update schemes that ignore
the correlation between classifiers of an ensemble, this
method is designed to promote diversity.
• We propose a co-tracking framework that accommo-

dates the short and long-term memory mixture, effec-
tive collaboration between classification modules, and
optimized data exchange between modules by borrow-
ing the concept of query-by-committee [49] from ac-
tive learning literature.

In this view, our proposed method is distinguishable from
CMT [38] that uses multiple-memory horizons for train-
ing the ensemble. It is also different from MUSTer [23]
that use long-term memory to validate the results of short-

Figure 2. Schematic of the system. The proposed tracker, DEDT,
labels the obtained sample using an homogeneous ensemble of
the classifiers, the committee. The samples that the committee
has highest disagreement upon (the uncertain samples) are queried
from the auxiliary classifier, a different type of classifier. The lo-
cation of the target is then estimated using the labeled target. Each
member of the ensemble is then updated with a random subset of
uncertain samples. By generating the diversity set (r.t. Sec 4.2),
the ensemble is then diversified, yielding a more effective ensem-
ble. For notion and procedure please r.t. Sec 4.1 and Alg. 1.

memory tracker and TGPR [17], in which long-term mem-
ory regularizes the results of short-memory tracker. Further-
more, the proposed framework differs from the co-tracking
elaborated in [50], as in that method two classifiers cast
a weighted vote to label the target, and pass the samples
they struggle with to the other one to learn. However, in
our tracker, the ensemble passes the disputed samples to an
auxiliary classifier which is trained on all of the data period-
ically, to provide the effect of long-term memory while be-
ing resistant to abrupt changes, outliers and label noise. The
evaluation results of DEDT on OTB50 [55], OTB100 [56],
and VOT2015 [26] datasets demonstrates competitive accu-
racy of DEDT compared to the state-of-the-art of tracking.

2. Prior Work
Ensemble tracking: Using a linear combination of sev-
eral weak classifiers with different associated weights has
been proposed in a seminal work by Avidan [2]. Following
this study, constructing an ensemble by boosting [19], on-
line boosting [31, 41], multi-class boosting [43] and multi-
instance boosting [3, 58] led to the enhancement of the per-
formance of the ensemble trackers. Despite its popularity,
boosting demonstrates low endurance against label noise
[47] and alternative techniques such as Bayesian ensemble
weight adjustment [5] has been proposed to alleviate this
shortcoming. Recently, ensemble learning based on CNNs
gained popularity. Researchers make ensembles of CNNs
that shares convolutional layers [40], different loss func-
tions for each output of the feature map [54], and repeatedly
subsampling different nodes and layers in fully connected



