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Abstract5

Recently, discriminative visual trackers obtain state-of-the-art performance,6

yet they suffer in the presence of different real-world challenges such as target7

motion and appearance changes. In a discriminative tracker, one or more classi-8

fiers are employed to obtain the target/non-target label for the samples, which in9

turn determine the target’s location. To cope with variations of the target shape10

and appearance, the classifier(s) are updated online with different samples of the11

target and the background. Sample selection, labeling and updating the classi-12

fier is prone to various sources of errors that drift the tracker. In this study we13

motivate, conceptualize, realize and formalize a novel active co-tracking frame-14

work, step-by-step to demonstrate the challenges and generic solutions for them.15

In this framework, not only classifiers cooperate in labeling the samples, but also16

exchange their information to robustify the labeling, improve the sampling, and17

realize efficient yet effective updating. The proposed framework is evaluated18

against state-of-the-art trackers on public dataset and showed promising results.19

keywords: visual tracking, active learning, active co-tracking, uncertainty20

sampling21

1 Introduction22

Visual tracking is one of the building blocks of human-robot interaction. Implicit or23

explicit, this task is embedded in many high-level complicated tasks of the robot. At-24

tending the speaker in a multimodal spoken dialog system [1], following the target25

[2], imitating the behavior of a human [3], extracting tacit information of an interac-26

tion [4], sign-language interpretation [5], and autonomous driving as well as simpler27

tasks such as human-robot cooperation [6], obstacle avoidance [7], first-person view28

action recognition [8] and human-computer interfaces [9].29

The most general type of tracking is single-object model-free online tracking, in30

which the object is annotated in the first frame, and tracked in the subsequent frames31

with no prior knowledge about the target’s appearance, its motions, the background,32

the configurations of the camera, and other conditions of the scene. Visual tracking is33

still considered as a challenging problem despite numerous efforts made to address34

abrupt appearance changes of the target [10], its complex transformations [11] and35

deformations [12], background clutter [13], occlusion [14], and motion artifacts [15].36

Generative trackers attempt to construct a robust object appearance model, or37

to learn it on-the-fly using advanced machine learning techniques such as subspace38

learning [16], hash learning [17], dictionary learning [18], and sparse code learning39
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[10]. Although some settings allow for strong assumptions about the target, in real-40

world applications it is desired to track arbitrary objects with little a-priori knowl-41

edge. Such model free tracker consists of learning and adjusting the representation of42

the target on-the-fly. To this end, discriminative models focus on target/background43

separation using correlation filters [19, 20, 21] or dedicated classifiers [22], which44

assist them to dominate the visual tracking benchmarks [23, 24, 25]. Using tracking-45

by-detection approaches is a popular trend in recent years, due to significant break-46

throughs in object detection domain (deep residual neural networks [26] for in-47

stance), yielding strong discriminating power with offline training. Adopted for vi-48

sual tracking, many of such trackers are adjusted for online training and accumulate49

knowledge about a target with each successful detection (e.g., [27, 28, 29, 22].50

Tracking-by-detection methods primarily treat tracking as a detection problem51

to avoid having model object dynamics especially in the case of sudden motion52

changes, extreme deformations, and occlusions [30, 31]. However, there is a mul-53

titude of drawbacks in the tracking-by-detection setting:54

1. Label noise: Inaccurate labels confuse the classifier [12] and degrade the classi-55

fication accuracy [30], The labeler is typically built upon heuristics and intu-56

itions, rather than using the accumulated knowledge about the target.57

2. Self-learning loop: the classifier is re-trained by their own output from earlier58

frames, thus accumulating error over time [31],59

3. Uniform treatment of samples: Equal-weight for all samples in evaluating the60

target [32] and training the classifier [33], despite the uneven contextual infor-61

mation in different samples. The classifier is trained using all the examples62

with equal weights, meaning that negative examples which overlap very little63

with the target bounding box are treated equally as those negative examples64

with significant overlaps.65

4. Stationarity assumption: Assuming a stationary distribution of the target ap-66

pearance does not hold for most of the real-world scenarios with drastic target67

appearance changes [31]. In the context of visual tracking, the non-stationarity68

means that the appearance of an object may change so significantly that a neg-69

ative sample in the current frame looks more similar to a positive example in70

the previous frames.71

5. Model update difficulties: Adaptive trackers inherently suffer from the drifting72

problem. Noisy model update [34] and the mismatch between model update73

frequency and target evolution rate [35] are two major challenges of the model74

update. if the update rate is small, the changes of the target are not reflected75

into target’s template, whereas rapid update of the tracker renders it vulnera-76

ble to data noise and small target localization errors. This phenomenon is also77

known as stability plasticity dilemma.78

In this study we motivate, conceptualize, realize and formalize a novel co-tracking79

framework. First, the importance of such system is demonstrated by a recent and80

