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Abstract

A discriminative ensemble tracker employs multiple
classifiers, each of which casts a vote on all of the obtained
samples. The votes are then aggregated in an attempt to
localize the target object. Such method relies on collective
competence and the diversity of the ensemble to approach
the target/non-target classification task from different views.
However, by updating all of the ensemble using a shared set
of samples and their final labels, such diversity is lost or re-
duced to the diversity provided by the underlying features or
internal classifiers’ dynamics. Additionally, the classifiers
do not exchange information with each other while striv-
ing to serve the collective goal, i.e., better classification. In
this study, we propose an active collaborative information
exchange scheme for ensemble tracking. This, not only or-
chestrates different classifiers towards a common goal but
also provides an intelligent update mechanism to keep the
diversity of classifiers and to mitigate the shortcomings of
one with the others. The data exchange is optimized with re-
gard to an ensemble uncertainty utility function, and the en-
semble is updated via co-training. The evaluations demon-
strate promising results realized by the proposed algorithm
for the real-world online tracking.

1. Introduction

Visual tracking is one of the fundamental problems
in computer vision, having a broad range of applications
from human-computer interfaces, to automatic surveillance,
video description/editing/indexing, and autonomous navi-
gation systems. Generative trackers attempt to construct a
robust object appearance model, or to learn it on-the-fly us-
ing advanced machine learning techniques such as subspace
learning [37], hash learning [13], dictionary learning [43],
and sparse learning [7]. On the other hand, discriminative
models focus on target/background separation using corre-
lation filters [10, 1 1,24] or dedicated classifiers [33], which
assist them to dominate the visual tracking benchmarks
[46]. Tracking-by-detection methods primarily treat track-
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Figure 1. Schematic of the proposed tracker, ACET. Black arrows
indicate the flow of the information, red arrows represent update
signals, purple arrow represent the co-learning procedure.

ing as a detection problem to avoid having model object
dynamics especially in the case of sudden motion changes,
extreme deformations, and occlusions [5, 44].

However, these trackers are still vulnerable to illumi-
nation variation, in-plane and out-of-plane rotations, scale
changes, and background clutter. Typical problems of
tracking-by-detection schemes are (i) label noise, where in-
accurate labels confuses the classifier and degrade the clas-
sification accuracy [44], (ii) self-learning loop, in which the
classifier are re-trained by their own output from earlier
frames, thus accumulating error over time [5], (ii) model
drift, that is a side-effect of imperfect model update [29] and
mismatch between model update frequency and target evo-
lution rate [17], (iv) equal weights for all samples in evalu-
ating the target [20] and training the classifier [20], despite
the uneven contextual information in different samples, and
(v) assuming stationary distribution of target, which does
not hold for most of the real-world scenarios with drastic
target appearance changes [5].



Ensemble tracking [3, 4,06, 15,16,27,34,38,39,48] and
co-tracking [44] frameworks provide effective frameworks
to tackle one or more of these challenges. In such frame-
works, the self-learning loop is broken, and the labeling pro-
cess is performed by eliciting the belief of a group of classi-
fiers (ensemble) or another classifier that has a stronger be-
lief about the sample’s label (collaborator). However, these
frameworks typically do not address some of the funda-
mental demands of tracking-by-detection approaches like a
proper model update to avoid model drift or non-stationary
of the target sample distribution. Here, the non-stationarity
means that the appearance of an object may change so sig-
nificantly that a negative sample in the current frame looks
more similar to a positive example in the previous frames.
Besides, ensemble classifiers do not exchange information,
and collaborative classifiers entirely trust the other classifier
to label the challenging samples for them and are suscepti-
ble to label noise.