layers on CNN to build an ensemble [21, 34]. Furthermore,
it is proposed to exploit the power of ensembles such as fea-
ture adjustment in ensembles [16] and the addition of the
ensemble’s members [44, 57] over-time.
Ensemble diversity: Empirically, ensembles tend to yield
better results when there is a significant diversity among the
models [28]. Zhou [60] categorizes the diversity genera-
tion heuristics into (i) manipulation of data samples based
on sampling approaches such as bagging and boosting (e.g.
in [39]), (ii) manipulation of input features such as online
boosting [19], random subspaces [45], random ferns [42]
and random forests [44] or combining using different lay-
ers, neurons or interconnection layout of CNNs [21, 34],
(iii) manipulation of learning parameter, and (iv) manipula-
tion of the error representation. The literature also suggests
a fifth category of manipulation of error function which en-
courages the diversity such as ensemble classifier selection
based on Fisher linear discriminant [53].
Training data selection: A principled ordering of training
examples can reduce the cost of labeling and lead to faster
increases in the performance of the classifier [52], therefore
we strive to use training examples based on their usefulness,
and avoid using on all of them (including noisy ones and
outliers) that may result in higher accuracy [14]. Starting
from easiest examples (Curriculum learning) [6], pruning
adversarial examples [35], excluding misclassified samples
from next rounds of training [51], sorting samples by their
training value [30] are some of the proposed approaches in
the literature. However, the most common setting is active
learning, in which the algorithm selects which training ex-
amples to label at each step for the highest gains in the per-
formance. In this view, it may require to focus on learning
the hardest examples first. For example, following the crite-
ria of “highest uncertainty”, an active learner select samples
closest to the decision boundary to be labeled next. This
concept can be useful in visual tracking, e.g. to measure the
uncertainty caused by bags of samples [59].
Active learning for ensembles: Query-by-committee
(QBC) [49] is one of the most popular ensemble-based ac-
tive learning approaches, which constructs a committee of
models representing competing hypotheses to label the sam-
ples. By defining a utility function on the ensemble (such
as disagreement, entropy, or Q-statistics [60]), this method
selects the most informative samples to be queried from the
oracle (or any other collaborating classifier) in a form of
the query optimization process [48]. Built upon random-
ized component learning algorithm, QBC involves Gibbs
sampling, which requires adaptation to use deterministic
classifiers. This was realized by resampling different sub-
sets of data to construct an ensemble of deterministic base
learners in query-by-bagging and query-by-boosting frame-
works [1]. The set of hypotheses consistent with the data is
called version space and by selecting the most informative

samples to be labeled, QBC attempts to shrink the version
space. However, only a committee of hypotheses that effec-
tively samples the version space of all consistent hypothe-
ses is productive for the sample selection [9]. To this end,
it is crucial to promote the diversity of the ensemble [37].
In QBag and QBoost algorithms, all of the classifiers are
trained on random subsets of the similar dataset, which de-
grade the diversity of the ensemble. Reducing the number
of necessary labeled samples [29], unified sample learning
and feature selection procedure [33] and reducing the sam-
pling bias by controlling the variance [8] are some of the
improvements that active learning provides for the discrim-
inative trackers. Moreover, using diversity data to diversify
the committee members [37] and promoting the classifiers
that have unique misclassifications [53] are from few sam-
ples that active learning was employed to promote the di-
versity of the ensemble.

3. Tracking by Detection
By definition, a tracker tries to determine the state of

the target pt in frame Ft (t ∈ {1, . . . , T}) by finding the
transformation yt from its previous state pt−1. In tracking-
by-detection formulation, the tracker employs a classifier θt
to separate the target from the background. It is realized
by evaluating possible candidates from the expected target
state-space Yt. The candidate whose appearance resembles
the target the most, is usually considered as the new target
state. Finally, the classifier is updated to reflect the recent
information.

To this end, first several samples xpt−1◦yj
t

t ∈ Xt are ob-
tained by a transformation yjt ∈ Yt from the previous target
state, pt−1 ◦ yjt . Sample j ∈ {1, . . . , n} indicates the lo-
cation pt−1 ◦ yjt in the frame Ft, where the image patch

x
pt−1◦yj

t
t is contained. Then, each sample is evaluated by

the classifier scoring function h : Xt → R to calculate the

score sjt = h(x
pt−1◦yj

t
t |θt). This score is utilized to obtain

a label `jt for the sample, typically by thresholding its score,

`jt =


+1 , sjt > τu

−1 , sjt < τl

0 , otherwise
(1)

where τl and τu serves as lower and upper thresholds re-
spectively. Finally, the target location yt is obtained by
comparing the samples’ classification scores. To obtain the
exact target state, the sample with highest score is selected
as the new target, yt = yj

∗

t s.t. j∗ = argmax
i

(sjt ). A

subset of the samples and their labels are used to re-train
the classifier’s model θt+1 = u(θt,Dξ(t)). Here, Dt =
{〈Xt,Lt〉} is the set of samples Xt and their labels Lt, u(.)
is the model update function, and the ξ(t) defines the subset
of the samples that the tracker considers for model update.