comprehensive literature review. Then a discriminative tracking framework is for-81

malized to be evolved to a co-tracking by explaining all the steps, mathematically82
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and intuitively. We then construct various instances of the proposed co-tracking83

framework (Table 1), to demonstrate how different topologies of the system can be84

realized, how the information exchange is optimized, and how different challenges85

of tracking (e.g., abrupt motions, deformations, clutter) can be handled in the pro-86

posed framework. Active learning will be explored in the context of labeling and87

information exchange of this co-tracking framework to speed up the tracker’s con-88

vergence while updating the tracker’s classifiers effectively. Dual memory is also89

proposed in the co-tracking framework to handle various tracking scenarios ranging90

from camera motions to temporal appearance changes of the target and occlusions.

Table 1: Trackers introduced in this chapter: T0: a part-based tracker without model update,
T1: the part-based tracker with model update, T2: a KNN-based tracker with color and HOG
features, T3: co-tracking of KNN-based classifier T2 and part-based detector T1, T4: active co-
tracking of T1 and T2 with online update, T5: active asymmetric co-tracking of short-memory
T1 and long-memory T2 (modified from [36]), and T6: active ensemble co-tracking of bagging-
induced ensemble and long-memory T2 (modified from [37])

T0 T1 T2 T3 T4 T5 T6

Online Update X X X X X X
Co-tracking X X X X
Active Learning X X X
Dual Memory X X
Ensemble X91

2 Tracking-by-detection92

Typically tracking-by-detection method consists of five major steps: Sampling, Clas-93

sifying, Labeling, Estimating, Updating.94

SAMPLING: To obtain the positive sample(s) and negative samples (the target and95

the background respectively), dense or sparse (stochastic) sampling is performed ei-96

ther around last known target position (using Gaussian distributions, particle filters,97

or various motion models) or around the saliencies or keypoints in the current frame98

[17]. Adaptive weights for the samples based on their appearance similarity to the99

target [38], occlusion state [14], and spatial distance to previous target location [39]100

have been considered, especially in the context of tracking-by-detection, boosting101

[40] have been extensively investigated [41, 42, 43].102

CLASSIFYING: The classification module of tracking-by-detection schemes utilizes103

offline-trained classifiers or online supervised learning methods to classify the tar-104

get from its background (e.g. [44]). To robustify this module especially against la-105

bel noise, supervised learning with robust loss functions [42, 45], semi-supervised106

[35, 46] and multi-instance [43, 47, 48] learning approaches are considered. Efficient107

sparse sampling [49], leveraging context information [50, 13], considering sample in-108

formation content for the classifier [51], and landmark-based label propagation [39]109

are among other proposed approaches to address this issue. Another interesting ap-110

proach is to reformulate to couple the labeling and updating process to bridge the111
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gap between the objective of these two steps, as labeling aims for predicting binary112

sample labels whereas updating typically tries to estimate object location [12]. The113

label noise problem amplifies when the tracker does not have a forgetting mecha-114

nism or a way to obtain external scaffolds (i.e. self-learning loop). This inspired the115

use of co-tracking [30], ensemble tracking [52, 53] or label verification schemes [54]116

to break the self-learning loop using auxiliary classifiers.117

LABELING: The result of classification process provides the target/background la-118

bel for each sample, a process which can be enhanced by employing an ensemble of119

classifiers [52, 53], exchanging information between collaborative classifiers [30] and120

verifying labels by auxiliary classifiers [54] or landmarks [39].121

ESTIMATING: The state of the target, i.e. the location and scale of the target usually122

described with a bounding box, is then determined by selecting the sample with the123

highest classification score [12], calculating the expectation of target state [37], or124

performing an estimated bounding box regression [55].125

UPDATING: Updating the classifier is another challenge of the tracking-by-detection126

schemes. Some researchers believe in the necessity of having a “teacher” to train the127

classifier [35]. Adaptive ensemble of classifiers [56] and co-learning [30] in which128

multiple trackers with different features or inference engines train each other aimed129

to address this need using other detectors or trackers. Furthermore, some approaches130

selected the most discriminative feature selection [41], combined generative and dis-131

criminative models [57], replaced the weakest classifier of an ensemble [41] or the132

oldest one [56], or applied a budget on the sample pool of the classifier (hence, keep-133

ing only some prototypical samples) [12, 39], to overcome this problem.134

On top of that, the frequency of update is another important role-player in tracker’s135

performance [35]. Higher update rates capture the rapid target changes, but is prone136

to occlusions, whereas slower update paces provide a long memory for the tracker to137

handle temporal target variations but lack the flexibility to accommodate permanent138

target changes. To this end, researchers try to combine long- and short-term mem-139

ories [58], role-back improper updates [53], or utilize different temporal-snapshots140

of the classifier to overcome non-stationary distribution of the target’s appearance141

