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Morphological divergence of neurons

(Koch, 1999)

How do neurons obtain their morphology?
How do neural circuits form their patterns? 

Development process in the brain

Basic hypothesis:
Morphology and structure are information representation in the brain.

Cortical pyramidal neurons

Ganglion, Bipolar, Rod,…
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Structural plasticity in neural development

• A decoding process from analog (and sometimes weak) molecular 
signals to digital  morphology
• Can be symmetry breaking phenomena

(1) Polarization

(2) Axonal elongation (axon guidance)

(1)

(2)
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Spontaneous neuronal polarization:
model, mathematics and biology

Naoki, H., Nakamuta, S., Kaibuchi, K., Ishii, S. PLoS ONE, 6, 2011.
Toriyama, M., Sakumura, Y., Shimada, T., Ishii, S., Inagaki, N. 
Molecular Systems Biology, 6, 2010.

Neuroinformatics 2011



Dotti et. al, J Neurosci, 1988 from website of Banker Lab

• Spontaneity 
A neuron is spontaneously polarized, even in a 
uniform extracellular condition. 

• Stabilization
Once a single axon is selected, remaining neurites 
cannot elongate. 

• Correction 
Sometime, multiple neurites mistakenly happen to 
be selected, but this failed pattern is flexibly 
cancelled out to yield a single axon. 

Axon determination of differentiated neurons

Neuroinformatics 2011



Dotti et. al, J Neurosci, 1988 from website of Banker Lab

• Spontaneity 
A neuron is spontaneously polarized, even in an 
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Dotti et. al, J Neurosci, 1988 from website of Banker Lab

• Spontaneity 
A neuron is spontaneously polarized, even in an 
uniform extracellular condition. 

• Stabilization
Once a single axon is selected, remaining neurites
cannot be elongated. 

• Correction 
Sometime, multiple neurites mistakenly happen to 
be selected, but this failed pattern is flexibly 
cancelled out to yield a single axon. 

What is the mechanism of such a flexible morphogenesis?

Axon determination of differentiated neurons
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• Compartment model
• Soma, several neurites

• Axon determination molecule: factor X
• Gene expression in the soma
• Degradation or inactivation
• Diffusion
• Active transport from the soma to each neurite tip

Model: axon determination molecule
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off/on

• When factor Y is “up state”, neurite elongates.
• When factor Y is “down state”, neurite shrinks.

Fivaz et. al, Curr Biol, 2008

HRas behaves like a molecular 
switch, being highly activated in the 
selected neurite.

Model: cytoskeleton regulating molecule

• Cytoskeleton regulating molecule: factor Y
• Work at each neurite tip
• Activated by the axon determination factor (X)
• Bistable switch (hysteresis)
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• Local activation in the growth cone

– Factor X is accumulated in the growth 
cone due to the increasing active 
transportation

• Global inhibition in the somatic pool

– As the neurite becomes long, it is difficult 
for factor X to diffuse back to the soma.

– If there are long neurites, the somatic 
pool of factor X is dried up. 

Mathematics: Winner-take-all mechanism
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Dynamics of factor X in the soma

Activity of factor Y (depending on factor X)

Concentration of factor X in the neurite tip
vs Neurite length

Once a single neurite elongates, other neurites

cannot elongate due to the dry up of the 

somatic pool of X. 

Mathematics:
Spontaneity and stability

Neuroinformatics 2011



Activity of factor Y (depending on factor X)

Dynamics of factor X in the soma Concentration of factor X in the neurite tip
vs Neurite length

The state with multiple long neurites is 

destabilized due to too much decrease in the 

somatic concentration of X. 