An ensemble discriminative tracker employs a set of
classifiers instead of one. These classifiers, hereafter called
committee, are represented by Ct = {θ(1)

t , . . . , θ
(C)
t }, and

are typically homogeneous and independent (e.g., [31,44]).
Popular ensemble trackers utilize the majority voting of the
committee as their utility function,

sjt =

C∑
c=1

sign
(
h(x

pt−1◦yj
t

t |θ(c)
t )
)
. (2)

Then eq(1) is used to label the samples.
The model of each classifier is updated independently,

θ
(c)
t+1 = u(θ

(c)
t ,Dξ(t)) meaning that all of the committee

members are trained with a similar set of samples and a
common label for them.

4. Diverse Ensemble Discriminative Tracker

We propose a diverse ensemble tracker composed of
a highly-adaptive and diverse ensemble of classifiers C
(the committee), a long-term memory object detector (that
serves as the auxiliary classifier), and an information ex-
change channel governed by active learning. This allows for
effective diversification of the ensemble, improving the gen-
eralization of the tracker and accelerating its convergence
to the ever-changing distribution of target appearance. We
leveraged the complementary nature and long-term memory
of the auxiliary tracker to facilitate effective model update.

One way to diversify the ensemble is to increase the
number of examples they disagree upon [27]. Using bag-
ging and boosting to construct an ensemble out of a fix
sample set, ignores this critical need for diversity as all of
the data are randomly sampled from a shared data distribu-
tion. However, for each committee member, there exists a
set of samples that distinguish them from other committee
members. One way to obtain such samples is to generate
some training samples artificially to differ maximally from
the current ensemble [36].

The diversified ensemble covers larger areas of the ver-
sion space (i.e. the space of consistent hypotheses with the
samples from current frame), however, this radical update of
the ensemble may render the classifier susceptible to drastic
target appearance changes, abrupt motion, and occlusions.
In this case, given the non-stationary nature of the target
distribution1, the classifier should adapt itself rapidly with
the target changes, yet it should keep a memory of the target
to re-identify if the target goes out-of-view or got occluded
(as known as stability-plasticity dilemma [20]). In addition,
there are samples for which the ensemble is not unanimous
and an external teacher maybe deemed required.

1The non-stationarity means that the appearance of an object may
change so significantly that a negative sample in the current frame looks
more similar to a positive example in the previous frames [4].

To amend these shortcomings, an auxiliary classifier is
utilized to label the samples which the ensemble dispute
upon (co-tracking). This classifier is batch-updated with all
of the samples less frequently than the ensemble, realizing
the longer memory for the tracker. Active query optimiza-
tion is employed to query the label of the most informative
samples from the auxiliary classifier, which is observed to
effectively balance the stability-plasticity equilibrium of the
tracker as well. Figure 2 presents the schematic of the pro-
posed tracker.

4.1. Formalization

In this approach, if the committee comes to a solid vote
about a sample, then the sample is labeled accordingly.
However, when the committee disagrees about a sample, its
label is queried from the auxiliary classifier θ(o)

t :

`jt =


+1 , sjt > τu

−1 , sjt < τl

sign
(
h(x

pt−1◦yj
t

t |θ(o)
t )
)

, otherwise

(3)

in which sjt is derived from eq(2). The uncertain samples

list is defined as Ut = {xpt−1◦yj
t

t |τl < sjt < τu}.
The committee members are then updates using our pro-

posed mechanism f(.) using the uncertain samples Ut,

θ
(c)
t+1 = f(θ

(1..c)
t ,Ut,Dt) (4)

Finally, to maintain a long-term memory and slower update
rate for the auxiliary classifier, it is updated every ∆ frames
with all of the samples from t−∆ to t.

θ
(o)
t+1 =

{
u(θ

(o)
t ,Dt−∆..t) , if t 6= k∆ + 1

θ
(o)
t , if t = k∆ + 1

(5)

Algorithm (1) summarizes the proposed tracker.