[59].This pipeline, however, was altered in some studies to introduce desired prop-142

erties, e.g., to avoid label noise by merging sampling and labeling steps [12].143

2.1 Formalization144

Online visual tracking is the task to update the state vector pt involving location,145

size, and shape of the bounding box, at each observation of video frame t = 1, . . . , T.146

The update process is sometimes written with transformation yt that transforms the147

previous state vector pt−1 to the current state pt = pt−1 ◦ yt.148

In tracking-by-discrimination framework, we utilize a classifier θt that discrimi-149

nates an image patch x into either target or background, where the classifier is de-150

noted as a real valued discriminant function h(x|θt) ∈ R and the function value151

s = h(x|θt) is called a discrimination score, or in short, score. The patch x (i.e. the152
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area of the image bounded by the bounding box pt) is labeled as target if s > τ with153

a threshold τ and as background if x < τ. A typical procedure of the tracking-by-154

discrimination is written as follows.155

SAMPLING: The samples are defined using these transformations, and their corre-156

sponding image patches xj
t ∈ Xt are selected from image. We obtain N samples of157

state pj
t, j = 1, . . . , N by drawing random transformations yj

t ∈ Yt using dense or158

sparse sampling strategy, transforming the previous state pt−1 with a transforma-159

tions yj
t as pj

t = pt−1 ◦ yj
t ∈ Pt.160

CLASSIFYING: We calculate the score sj
t of the image patches xpj

t
t corresponding to161

all samples, or bounding boxes, using the current classifier θt (h : X → R).162

sj
t = h

(
xpt−1◦y

j
t

t |θt
)

(1)

LABELING: We determine label l j
t of each sample j using the score of the sample. If163

the score is above a threshold τ, the sample is likely to be target match,164

l j
t = sign(sj

t − τ) (2)

ESTIMATING: We determine the next target state pt typically by selecting the best165

pj
t that corresponds to the maximum score sj

t, pt = pt−1 ◦ y∗t166

y∗t =
{

yj∗
t |j
∗ = argmax

j∈{1,...,N}
sj

t

}
(3)

UPDATING: Finally, we update the classifier by its own labeled data,167

θt+1 = u(θt,Xt,Lt) (4)

in which u(l) is the update function (e.g., budgeted SVM update [12]), and Xt,Lt are168

the set of input patches and output labels used as the training set of the discriminator.169

2.2 Baseline System Implementation170

To develop a baseline tracking-by-detection algorithm for this study, we use a robust171

part-based detector for the CLASSIFYING process. This detector employs strong172

low-level features based on histograms of oriented gradients (HOG) and uses a la-173

tent SVM to perform efficient matching for deformable part-based models (pictorial174

structures) [60]. From each frame, we draw N samples from a Gaussian distribution175

whose mean is the target’s bounding box in the last frame (including its location176

and size). The selected detector then outputs the classification score for each sample,177

which is thresholded to obtain the sample’s label. The highest classification score is178

considered as the current target location (Figure 1).179
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Figure 1: A simple tracking-by-detection pipeline. After gathering some samples from the
current frame, the tracker employs its detector to label the samples as positive (target) or
negative (background). The target position is estimated using these labeled samples. The
labels, in turn, are used to update the classifier for the next frame.

In the first frame, we generate α1N positive samples by perturbing the first an-180

notated target patch by few pixels in location and size, select α2N negative samples181

from local neighborhood of the target, and select α3N negative samples from global182

background of the object in a regular grid (α1 + α2 + α3 = 1). These samples are183

used to train the SVM detector in the first frame. From the next frames, the labels184

are obtained by the detector itself, and the classifier is batch-trained with all of the185

samples collected so far.186

There are several parameters in the system such as the parameters of sampling187

step (number of samples N, effective search radius Σsearch). These parameters were188

tuned using a simulated annealing optimization on a cross-validation set. The part-189

base detector dictionary, and the thresholds τl , τu, and the rest of above-mentioned190

parameters have been adjusted using cross-validation. With N = 1000, τ = 0.34 T1191

achieved the speed of 47.29 fps on a Pentium IV PC @ 3.5 GHz and a Matlab/C++192

implementation on a CPU.193

2.3 Method of Evaluation194

The experiments are conducted on 100 challenging video sequences, OTB-100 [61] ,195

which involves many visual tracking challenges such as illumination variation (IV),196

scale variation (SV), occlusions (OCC), deformations (DEF), motion blur (MB), fast197

motion (FM), in-plane rotation (IPR), out-of-play rotation (OPR), out-of-view prob-198

lem (OV), background clutter (BC) and low resolution (LR). The performance of the199

trackers is compared with the area under the curve of success plots and precision200

plots, on all of the sequences, or a subset of them with the given attribute.201

Success plot indicates the reliability of the tracker and its overall performance202

while precision plot reflects the accuracy of the localization. The area under the203

surface of this plot (AUC), counts the number of successes of tracker over time t ∈204