Mathematics:
Correction
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Before polarization
(Stage 2)

After polarization
(Stage 3)

Fluorescent antibody staining

Length
Concentration

Expression rate of Shootin1

12 24 36 48 60 72 84 96 108 120
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Biology: Neuronal polarization correlates with 
expression of Shootin1
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*

*
*** **

EGFP-shootin1 mRFP

Velocity
Intensity of Shootin1

Biology: Active transportation of Shootin1
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Before UV irradiation After UV irradiation 55 min after UV irradiation

Green Kaede-shootin1

Red Kaede-shootin1

Merged

Kaede experiment

Biology: Estimation of the diffusion constant 
of Shootin1

Based on the linear relationship between 
the neurite length and the decay time 
constant, we can estimate the diffusion 
constant.

Neuroinformatics 2011



Simulation: Outgrowth velocity dependent on 
Shootin1



21

Average time-series(n=9)

Axon candidate

Other neurites

Experiment vs. simulation
Average time-series(n=50)

Axon candidate

Other neurites

Experiment: primary cultured neurons Computer simulation

Neuroinformatics 2011



High SNR in chemotaxis:
model and mathematics

Naoki, H., Sakumura, Y., Ishii, S. Journal of Theoretical Biology, 
2008.

Neuroinformatics 2011



Spontaneous pulses in chemotactic cells

Cellular slime molds
(from Website of Yanagida Lab in Osaka Univ.)

Chemotaxis is a property 
that a cell detects the 
gradient of chemical 
substance and moves up 
toward its direction.

(Arrieumerlou et al, Dev Cell, 2005)

A chemotactic cell of immune system

PIP3 pulse Spontaneous and transient
Increase in PIP3 concentration 
leads to cellular elongation and
determines moving direction.

Neuroinformatics 2011



 [ ]

[ 2][ ]

[ 2]

[ 3]

[ 3]

[ 2]

[ 2]

[ 3]

[ 3]

PI3K act

PI3K

PTEN act

PTEN

PI3Kfb tot

PI3Kfb

PTENfb tot

PTENfb

PIP3

kcat PI3K PIPd PIP3
=

dt Km + PIP

kcat PTEN PIP

Km + PIP

kcat PI3Kfb PIP
+ m

Km + PIP

kcat PTENfb PIP
w

Km + PIP







Feedback term

 [ ]PIP3w wdw
=

dt 




[ ] [ 3]totPIP  = PIP2 PIP

 [ ]
[ ]

[ ]

PI3K

PI3K PI3K

PI3Kfb

h

h h
PIP3

PIP3
m =

K + PIP3


 [ ]
[ ]

[ ]

PTEN

PTEN PTEN

PTENfb

h

h h
PIP3

PIP3
w =

K + PIP3


where

Assumptions:

• Positive feedback is fast and then chemically 
equilibrated.

• Negative feedback is slow.

• Activities of PI3Kfb and PTENfb are provided 
by Hill equations of [PIP3].

• Total mass of PIP2 and PIP3 are constant.

A biochemical model of PIP3 pulse generation



PIP3-related signal transduction consisting of positive and 
negative feedback loops can be an excitable system.

Similar structure to the excitable 
FitzHugh-Nagumo model

PIP3 pathway constitutes an excitable system

Neuroinformatics 2011



Langevin equation Kramers transition rate
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Brownian motion under potential field
(comprised by stochastic nature of chemical reactions) Potential:

Mechanism of spontaneous signal generation 
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[ 3] ([ 3])
=

[ 3]

d PIP PIP

dt PIP


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

Nonlinear amplification of the linear gradient 

*

Janetopoulos et al, PNAS, 2004

Chemical gradient are give as
localized accumulation of PI3K/PTEN 

Chemical gradient = 5%



Monte-Carlo simulation31 molecule kinds /  38 reactions

Monte-Carlo simulation of the signal pathway 
reproduces the theoretical results 

Neuroinformatics 2011



Bidirectional response by growth cones:
biology and model

Nishiyama, M., Naoki, H., Ishii, S., Hong, K.