4.2. Diversifying Ensemble Update

The model updates to construct a diverse ensemble ei-
ther replace the weakest or oldest classifier of the ensem-
ble [2, 19] or creates a new ensemble in each iteration [37].
While the former lacks flexibility to adjust to the rate of tar-
get change, the latter involves a high level of computation
redundancy. To alleviate these shortcomings, we create an
ensemble for the first frame, update them in each frame to
keep a memory of the target, and diversify them to improve
the effectiveness of ensemble. The diversifying update pro-
cedure is as follows:

1. The members ensemble Ct is updated with a random
subsets (of size m) of the uncertain data Ut, that make
them more adept in handling such samples, and gen-
erate a temporary ensemble C′t. Note that for certain



input : Committee models θ(c)
t , Auxiliary model θ(o)

input : Target position in previous frame pt−1

output: Target position in current frame pt

for j ← 1 to n do
Sample a transformation yjt ∼ N (pt,Σsearch)

Calculate committee score sjt (eq(2))
if τl < sjt < τu then sample label is uncertain

`jt = sign
(
h(x

pt−1◦yj
t

t |θ(o))
)

Ut ← Ut ∪ {〈xpt−1◦yj
t , `jt 〉}

else
`jt = sign(sjt )

D ← D ∪ {〈xpt−1◦yj
t , `jt 〉}

for c← 1 to C do
Uniformly resample m data S(c)

t from Ut
θ
′(c)
t ← u(θ

(c)
t |S

(c)
t )

Calculate the prediction error of Ct, ε(Ct) = |Ut|
|Dt|

Calculate empirical distribution of samples, Π(Xt)
for c← 1 to C do

do
Draw m′ samples A(c)

t from Π(Xt)
Calculate class membership probability ˆ̀(C′t)
Set the labels of samples ∝ 1

ˆ̀(C′t)

θ
′′(c)
t ← u(θ

′(c)
t |A

(c)
t )

Calculate new prediction error ε(C′′t ) (eq(6))
while ε(C′′t ) ≥ ε(Ct)
θ
′(c)
t ← θ

′′(c)
t

All diversity sets are applied, Ct+1 ← C′t
if mod(t,∆) = 0 then

θ
(o)
t+1 ← u(θ

(o)
t ,Dt−∆..t)

Target transformation yt = yj
∗

t s.t.j∗ = argmax
i

(sjt )

Calculate target position pt = pt−1 ◦ ŷt
Algorithm 1: Diverse Ensemble Discriminative Tracker

samples (those not in Ut), the committee is unanimous
about the label and adding them to the training set of
the committee classifiers is redundant [39].

2. The label prediction of the original ensemble Ct is then
calculated on Dt w.r.t. the labels given by the whole
tracker (composed of the ensemble and the auxiliary
classifier), and prediction error ε(Ct) is obtained.

3. The empirical distribution of training data, Π(Xt), is
calculated to govern the creation of the artificial data.

4. In an iterative process for each of the committee mem-
bers, m′ samples are drawn from a Π(Xt), assum-
ing attribute independence. Given a sample, the class
membership probabilities of the temporary ensemble
ˆ̀(C′t) that is the probability of selecting a label by the

temporary ensemble on Dt, is then calculated. La-
bels are then sampled from this distribution, such that
the probability of selecting a label is inversely propor-
tional to the temporary ensemble prediction. This set
of artificial samples and their diverse labels are called
the diversity set of committee member c, A(c)

t .
5. The classifier c of temporary ensemble is updated with
A(c)
t , to obtain the diverse ensemble C′′t = {θ′′(c)t }

and calculate its prediction error ε(C′′t ). If this up-
date increases the total prediction error of the ensemble
(ε(C′′t ) > ε(Ct)), then the artificial data is rejected and
new data A(c)

t should be generated,

ε(C′′t ) =

C∑
c=1

n∑
j=1

1
(
`jt 6= h(x

pt−1◦yj
t

t |θ′′(c)t )
)
. (6)

where 1(.) denotes the step function that returns 1 iff its
argument is true/positive and 0 otherwise.