{1, . . . , T}, i.e. when the overlap of the tracker target estimation pt with the ground205

truth p∗t exceeds the threshold τov. Success plot, graphs the success of the tracker206
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Figure 2: Quantitative performance comparison of the baseline tracker (T1), its variant with-
out model update (T0), and the state-of-the-art trackers using success plot.

against different values of the threshold τov and its AUC is calculated as207

AUC =
1
T

∫ 1

0

T

∑
t=1

1

(
|pt ∩ p∗t |
|pt ∪ p∗t |

> τov

)
dτov , (5)

where T is the length of sequence, |.| denotes the area of the region, ∩ and ∪ stands208

for intersection and union of the regions respectively, and 1(.) denotes the step func-209

tion that returns 1 iff its argument is positive and 0 otherwise. This plot provides210

an overall performance of the tracker, reflecting target loss, scale mismatches, and211

localization accuracy.212

To establish a fair comparison with the state-of-the-art of tracking-by-detection213

algorithms, TLD [54] and STRUCK [12] are selected based on the results of [23],214

BSBT [62] and MIL [43] is selected based on popularity, and CSK [32] was selected215

as one of the latest algorithms in the category. Since our trackers contain random216

elements (in sampling and re-sampling), the results reported here is the average of217

five independent runs.218

2.4 Results219

Figure 2 presents the success and precision plots of T1 along with other competitive220

trackers for all sequences. We also included a fixed version of T1 tracker (a detector221

without model update) as T0 to emphasize the role of updating. The figure demon-222

strates that without the model update, the detector cannot reflect the changes in223

target appearance and lose the target rapidly in most of the scenarios (comparing T0224

and T1). However, it is also evident that having a single tracker is not robust against225

all of the target’s variations (in line with [56]) and the performance of T1 is still low.226
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3 Co-tracking227

A single detector may have difficulties in distinguishing the target from the back-228

ground in certain scenarios. In those cases, it is beneficial to consult another detector229

with higher robustness. These second detector may have complimentary character-230

istics to the first one, or simply may be a more sophisticated detector that trades231

computational complexity with speed.232

Collaborative discriminative trackers utilize classifiers that exchange their infor-233

mation, to achieve more robust tracking. These information exchanges are in the234

form of queries that one classifier sends to another. The purpose of this information235

exchange is to bridge across long-term and short-term memories [58], accommodate236

multi-memory dictionaries [63], mixture of deep and shallow models [64], facilitate237

multi-view on the data [30], and enable learning from mistakes [54].238

3.1 Formalization239

Built on co-training principle [65], collaborative tracking (co-tracking) provides a
framework in which two classifiers exchange their information to promote tracking
results and break self-learning loop. In this two-classifier framework [30], the chal-
lenging samples for one classifier are labeled by the other one, i.e., if a classifier finds
a sample difficult to label, it relies on the other classifier to label it for this frame and
similar samples in the future. In this case, we calculate the discrimination score sj

t

as a weighted sum of the two discriminant functions, sj
t = ∑2

c=1 α
(c)
t h(xj

t|θ
(c)
t ) where

α
(c)
t denotes the weight of each discriminator θ

(c)
t , c = 1, 2. At the CLASSIFYING

step, the corresponding sample xj
t is considered as a challenging sample for the c-th

discriminator when τl < h(xj
t|θ

(c)
t ) < τu holds because it locates close to the corre-

sponding discrimination boundary. When one of the two discriminators answered

Figure 3: Collaborative tracking. A detector and an auxiliary classifier trust each other to
handle the sample difficult for them to classify.
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it challenging, the score of the sample is calculated with using the other score.

sj
t =


α
(2)
t h(xj

t|θ
(2)
t ) , τl < h(xj

t|θ
(1)
t ) < τu

α
(1)
t h(xj

t|θ
(1)
t ) , τl < h(xj

t|θ
(2)
t ) < τu

∑2
c=1 α

(c)
t h(xj

t|θ
(c)
t ) , otherwise

(6)

At the UPDATING step, the weight α
(c)
t of the discriminator c is adjusted according240

to the degree of contradiction to the provisional answers that are determined at the241