Neuroinformatics 2011



(Xenopus spinal neuron)

Filopodia 

Lamellipodia   

Bidirectional responses of growth cones

DCC

DCC-UNC5

Nishiyama et. al, Nature (2003)

Receptor for cue molecule

Netrin-1 gradient



Total concentration is fixed at 10mM.

Netrin-1 gradient

Bath application of
Sp-8-Br-cAMPS/8-Br-cGMP

cAMP/cGMP controls bidirectional responses
of the growth cone

Nishiyama et. al, Nature (2003)



Nishiyama et al., Nat Neurosci (2008)

Ca2+ imaging with Sema3A gradient

Gradient direction is encoded into steepness 
or basal concentration of Ca2+ 

During attraction, a 2-fold greater Ca2+ increase is 
induced than are induced by repulsive signals. 

• How gradient information is encoded into Ca2+?
• How Ca2+ signal is decoded by downstream cascade?

Questions



A combined activator-inhibitor model

¶A
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Reaction-diffusion equation

• In this growth cone turning system, 
there are two kinds of balancing factors 
between activator and inhibitor.

• Upstream of Calcium
• cAMP (A) vs. cGMP (I)

• Downstream of Calcium
• CaMKII (A) vs. CaN-PP1 (I)
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Spatial difference of X 
across the growth cone

Repulsive condition (ΔX<0)

Magnitude relation between A*/I* and ΔA/ΔI determines 
attractive or repulsive turnings.

Mathematics: an activator-inhibitor system 
can exhibit bidirectionality



Netrin-1

Bath application of
Sp-8-Br-cAMPS/8-Br-cGMP

The mathematical model can reproduce 
bidirectional responses



When the activator and 
inhibitor are upregulated
in a non-linear manner,…

The mathematical model further predicts 
more complicated behaviors



cAMP/cGMP

The predicted complicated behaviors are 
experimentally confirmed

When the activator/inhibitor exhibits non-linear responses, 
the system’s response become complicated.
This kind of nonlinearity may be used for situation-dependent 
growth cone guidance in developing neurons. 

 (19)

(14)
(19)

(12)

(12)

(13)

(16)

(24)

*

*

0 10-10-20-30 20 30

Turning angle (degrees)

0 / 0 mM
0.9 / 0.1 mM

9 / 1 mM
4.5 / 0.5 mM

45 / 5 mM
18 / 2 mM

90 / 10 mM

EPAC activator

repulsion attraction repulsion



Large-scale simulation of neural systems,
in Japan

Diesmann, M., Fukai, T., Usui, S., Kuroda, S., Ichikawa, K., 
Kanzaki, R., Doya, K., Ishii, S.,
and many young researchers

Neuroinformatics 2011



Japanese supercomputer K achieved the 
world fastest (20, June, 2011) 

LINPACK performance:
8.162 PFLOPS
(548, 352 cores)

“K” comes from the 
Japanese word “Kei " 
which means ten peta or 
10 to the 16th power. 



• Over 80,000 processors
– Over 640K cores
– Over 1 Peta Bytes memory

• Cutting-edge technologies
– CPU: SPARC64 VIIIfx, 8 cores, 

128GFlops
– Interconnect, “Tofu”: 6-D 

mesh/torus
– Parallel programming environment

http://www.fujitsu.com/downloads/TC/sc10/when-high-
performance-computing-meets-energy-efficiency.pdf

K supercomputer outlook



• Promote the research and 
development of simulation 
software which helps 
understand phenomena 
from molecules to entire 
organisms

• Long-term "grand 
challenges" aimed at the 
construction of a basis for 
future life science unifying 
experiments and computer 
simulations to gain new 
knowledge for the first time.

http://www.csrp.riken.jp/index_e.html

Neuroinformatics 2011

Grand challenge: Next generation integrated 
simulation of living matter



Software: neuron and circuits simulators

NeuroMorphoKit
A multiphysics simulation environment for neuromorphological dynamics

is a software platform for neuronal 
morphological simulation by integration of 
kinetics of cytoskeletal filaments, cell 
membrane dynamics, and reaction-diffusion of 
intracellular molecules