This procedure creates samples for each member of the
committee that distinguish them from other members of the
ensemble using a contradictory label (therefore improving
the ensemble diversity [37]), but only accepts them when
using such artificial data improves the ensemble accuracy.

4.3. Implementation Details

There are several parameters in the system such as the
number of committee members (C), parameters of sampling
step (number of samples n, effective search radius Σsearch),
and the holding time of auxiliary classifier (∆). Larger val-
ues of m results in temporary committee with a higher de-
gree of overlap, thus less diverse, whereas smaller values
of m tend to miss the latest changes of the quick-changing
target. A Larger number of artificial samples m′ result in
more diversity in the ensemble, but reduce the chance of
successful update (i.e. lowering the prediction error of the
ensemble). These parameters were tuned using a simulated
annealing optimization on a cross-validation set.

In our implementation, we used kd-tree-based KNN
classifiers with HOG [10] feature for the ensemble and
reused the calculations with a caching mechanism to ac-
celerate classification. For the empirical distribution of the
data, a Gaussian distribution is determined by estimating
the mean and standard variation of the given training set
(i.e. HOG of Xt). In addition, to localize the target, the
samples with the highest sum of confidence scores is se-
lected as the next target position. The auxiliary classifier
is a a part-based detector [15]. The features, part-base de-
tector dictionary, and the parameters of committee mem-
bers (k of KNNs), thresholds τl, τu, and the rest of above-
mentioned parameters (Except for C that have been ad-
justed to control the speed of the tracker, here) have been
adjusted using cross-validation. With C = 15, k = 23, n =
1000,m = 80,m′ = 250, τu = 0.54 and τl = −0.41



Table 1. Quantitative evaluation of trackers under different vi-
sual tracking challenges of OTB50 [55] using AUC of success
plot and their overall precision. The first, second and third best
methods are shown in color. More data are available on http:
//ishiilab.jp/member/meshgi-k/dedt.html.
Attribute TLD STRK TGPR MEEM MSTR STPL CMT SRDCF CCOT Ours

IV 0.48 0.53 0.54 0.62 0.73 0.68 0.73 0.70 0.75 0.75
DEF 0.38 0.51 0.61 0.62 0.69 0.70 0.69 0.67 0.69 0.69
OCC 0.46 0.50 0.51 0.61 0.69 0.69 0.69 0.70 0.76 0.72
SV 0.49 0.51 0.50 0.58 0.71 0.68 0.72 0.71 0.76 0.74
IPR 0.50 0.54 0.56 0.58 0.69 0.69 0.74 0.70 0.72 0.73
OPR 0.48 0.53 0.54 0.62 0.70 0.67 0.73 0.69 0.74 0.74
OV 0.54 0.52 0.44 0.68 0.73 0.62 0.71 0.66 0.79 0.76
LR 0.36 0.33 0.38 0.43 0.50 0.47 0.55 0.58 0.70 0.58
BC 0.39 0.52 0.57 0.67 0.72 0.67 0.69 0.70 0.70 0.73
FM 0.45 0.52 0.46 0.65 0.65 0.56 0.70 0.63 0.72 0.74
MB 0.41 0.47 0.44 0.63 0.65 0.61 0.65 0.69 0.72 0.72

Avg. Succ 0.49 0.55 0.56 0.62 0.72 0.69 0.72 0.70 0.75 0.74
Avg. Prec 0.60 0.66 0.68 0.74 0.82 0.76 0.83 0.78 0.84 0.84
IoU > 0.5 0.59 0.64 0.66 0.75 0.86 0.82 0.83 0.83 0.90 0.89
Avg FPS 21.2 11.3 3.7 14.2 8.3 48.1 21.9 4.3 0.2 21.9

DEDT achieved the speed of 21.97 fps on a Pentium IV PC
@ 3.5 GHz and a Matlab/C++ implementation on a CPU.
Source code can be found at http://ishiilab.jp/
member/meshgi-k/dedt.html.