We propose an effective integration of ensemble track-
ing and co-tracking, which involves the merits of each
while their complementary nature counteracts the demerits
of each other. Here, an ensemble of trackers is employed to
label a sample. Those classifiers that are uncertain about the
label, are excluded from the final decision about the sam-
ple’s label, and the rest of the classifiers perform a weighted
voting for labeling the sample. The contributing classifiers
are then retrained with the newly labeled samples, based on
the concept of co-training. If the classifiers disagree each
other for most of the samples, it is likely that the target
is mostly occluded. The use of an ensemble would under-
mine label noise problem, while co-training breaks the self-
learning loop, provides an effective model update, and en-
force the diversity into the ensemble. By providing different
memory spans for different members of the ensemble, the
model update rate of the ensemble is automatically adjusted
to the evolution rate of the target, and limited memory hori-
zon resolves the issues with non-stationarity of the obser-
vations. By limiting the classifiers’ retraining data to only
the most informative ones (i.e., to assume different “train-
ing values” for samples), the non-stationarity is better ad-
dressed, the generalizability of the ensemble is improved,
and speed of the tracker is boosted.

We evaluated our proposed framework (active collabora-
tive ensemble tracking or ACET) with other ensemble track-
ers and also the state-of-the-art in visual tracking on object
tracking dataset [46] to demonstrate the effectiveness of this
method, and discussed its merits and demerits.

2. Related Work

Ensemble-based Tracking: Using a (linear) combina-
tion of several (weak) classifiers with different associated
weights has been proposed in a seminal work by Avidan [3].
Align with this study, constructing an ensemble by boost-

ing [16], online boosting [27, 34], multi-class boosting [38]
and multi-instance boosting [4,49] provides better and bet-
ter performance for ensemble trackers. The boosting may
or may not couple with the ensemble changes such as fea-
ture adjustment [15] or addition/deletion of the ensemble’s
members [16,39]. To date, boosting has been widely used
in self-learning based tracking methods despite its low en-
durance against label noise [40]. An alternative way to
tune the weights of an ensemble is via a Bayesian treat-
ment [6]. Aside from using different features, the members
of an ensemble may be constructed from randomized sub-
sets of training data [32] or different time snapshots of a
classifier evolving by time [48].

Training Value of Samples: Lapedriza et al. [26] dis-
cussed that different samples have different training value
for a classifier, and using a wisely selected subset of sam-
ples for training/retraining the classifier outperforms the
training with full dataset, for instance, due to mislabeled or
inaccurately demarcated samples. Having a better training
set for a tracking-by-detection classifier leads to enhanced
generalization and faster convergence to the final perfor-
mance which is suitable for converging to the piece-wise
stationary target distribution (the distribution may change
by every drastic change of target’s appearance). To address
this, researchers came by different approaches to provide
good samples for tracking using context [18, 23], saliency
maps [25], confidence maps [44], and optical flow [22].
Adaptive weights for the samples based on their appearance
similarity to the target [35], occlusion state [30], and spa-
tial distance to previous target location [47] have also been
considered, however, selecting an efficient subset for clas-
sifier re-training have been ignored, as most of the trackers
retrain on all of the data, a randomized subset of it [32], or
in special cases re-sample the training data based on their
boosting value [28]. A “clean” subset of training samples to
re-train the classifier can achieve much higher performance
than the full set [36, 51], therefore, a principled ordering
and selection of the samples reduces the cost of labeling and
accelerate the performance with smaller re-training sample
size [45]. Different studies have tried to provide this small
clean subset by different approaches: pruning outliers [12]
and hard-to-learn samples [ 1], learning easy-to-classify ex-
amples first (as known as the Curriculum learning) [&],
treating samples as noisy observations [ 1 4], defining a train-
ing value for each sample by treating each sample as a sep-
arate classifier [26], and robust loss functions for special
classifiers (e.g., SVMs). Arguably, the most common set-
ting is active learning, which selects the training samples
to be labeled/selected at each step for higher gains in per-
formance. Some approaches focus on learning the hardest
examples first (e.g., those closest to the decision boundary),
whereas some others gauge the information contained in the
sample and select the most informative ones first. For in-



stance, in the case of an ensemble of classifiers, the samples
for which the ensemble disagrees the more, contains more
information about how to train the ensemble. This concept
is known as query-by-committee [4 1] that tries to provide
the best classifier with as few labeled instances as possible.