ESTIMATION step by an integration of all the information. Finally, the classifiers242

are updated using only the samples that they successfully labeled in the previous243

frame to reflect the latest target changes.244

3.2 Evaluation245

For this experiment, we selected a naive classifier with complementary properties246

to the main classifier in the previous section. This classifier is a KNN classifier us-247

ing HOC and HOG features, trained on the samples trained from the first frame,248

and updated with all the labeled samples by the collaboration of the classifiers. Not249

being pre-trained, the performance of this auxiliary classifier is poor in the begin-250

ning, but gradually gets better. The quick classification of the KNN (owning to its251

kd-tree implementations and lightweight features) and lack of pre-training, grants it252

high speed and generalization which is in contrast to the main detector. However,253

it should be noted that without being supervised by the main SVM-based detector,254

this classifier cannot perform well in isolation for tracking task. Figure ?? presents255

the performance of this auxiliary tracker as T2. As observed in the figure, the perfor-256

mance of the obtained co-tracker (T3), is better than the main detector (T1) and the257

auxiliary classifier (T2) as a result of co-labeling, data exchange, and co-learning.258

4 Active Co-tracking259

The co-tracking framework provides a means for classifiers to exchange information.260

This framework utilizes a utility measure (e.g., the classification confidence in [30])261

to select the data for which one of the collaborates fails to classify with high confi-262

dence, and then train the other classifier on those data. This approach has two main263

shortcomings: (1) the redundant labeling of all samples for both classifiers and (2)264

training the collaborator with “all” of the uncertain samples. While the former in-265

crease the complexity of the system, the latter is not the optimal solution for tracking266

a target with non-stationary appearance distributions [31].267

In this view, a principled ordering of samples for training [66], and selecting a268

subset of them based on criteria [33] can reduce the cost of labeling leading to faster269

performance increase as a function of the amount of data available. It is found that270
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detectors trained with an effective, noise-free, and outlier-free subset of the training271

data may achieve higher performance than those trained with the full set [67, 68].272

Robust learning algorithms provide an alternative way of differentially treating273

training examples, by assigning different weights to different training examples or274

by learning to ignore outliers [69]. Learning first from easy examples [70], pruning275

adversarial examples1 [71], and sorting the samples based on their training value276

[33] are some of the approaches explored in the literature. However, the most com-277

mon setting is active learning, whereby most of the data is unlabeled and an algo-278

rithm selects which training examples to label at each step, for the highest gains in279

performance. Thus, some active learning approaches focus on learning the hard-280

est examples first (those closest to the decision boundary). Some approaches focus281

on learning the hardest examples first (e.g., those closest to the decision boundary),282

whereas some others gauge the information contained in the sample and select the283

most informative ones first. For example, Lewis and Gale [72] utilized the uncer-284

tainty of the classifier for a sample as an index of its usefulness for training.285

4.1 The idea286

Active learning has been used in visual tracking to consider the uncertainty caused287

by bags of samples [51], to reduce the number of necessary labeled samples [73], to288

unify sample learning and feature selection procedure [74], and to reduce the sam-289

pling bias by controlling the variance [75].290

In this study, we utilized the sampling uncertainty that can bind the active learn-291

ing and co-tracking. As mentioned earlier, the baseline classifier, despite being accu-292

rate, has low generalization on new samples, slow classification speed, and computa-293

tionally expensive re-training. On the other hand, the auxiliary classifier is agile and294

learns rapidly, with negligible retraining time. To combine the merits of these two295

classifiers, to cancel out their demerits with one another, and to address the afore-296

mentioned issues of co-tracking (redundant labeling and excessive samples), we in-297

corporate an active learning module to select the most informative data, i.e. those298

for which the naive classifier is most uncertain, and query their labels from the part-299

based detector. This architecture (Figure 4, here called T4) mainly use naive classifier300

for labeling the data and only ask the label of hard samples from the slower detec-301

tor, therefore, limits the redundancy and unleash the speed of the agile classifier. In302

addition, by training the naive classifier only on hard samples, the generalization of303

this classifier is preserved while increasing its accuracy.304

To further increase the accuracy of the tracker and make it more robust against305

occlusions and drastic temporal changes of the target, it is possible to update the306

detector less frequently. This asymmetric version of the active co-tracker (T5), by307

introducing long-term memory to the tracker, benefits from combining the long and308

1Images with tiny, imperceptible perturbations that fool a classifier into predicting the wrong labels
with high confidence.
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input : Target position in last frame pt−1
output: Target position in current frame pt

for j← 1 to n do
Generate a sample pj

t ∼ N (pt−1, Σsearch)

Calculate sj
t ← h

(
xpj

t
t |θ

(1)
t
)

(eq(7))
Determine uncertain samples Ut (eq(8))

if pj
t ∈ Ut then θ

(1)
t is uncertain

Query θ
(2)
t : l j

t ← Sign
(

h
(
xpj

t
t |θ

(2)
t
))

else
Label using θ

(1)
t : l j

t ← Sign(sj
t)

Dt ← Dt ∪ 〈x
pj

t
t , l j

t〉
Update θ

(2)
t with Dt−∆,..,t every ∆ frames (∆ = 1 for T4)

if ∑n
j=1 1(l

j
t > 0) > τp and ∑n

j=1 π
j
t > τa then

Approximate target state p̂t (eq(10))