5. Experiments
For our component analysis, we used the OTB50 [55]

dataset and its subsets with a distinguishing attribute to eval-
uate the tracker performance. These attributes are illumina-
tion variation (IV), scale variation (SV), occlusions (OCC),
deformation (DEF), motion blur (MB), fast motion (FM),
in-plane-rotation (IPR), out-of-plane rotation (OPR), out-
of-view (OV), low resolution (LR), and background clutter
(BC), defined based on the biggest challenges that a tracker
may face throughout tracking. Additionally, to compare
our proposed algorithm against the state-of-the-art we em-
ployed OTB100 [56] and VOT2015 [26] datasets.

For this comparison, we have used success and preci-
sion plots, where their area under curve provides a robust
metric for comparing tracker performances [55]. The preci-
sion plot compares the number of frames that a tracker has
certain pixels of displacement, whereas the overall perfor-
mance of the tracker is measured by the area under the sur-
face of its success plot, where the success of tracker in time
t is determined when the normalized overlap of the tracker
target estimation pt with the ground truth p∗t (also known as
IoU) exceeds a threshold τov . Success plot, graphs the suc-
cess of the tracker against different values of the threshold
τov and its AUC is calculated as

AUC =
1

T

∫ 1

0

T∑
t=1

1

(
|pt ∩ p∗t |
|p∗t ∪ p∗t |

> τov

)
dτov , (7)

where T is the length of sequence, |.| denotes the area of the

region and ∩ and ∪ stands for intersection and union of the
regions respectively. We also compare all the trackers by the
success rate at the conventional thresholds of 0.50 (IoU >
0.50) [55]. The result of the algorithms are reported as the
average of five independent runs.

5.1. Effect of Diversification

To demonstrate the effectiveness of the proposed diver-
sification method we compare the DEDT tracker with two
different versions of the tracker. In the firs version, DEDT-
bag, the ensemble classifiers are only updated with uniform-
picked subsets of the uncertain data (step 1 in section 4.2).
In the other version, DEDT-art, the committee members are
only updated with artificially generated data (steps 2-5 in
the same section). All three algorithms use m + m′ sam-
ples to update their classifiers. In addition to the overall
performance of the tracker, we measure the diversity of the
ensemble using the Q-statistics as elaborated in [28]. For
statistically independent classifiers i and j, the expectation
of Qi,k = 0. Classifiers that tend to classify the same
sample correctly will have positive values of Q, and those
which commit errors on different samples have negative Q
(−1 ≤ Qi,k ≤ +1). For the ensemble of C classifiers, the
averaged Q statistics over all pairs of classifiers is

Qav =
2

C(C − 1)

C−1∑
i=1

C∑
j=i+1

Qi,j , s.t. (8)

Qi,j =
NffN bb −NfbN bf

NffN bb +NfbN bf
(9)

where Nfb is the number of cases that classifier i classified
the sample as foreground, while classifier j detected it as
background, etc.

Figure 3(a) illustrates the effectiveness of the diver-
sification mechanism in contrast with merely generat-
ing data or update the classifiers with uninformed sub-
samples of the data. From the experiment results,
AUC(DEDT-art) < AUC(DEDT-bag) < AUC(DEDT)
and 0 < Qav(DEDT) < Qav(DEDT-art) <
Qav(DEDT-bag) it can be concluded that all of steps
of proposed diversification are crucial to maintain an
accurate and diverse ensemble. Qav(DEDT-art) <
Qav(DEDT-bag) shows that the diversity of DEDT-art is
better than random diversity obtain by DEDT-bag, how-
ever, AUC(DEDT-art) < AUC(DEDT-bag) reveals that
merely using artificial data without the samples gathered by
the tracker, does not provide enough data for an accurate
model update.