3. Proposed Method

A tracking-by-detection algorithm usually estimates the
target state p; in time ¢ € {1,...,T} by obtaining several
samples p; € Py, scoring them s; € S;, labeling them
0l € L4, and aggregating them, p; = (P|S;, L1). To
obtain a sample, a distribution or region-of-interest V; is
sampled to obtain a transformation yg ~ Y, that defines the
state of the sample compared to the previous target location,
P]_; = pt—1 °Yy;, and the sample appearance is defined as
x] € X,. This sample is then evaluated by the classifier 6,
with scoring function h : X; — R,

s = h(x]|6:). (1)

Based on the score, a label K{ is assigned to the sample. For
supervised-learning classifiers [2], the label is either posi-
tive (target) or negative (background), but semi-supervised
classifiers (e.g., [17, 38]) or multi-instance learning (e.g.,
[4,50]) allow the samples, which the classifier is uncertain
about, to remain unlabeled by the classifier,

+1 sl >7,
H=3-1 ,sl<n 2)
0 , otherwise

in which 7; and 7,, denotes the lower and upper thresholds
respectively. The unlabeled data are either discarded, used
for later stages of tracking, or labeled by other mechanisms
embedded in the tracker [17,42,44]. The target state, as
mentioned, is estimated using v (P¢|S;, L), and the classi-
fier 6; is updated by the all or a subset of the labeled data
denoted by & C Py1. 43,

0t+1 = u(eh XEt ’ ‘Cgf) (3)

where u/(.) is the model update function. The subset &; may
involve all new data for online trackers (§; = P;), a subset
of the new data (§; C P) or recent data (§; C Py—a,....11),
and keyframe data (§; = Pyr1,k2,...3) [21,31].

3.1. Ensemble Discriminative Tracking

A popular approach to strengthen the classification in
tracking-by-detection frameworks is to construct an ensem-

ble of different (weak) classifiers C = {Gt(l), ce Qt(")}, and
combine their opinion about a sample by voting,

6y 4

51gn | )) )

Algorithm 1: ACET

input : Ensemble models C = {6}

input : Target position in previous frame p;_1
output: Target position in current frame p;

for j < 1to Nsamples do

Draw sample p; = p}_, o yt s.t. yt ~ YV
Calculate the classification score of members of C

Indicate the uncertainty flag z &) (eq(8))
Calculate ensemble’s score st and label Ei (eq(9))
| Calculate sample’s informativeness ng
for c < 1ton do
Obtain the error e§ ) and weight at (eq(12)(1 3))
Obtain the informanve sample set D,S‘)
Update the classifier Gt 11 (eq(11))

1f ZC 1 et < Tocce then target is not occluded
L Estimate target state Py (eq(10))

In most of the cases, the weak classifiers are linearly com-
bined with different associated weights,

Z oy° blgn

where the weights a( 9 e Ay are tuned using boosting [3,
,32] or Bayesian treatment [5]. A larger weight implies
that the corresponding classifier of the ensemble is more
discriminative, hence more useful. The labels are calculated
from eq(2) with 7 and 7;; as the lower and upper thresholds
for the ensemble score.
Finally, each classifier’s model is updated independently,

x]16:7)), )

0 = w0\ Xe,, Le,) (6)

indicating that all of the ensemble members are trained with
a similar set of samples &;.

3.2. Co-Training

Built on co-training principle [9], collaborative tracking
(co-tracking) provides a framework in which the classifiers
exchange their information to promote tracking results and
break self-learning loop. In this two-classifier framework
[44], the challenging samples for one classifier are labeled
by the other one, i.e., if a classifier finds a sample difficult to
label, it relies on the other classifier to label it for this frame
and similar samples in the future.

< h(0f) < 7
T < h(x{|9t(2)) < Ty

, otherwise

o h(x 161"

sl =4 atVn(x]|6")
2 o h(x]16,)
(7



The collaborative label is obtained by applying eq(2) on this
score. The weights of the classifiers are adjusted by com-
paring the labels of each classifier to the collaborative label.
Eventually, the trackers that label a sample are getting up-
dated by it.