Update θ
(1)
t with Ut

else target occluded
p̂t ← pt−1

Algorithm 1: Active Co-Tracking (ACT)

short-term collaboration (as in [58]) and reduces the frequency of the expensive up-309

dates of the tracker (Algorithm 1).310

4.2 Formalization311

In the proposed active co-tracking framework, a main classifier attempts to label the312

sample, and it queries the label from the other classifier if the main classifier emit313

uncertain results. This is in contrast with using a linear combination of both classi-314

fiers based on their classification accuracy as adopted in T3. At the CLASSIFYING315

step, the proposed tracker can score each sample based on the classifier confidence,316

i.e., for sample pj
t we calculate score sj

t317

sj
t = h

(
xpj

t
t |θ

(1)
t
)
. (7)

Based on uncertainty sampling [72], the samples for which the classification score is318

more uncertain (i.e., sj
t → 0), contains more information for the classifier if they are319

labeled by the other classifier. Therefore, the scores of all samples are sorted, and m320

samples with the closest values to 0 are selected to be queried from θ
(2)
t . To handle321

the situations for which the number of highly uncertain samples are more than m,322
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Figure 4: Active co-tracker, a collaborative tracker that utilizes an active query mechanism to
query the most informative samples from the main detector, and feed them to the light-weight
classifier to learn.

a range of scores are determined by lower and higher thresholds (τl and τu) and all323

the samples in this range are considered highly uncertain.324

Ut = {pi
t|τl < si

t < τu or
∣∣∣ {∃j 6= i|sj

t ≤ si
t}
∣∣∣< m} (8)

in which Ut is the list of uncertain samples. The label of the samples l j
t ∈ Lt, j =

1, . . . , N are then determined by

l j
t =


sign

(
h
(
xpj

t
t |θ

(1)
t
))

, pj
t ∈ Ut

sign
(

h
(
xpj

t
t |θ

(2)
t
))

, pj
t /∈ Ut

(9)

and all image patches xpj
t

t and labels l j
t are stored in Dt.325

At the ESTIMATION step, we follow the importance sampling mechanism orig-326

inally employed by particle filter trackers,327

p̂t =
∑n

j=1 π
j
tp

j
t

∑1
j=1 π

j
t

. (10)

where π
j
t = sj

t1(l
j
t > 0) and 1(.) is the indicator function, 1 if true, zero other-328

wise. This mechanism approximates the state of the target, based on the effect of329

positive samples, in which samples with higher scores gravitates the final results330

more toward themselves. Upon the events such as massive occlusion or target loss,331

this sampling mechanism degenerates [10]. In such cases, the number of positive332

samples and their corresponding weights shrinks significantly, and the importance333

sampling is prone to outliers, distractors, and occluded patches. To address this is-334

sue, if the number of positive samples is less than τp, and their score average is less335

than τa, the target is deemed occluded to avoid tracker degeneracy.336
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Figure 5: Quantitative performance comparison of the asymmetric active co-tracker (T5), ac-
tive co-tracker (T4), the ordinary co-tracker (T3), and their individual trackers (T1 and T2).

4.3 Evaluation337

Figure 5 illustrates the effectiveness of the proposed trackers against their baselines.338

The active query mechanism in T4 improves the efficiency and effectiveness of co-339

tracking (T3). Especially in the asymmetric co-tracker (T5), the mixture of long-term340

and short-term memory classifiers using this method is to key to automatically bal-341

ance the stability-plasticity equilibrium. It is also prudent for the tracker to adapt342

to the temporal distribution of the target appearance, before its re-distribution by343

illumination changes, etc.344

In summary, the advantage of the proposed trackers especially the asymmetric345

ones (T5) compared to the conventional co-tracking (T3) are as follows: (1) the clas-346

sifiers do not exchange all the data they have problems in labeling, instead, the most347

informative samples are selected by uncertainty sampling, and exchanged. (2) the348

update rate of classifiers is different to realize a short and long-term memory mix-349

ture, (3) the samples that are labeled for the target localization can be re-used for350

training and the need for an extra round of sampling and labeling is revoked, (4)351

since in the proposed asymmetric co-tracking, one of the classifiers scaffolds the352

other one instead of participating in every labeling process, a more sophisticated353

classifier with higher computational complexity can be used.354

5 Active Ensemble Co-tracking355

Ensemble discriminative tracking utilizes a committee of classifiers, to label data356

samples, which are in turn, used for retraining the tracker to localize the target using357

the collective knowledge of the committee. In such frameworks the labeling process358

is performed by leveraging a group of classifiers with different views [41, 76, 52],359

subsets of training data [37, 77] or memories [53, 78].360
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In ensemble tracking [56, 41, 79, 80, 43, 52, 81, 53] the self-learning loop is bro-361

ken, and the labeling process is performed by eliciting the belief of a group of clas-362

sifiers. However, this framework typically do not address some of the demands of363

tracking-by-detection approaches like a proper model update to avoid model drift or364

non-stationary of the target sample distribution. Besides, ensemble classifiers do not365

exchange information, and collaborative classifiers entirely trust the other classifier366

to label the challenging samples for them and are susceptible to label noise.367

Traditionally, ensemble trackers were used to providing a multi-view classifica-368

tion of the target, realized by using different features to construct weak classifiers.369