5.2. Effect of using Artificial Data

In the first look, using synthesized data to train the en-
semble that will keep track of a real object may not seem
proper. In this experiment, we look for the closest patch

http://ishiilab.jp/member/meshgi-k/dedt.html
http://ishiilab.jp/member/meshgi-k/dedt.html
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(a) The diversification procedure (b) Using artificial data versus real data (c) The “activeness”, i.e. the effect of thresholds

Figure 3. The effect of different components of the proposed algorithm on the overall tracking results on OTB50 [55].

of the real image (frame t of the video) to the synthesized
sample, and use it as the diversity data. To this end, in each
frame, a dense sampling over the frame is performed, the
HOG of these image patches are calculated, and the closest
match to the generated sample (using Euclidean distance)
is selected. The obtained tracker is referred as DEDT-real,
and its performance is compared to the original DEDT.

As Figure 3(b) shows, the use of this computationally-
expensive version of the algorithm does not improve the
performance significantly. However, it should be noted that
generating adversarial samples of the ensemble [18] for as
the diversity data of individual committee members is ex-
pected to increase the accuracy of the ensemble, yet it is out
of the scope of the current research and may be considered
as a future direction for this research.

5.3. Effect of “Activeness”

Labeling thresholds (τl and τu) control the “activeness”
of the data exchange between the committee and the aux-
iliary classifier, therefore allowing the ensemble to get
more/less assistance for its collaborator. In our implemen-
tation, these two values are treated independently, but for
the sake of argument assume that τl = −δ and τu = +δ
(δ ∈ [0, 1]). Figure 3(c) compares the effects of different
values of the δ, and also a “random” data exchange scheme
in which the labeler gets the label of the sample from the en-
semble or auxiliary classifier with the same chance. To in-
terpret this figure it is prudent to note that δ → 0 forces the
ensemble to label all of the samples without any assistance
from the auxiliary classifier. By increasing δ the ensemble
starts to query highly disputed samples from the auxiliary
classifier, which is desired by design. If this value increases
excessively, the ensemble queries even slightly uncertain
samples from the auxiliary classifier, rendering the tracker
prone to the labeling noise of this classifier. In addition, the
tracker loses its ability to update rapidly in the case of an
abrupt change in the target’s appearance or location, lead-
ing to a degraded performance of the tracker. In the extreme
case of δ → 1 the tracker reduces to a single object detector
modeled by the auxiliary classifier.

The information exchange in one way is in the form
of querying the most informative labels from the auxiliary

classifier, and on the other way is re-training it with the la-
beled samples by the committee (for certain samples). We
observed that this exchange is essential to construct a ro-
bust and accurate tracker. Moreover, such data exchange
not only breaks the self-learning loop but also manages the
plasticity-stability equilibrium of the tracker. In this view,
lower values of δ correspond to a more-flexible tracker,
while higher values make it more conservative.

5.4. Comparison with State-of-the-Art

To establish a fair comparison with the state-of-the-art,
some of the most successful popular discriminative trackers
(according to a recent large benchmark [26, 55, 56] and the
recent literature) are selected: TLD [24], STRK [22], TGPR
[17], MEEM [57], MUSTer [23], STAPLE [7], CMT [38],
SRDCF [12], and CCOT [13].

Figure 4. Quantitative performance comparison of the proposed
tracker, DEDT, with the state-of-the-art trackers using success plot
on OTB50 [55] (top) and OTB100 [56] (bottom).



Table 2. Quantitative evaluation of trackers under different visual
tracking challenges of OTB100 [56].

TLD STRK MEEM STPL CMT SRDCF CCOT Ours

Avg. Succ 0.46 0.48 0.65 0.62 0.63 0.64 0.74 0.69
Avg. Prec 0.58 0.59 0.62 0.73 0.74 0.71 0.85 0.81
IoU > 0.5 0.52 0.52 0.62 0.71 0.72 0.75 0.88 0.78

Table 3. Evaluation on VOT2015 [26] by the means of robustness
and accuracy.