3.3. Active Collaborative Ensemble Tracker

The proposed tracker, ACET, is an ensemble tracker in
which the co-training rule provides the samples for retrain-
ing each classifier, and active learning selects the most in-
formative ones to improve the generalization and efficiency
of the model update. Furthermore, by forgetting older sam-
ples with different memory horizons, the ensemble is diver-
sified and non-stationary target appearance distributions are
better accommodated.

Here, the ensemble C = {Ht(l)7 e ,05")} is constructed
of similar classifiers but with different memory spans
{AM . A}, Sample x] is obtained from a Gaussian
field centered on last target state, V; = N (Pi—1, Dsearch)-
This sample is then scored by all members of the ensemble.
Those members that are uncertain about labeling the sample

are marked by flag z{“?) € Z{°),

i) JOo m<h(d6) <7,
2t = . ()
1 ,otherwise
which in turn helps to calculate the score of ensemble,
sl = Z agc)zt(c’j)sign(h(xg|9t(c))), )

c=1
and label it using eq(2) with 77 and 7 as thresholds.

Since the number of samples is limited, an approxima-
tion of the target location P, is obtained by calculating the
expectation of target, i.e., by taking a weighted average of
the target candidates (i.e., positive samples).

p.= Epll= > slpl. (10)
V35,07>0

Following the rule of co-training, only the classifiers that
engaged in labeling a sample (ztc’]) = 1) should be up-
dated with that sample. However, not all the samples are
equally useful to train the ensemble. For instance, a sam-
ple for which half of the ensemble are uncertain about its
label would be better for training compared to a sample for
which only one of the classifiers is uncertain. To measure
the “informativeness” of a sample, we count the number
of the classifiers that elicit a strong belief about its label,
n = ", 2!, Then for training of each classifier of
the ensemble, based on query-by-committee concept [41],

those samples with zt(c’j ) = 1 are sorted based on n] and

the first m are used for retraining (stored in DEC)).

et(i)l = U(GIEC)’D??A@ ..... t}’ﬁlf{?—Aw,...,t}) (1
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Figure 2. Quantitative evaluation of ensemble trackers using suc-
cess plot for 13 video sequences.

where £’ ic) contains the labels of the samples in Dt(c). As
a result, the diversity of the ensemble is increased by co-
training, selective updating, and different memory horizons.

The weights of the classifier is calculated based on its
agreement with the whole ensemble. The error of each clas-
sifier is determined by

e =S 1 (sign(h(lof) £ 6)  a2)
J
in which 1(.) is the indicator function. Then the weight of
each classifier is calculated as,

el +e
Z?:l egi) te

in which € is a small constant. If the error average of the
ensemble is very high, % Sy egc) > Toec, then the target
is likely to be mostly occluded. Algorithm 1 and Figure 1

summarize the proposed tracker.

ol =1- (13)

4. Experiments

The proposed framework is comprised of several param-
eters: (i) Sampling parameters such as number Nyqppies
and sampling distribution covariance ¥ g¢qrcn, (i) Ensem-
ble parameters such as classifier count n, their memory
spans AEC) and labeling thresholds 7, 7, Tl(c), quc), and (iii)
Tracking parameters such as occlusion threshold 7,.. and
retraining subset size m. On a P-IV PC at 3.5 GHz, ACET

achieved 37.16 fps with a Mathlab/C++ implementation.

4.1. Evaluation Protocol

To evaluate the tracker, we employ success plot which
measures the performance of a tracker which is a combina-
tion of its accuracy, reliability, and scale adaptation.