In this view, different classifiers represent different hypotheses in the version-space,370

to accurately model the target appearance. Such hypotheses are highly-overlapping,371

therefore an ensemble of them overfits the target. The desired committee, however,372

consists of competing hypotheses, all consistent with the training data, but each of373

the specialized in certain aspect. In this view, the most informative data samples374

are those about which the hypotheses disagree the most, and by labeling them the375

version-space is minimized leading to quick convergence yet accurate classification376

[82]. Motivated by this, we proposed a tracker that employs a randomized ensemble377

of classifiers and selects the most informative data samples to be labeled.378

5.1 The idea379

One of the most theoretically-motivated query selection frameworks is Query-by-380

Committee (QBC) algorithm [82, 83] that maintain a committee of models which are381

all trained on the current labeled set, but represent competing hypotheses. Each382

committee member is then allowed to vote on the labeling of query candidates. The383

most informative query is considered to be the instance about which they most dis-384

agree. The premise behind the QBC framework is minimizing the size of the version385

space, which is the set of hypotheses that are consistent with data.386

The original QBC was built upon randomized component learning algorithm.387

For other model classes, such as discriminative or non-probabilistic models, Abe and388

Mamitsuka [84] have proposed Query-by-Bagging (QBag), which employ bagging389

[85] to construct committees. Bagging is a technique to enhance the performance390

of the existing learning algorithm by running it many times on a set of re-sampled391

governed by a uniform distribution and the final hypothesis is obtained by taking392

majority vote over the output of predictions of the output hypotheses. QBag intro-393

duces the randomness in the form of re-sampling from the input data based on the394

idea that prediction error consists of bias, which is the estimation error due to the395

smaller input size, and variance which is explained by the statistical variation exist-396

ing in data. Bagging can isolate bias from variance and minimize the latter [84].397

We propose the adjustment of the QBag algorithm for online training to solve the398

label noise problem in T6. Similar to T5, the drift problem is handled using dual-399

memory strategy: the committee rapidly adapts to target changes, whereas the main400

classifier possesses a longer memory to promote the stability of the target template.401
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Figure 6: Active ensemble co-tracker. The bagging-induced ensemble labels the input samples
and only query the most disputed ones from the slow part-based classifier.

5.2 Formalization402

An ensemble discriminative tracker employs a set of classifiers instead of one. These403

classifiers, hereafter called committee, are represented by C = {θ(1)t , . . . , θ
(C)
t }, and are404

typically homogeneous and independent (e.g., [52, 81]). Popular ensemble trackers405

utilize the majority voting of the committee as their utility function,406

sj
t =

C

∑
c=1

sign
(
h(xpt−1◦y

j
t

t |θ(c)t )
)
. (11)

and eq(9) is used to label the samples. Finally, the model is updated for each classi-407

fier independently, meaning that each of the committee members are trained with a408

random subset of the uncertain set. θ
(c)
t+1 = u(θ(c)t , Γ(c)

t ∼ Ut) where u(θ,X ) is the up-409

dating the model θ with samples X . The uncertain set Ut contains all of the samples410

for which the ensemble disagree and were sent to the auxiliary classifier for labeling.411

The detector θ
(o)
t is also updated with all recent data Dt−∆,..,t every ∆ frames.412

5.3 Evaluation413

Figure 7 depicts the overall performance of the proposed tracker against other bench-414

marked algorithms on all sequences of the dataset. The plots show that T6 has a su-415

perior performance over T5 and its predecessors. It also reveals that the tracker has416

many accurate estimations of the target (sharp slope between 0.9 ≥ τov > 1). Fur-417

thermore, the other steep slope around τov ≈ 0.4 and the high value when τov → 0418

suggest that tracker was able to keep track of the target in most cases, and the de-419

vised scheme effectively reduced the drift problem.420

6 Discussion421

The instances of the proposed framework are evaluated against state-of-the-art track-422

ers on public sequences that become the de-facto standards of benchmarking the423
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Figure 7: Quantitative performance comparison of the active ensemble co-tracker (T6) with its
predecessors.