STRK TGPR MEEM MSTR STPL CMT SRDCF CCOT Ours

Accuracy 0.47 0.48 0.50 0.52 0.53 0.49 0.56 0.54 0.58
Robustness 1.26 2.31 1.85 2.00 1.35 1.81 1.24 0.82 1.36

Figure 5. Sample tracking results of evaluated algorithms on sev-
eral challenging video sequences, in these sequences the red box
depicts the DEDT against other trackers (blue). The ground truth
is illustrated with yellow dashed box. From top to bottom the se-
quences are Skating1, FaceOcc2, Shaking, Basketball, and Soccer
with drastic illumination changes, scaling and out-of-plane rota-
tions, background clutter, noise and severe occlusions.

Figure 4 presents the success and precision plots of
DEDT along with other state-of-the-art trackers for all se-
quences. It is shown in this plot that DEDT usually keeps
the localization error under 10 pixels. Table 1 presents the
area under the curve of the success plot (eq(7)) for all the
sequences and their subcategories, each focusing on a cer-
tain challenge of the visual tracking. As shown, DEDT has
the competitive precision compared to CCOT which em-
ploys state-of-the-art multi-resolution deep feature maps,
and performs better than the rest of the other investigated
trackers on this dataset. The performance of DEDT is com-
parable with CCOT in the case of illumination variation,
deformation, out-of-view, out-of-plane rotation and motion
blur, while it has superior performance in handling back-
ground clutter. This indicates the effectiveness of the tar-

get vs. background detection and flexibility for accommo-
dating rapid target changes. While the former can be at-
tributed to effective ensemble tracking, the latter is known
to be the effect of combining long and short-term memory.
It is observed in the run-time that for handling extreme ro-
tations, the ensemble heavily relies on the auxiliary tracker,
which although brings the superior performance in the cate-
gory, a better representation of the ensemble model may re-
duce the reliance of the tracker to the auxiliary tracker.The
proposed algorithm shows a sub-optimal performance in
low-resolution scenario compared to DCF-based trackers
(SRDCF, and CCOT), and although it does not provide a
high-quality localization for smaller/low-resolution targets,
it is able to keep tracking them. This finding highlights the
importance of further research on the ensemble-based DCF
trackers. Our method also achieved the best accuracy (0.58)
on VOT2015 by outperforming SRDCF, yet the highest ro-
bustness (0.82) belongs to CCOT (Table 3). Finally, a qual-
itative comparison of DEDT versus other trackers is pre-
sented in Figure 5.

6. Conclusion

In this study, we proposed diverse ensemble discrimina-
tive tracker (DEDT) that maintains a diverse committee of
classifiers to the label of the samples and queries the most
disputed labels –which are the most informative ones– from
a long-term memory auxiliary classifier. By generating ar-
tificial data with diverse labels, we intended to diversify
the ensemble of classifiers, efficiently covering the version
space, increasing the generalization of the ensemble, and
as a result, improve the accuracy. In addition, by using
the query-by-committee concept in labeling and updating
stages of the tracker, the label noise problem is decreased.
By using the diverse committee, in turn, the problem of
equal weights for the samples are addressed, and a good
approximation of the target location is acquired even with-
out dense sampling. The active learning scheme manages
the balance between short-term and long-term memory by
recalling the label from long-term memory when the short-
term memory is not clear about the label (due to forgetting
the label or insufficient data). This also reduces the depen-
dence of the tracker on a single classifier (i.e., auxiliary clas-
sifier), yet breaking the self-learning loop to avoid accumu-
lative model drift. The results of the experiment on OTB50,
OTB100, and VOT2015 benchmarks demonstrate the com-
petitive tracking performance of the proposed tracker com-
pared with the state-of-the-art.
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