The experiments are conducted to object tracking bench-
mark videos [46], which become a de-facto standard in
comparing the performance of the trackers, and includes
several subcategories, exploiting the performance of the
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Figure 3. Qualitative results of evaluated algorithms on several
challenging videos (top to down) FaceOccl with severe occlu-
sions, Basketball with deformations, Ironman with extreme rota-
tions, Skatingl with drastic illumination changes, and Soccer with
background clutter. In these sequences the red box depicts the
ACET against other trackers (blue), and the ground truth (yellow).
See http://ishiilab. jp/member/meshgi-k/acet/.

trackers against various visual tracking challenges: illumi-
nation and scale variations (IV, SV), in- and out-of-plane ro-
tations (IPR, OPR), fast motion and motion blur (FM, MB),
deformations and low-resolution (DEF, LR), occlusion and
shear problem (OCC, OV), and background clutter (BC).

4.2. Comparison with other Ensemble Trackers

For this experiment, we compare the proposed tracker
(ACET) with online boosting tracker (OAB [16]) that uti-
lizes different features to construct weak classifiers as en-
semble members, and randomized ensemble tracker (RET
[5]) that make different strong classifiers out of a pool of
weak classifiers, and construct the ensemble out of those
strong classifiers. We also include MIL [4] and BSBT [42]
to represent ensemble trackers based on semi-supervised
and multi-instance learning. Here, we implement a ver-
sion of our tracker (ACET-) that use the same feature set
to construct different members of the ensemble and the ac-
tive learning and memory horizon subsampling is disabled.
For the sake of compatibility with published RET results,
13 overlapping sequences with OTB-50 have been used.

Figure 2 illustrates that the proposed framework works
better than other ensemble methods regardless of the en-
semble member construction. Yet, it is evident that using
all features along with subsampling schemes for re-training
classifier (by active learning and different memory spans)
significantly improve the tracking performance.

4.3. Comparison with State-of-the-art

To provide a fair comparison, we compared ACET with
state-of-the-art tracking-by-detection algorithms TLD [22],
STRK [19], MEEM [48], correlation filter trackers SRDCF
[10], CCOT [!1] and multi-memory tracker MUSTer [21].
The comparison based on the area under the curve of the
success plot is presented in Table 1. It is evident that
ACET outperforms the other trackers in most of the cate-
gories and in total performance over the 50 videos. Since
the tracker utilized two features sensitive to low resolution,
(as expected) it is not able to perform well in LR category.
The good performance of the tracker in target appearance
change categories (IV, DEF, OCC, OV) can be attributed
to the robustness of ensemble due to co-learning, while the
good results on transformation categories (SV, IPR, OPR)
can be attributed to good generalization obtained by active
learning sample selection for ensemble retraining. Different
memory spans helped the tracker to dominate motion cat-
egories (FM, MB), and a robust diverse ensemble obtained
by all of these approaches resolved background clutter (BC)
effectively. The quality of results is shown in Figure 3.

5. Conclusions

In this study, we proposed a novel framework for ensem-
ble tracking, in which the classifiers co-learns using only the
most informative samples to enhance generalization and ac-
celerate convergence to non-stationary distributions of tar-
get appearance. Co-learning reduces the label noise, and
break the self-learning loops that cause model drift, and to-
gether with different memory spans for the ensemble pro-
vides a robust model update scheme for ensemble tracking.
The proposed tracker, ACET, outperformed other ensemble
trackers and state-of-the-art on OTB-50 [46] database.
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Table 1. Quantitative evaluation of state-of-the-art under different
visual tracking challenges using AUC of success plot.
Attributey TLD STRK MEEM MUSTer SRDCF CCOT  Ours

1AY 048 053 062 073 070 075 0.78
DEF 038 051 062 069 067 069 0.69
OCC | 046 050 0.61 0.71 070 076  0.77

N 049 051 0.58  0.71 0.71 0.76  0.77
IPR 050 054 058 069 070 072 0.77
OPR | 048 053 062 070 069 074 077

ov 054 052 068 073 066 079 0.84

FM 045 052 065 065 063 072 0.79
MB 0.41 047 063 065 069 072 0.77

BC 039 052 067 072 080 070 0.73

LR 036 033 043 050 058 070 044

ALL | 049 055 062 072 070 075 0.76
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