trackers. The trackers are compared with popular metrics such as success plot and424

precision plot to establish a fair benchmark. In addition, the performance of the pro-425

posed trackers are investigated for videos with a distinguished tracking challenge,426

and the results are compared with state-of-the-art and discussed. Additionally, the427

effect of the information exchanged will be examined thoroughly to illustrate the dy-428

namics of the system. The preliminary results of the proposed framework demon-429

strate a superior performance for the proposed trackers when applied on all the se-430

quences, and most of the subsets of the test dataset with distinguished challenges.431

Finally, the future research direction is discussed and the opened research avenues432

are introduced to the field.433

As Figure 7 and Table 2 demonstrates, T6 has the best overall performance among434

investigated trackers on this dataset. While this algorithm has a clear edge in han-435

dling many challenges, its performance is comparable with T5 in the case of occlu-436

sions and z-rotations. It is also evident that T6 is troubled with fast deformations437

since neither of the ensemble members is specialized in handling a specific type of438

deformations and the collective decision of the ensemble may involve mistakes with439
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high confidence. On the other hand, T5 utilizes a dual memory scheme and a single440

classifier can handle extreme temporal deformations better than the ensemble in T6.441

Interestingly, it is observed that in most of the subcategories that T6 is clearly better442

than the other trackers, the success plot of T6 starts with a plateau and later has a443

sharp drop around τov = 0.8. This means that T6 provides high-quality localization444

(i.e., bigger overlaps with the ground truth). Similarly, from precision plot, it is ev-445

ident that T6 shows a graceful degradation in different scenarios, and although it446

does not provide a good scale adaptation for targets, it is able to localize them better447

than the competing trackers.448

Table 2: Quantitative evaluation of state-of-the-art under different visual tracking challenges
using AUC of success plot (%). The first, second and third best methods are shown in color.

IV DEF OCC SV IPR OPR OV LR BC FM MB ALL

T0 12 12 13 12 13 13 14 5 12 15 18 14
T1 37 29 3 36 42 39 43 30 33 39 36 38
T2 23 19 23 23 28 25 25 22 23 24 20 25
T3 41 32 39 40 44 42 43 30 36 43 39 41
T4 50 39 47 48 53 49 48 37 44 50 45 49
T5 52 47 53 51 59 56 52 38 41 53 46 52
T6 57 40 51 53 61 55 63 46 53 60 58 56

TLD 49 32 42 44 50 43 45 37 40 45 42 46
STRK 46 41 44 43 51 48 44 39 39 52 48 48
CSK 40 36 36 34 43 39 32 29 42 39 32 41
MIL 35 35 38 35 41 39 40 32 31 35 28 36
BSBT 23 18 23 21 27 24 32 23 23 26 24 25

7 Conclusions and Future Works449

This chapter provides a step-by-step tutorial for creating an accurate and high-performance450

tracking-by-detection algorithm out of ordinary detectors, by eliciting an effective451

collaboration among them. The use of active learning in junction with co-learning452

enable the creation of a battery of tracker that strive to minimize the uncertainty of453

one classifier by the help of another. Finally, we proposed to employ a committee of454

classifiers, each trained incrementally on a randomized portion of the latest obtained455

training samples, to enhance the discriminative power of the tracker. This idea is in-456

spired by the query-by-bagging framework that follows the version-space shrinking457

strategy to distinguish the most informative samples. Such samples are then queried458

from a more complicated classifier with longer memory that is robust against fluctu-459

ations in target appearance and occlusions. Furthermore, using an expectation of the460

bounding boxes compensates for over-reliance of the tracker on the classifiers con-461

fidence function. The balance in stability-plasticity equilibrium is achieved by the462

combination of several short-term classifiers with a long-term classifier, and manag-463

ing their interaction with an active learning mechanism.464
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(a) Tracking results of sequence FaceOcc2 and Walking2 with severe occlusions

(b) Tracking results of sequence Deer and Jumping with motion blur

(c) Tracking results of sequence Girl and Ironman with in-plane and out-of-plane rotations

(d) Tracking results of sequence Singer1, CarDark and Shaking with drastic illumination changes

(e) Tracking results of sequence Board with background clutter

Figure 8: Sample tracking results of evaluated algorithms on several challenging video se-
quences. In these sequences the red box depicts the T6 against other trackers (T0-5 in blue and
TLD, STRK, CSK, MIL, and BSBT in gray). The ground truth is illustrated with yellow dashed
box. The results are available in the http://ishiilab.jp/member/meshgi-k/act.html.

The trail of proposed trackers led to T6, which incorporates ensemble tracking,465

active learning, and co-learning in a discriminative tracking framework and outper-466

form state-of-the-art discriminative and generative trackers on a large video dataset467

with various types of challenges such as appearance changes and occlusions.468

The future direction of this study involves including other detectors to care for469

context, to have accurate physical models for known categories, to use deep features470

to improve discrimination and to examine different methods of building the ensem-471

ble and detecting most informative samples or exchanging.472
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