C, C++, MPI, OpenMP, GSL, NetCDF, GD, zlib

NEST
Neural Simulation Tool

simulates and predicts the signal processing for 
10 million neurons equivalent to 100 columns 
in the cortex, and 100 billion synapses 
connecting the neurons

C++, SLI, MPI, pthread

Markus Diesmann
Tomoki Fukai

Shin Ishii
Kazuhisa Ichikawa

Neuroinformatics 2011



Now available on K

high degree of parallelization is 
achieved by using hybrid MPI + 
OpenMP threads with more than 8000 
cores on K supercomputer

very good scaling up to 4096 cores, 
speedup α > 0.75

good scaling for > 8000 cores, speedup 
α = 0.68

Action plan

Employ computer’s specific 
optimizations of NEST code

improves communication computation 
balance

K MPI

K MPI

Neural Simulation Tool (NEST) on K

Neuroinformatics 2011



VSM
The visual information processing analysis with a whole visual system model

targets the visual system being built with the 
mathematical model that is described in each level 
of function, cell, and ion current for cortex, retina, 
ophthalmological optics, and eye motion 
(brainstem)

C, C++, OpenMPI, GSL, netCDF

Software: whole-brain level circuits

IOSSIM
Whole-brain simulator for the insect’s olfactory system

performs a virtual-spatial real-time simulation for the 
neural circuit's information processing of an insect from 
sensing to action by the multi-compartment model that 
considers each neural configuration

C, C++, MPI, SUNDIAL InterView

Shiro Ushi, Kenji Doya
Shinya Kuroda

Ryohei Kanzaki
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Large-scale simulation of  insects’ whole olfactory system (IOSSIM)

LC

RC

L
RC

LC

Pheromone
5 sec

1. Command signal(G1 DNs)

synchronized

Silkmoth’s zig-zag behavior

Flip-flop like command signals 

Target Methods to construct simulation

LAL-VPC region
:Flip flop generator? 
(~600 neuron）

elameF

enomorehP

elaM
roivaheB

(A)

Standard brain

mapping

Recording morphology 
and physiology

extraction

Synaptic strength 
estimation

neural circuit simulation 
in standard silkmoth brain

Estimation 
Connectivity of 
connection

- Multi-compartment H-H neurons

- 72 neurons, 12900 synapses

- Inhibitory linter-neurons and excitatory bilateral neurons

- Synaptic connections  based on morphological analysis 

of the LAL-VPC circuit

- Working on K computer

Large-scale simulation
on K supercomputer
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Cytoskeleton-based morphogenesis:
a multi-physics simulation

Nonaka, S., Naoki, H., Ishii, S. Neural Networks, 2011.

Neuroinformatics 2011



Actin filament

Microtubule

Neurites：
Actin and Microtubule are localized 
at tips and along shafts, respectively.

Dotti et. al, J Neurosci, 1988

Dendrite / Synapses：
Actin and Microtubule are localized 
at synapses and along dendritic shafts, respectively.

Cytoskeleton, especially actin, is involved in structural plasticity. 

Cytoskeleton in neuronal morphogenesis

Neuroinformatics 2011



Actin polymerization inhibitor

Multi-physics in cellular morphogenesis

Intracellular signaling
Reaction-diffusion

Cytoskeleton (actin)
Polymerization, blanching, etc  

Membrane
Deformation and motility

Kinetics control

Mechanically sustain membrane

Boundary conditions for 
reaction-diffusion

Song, et. al., Nat Cell Biol, 2001Cdc42-FRET imaging in fibroblast by Matsuda lab

Gerisch, et al., Biophys J, 2004

Growth cone 

(by Dr. Kaoru Katoh)



Actin filaments control cell motility 

Polymerization and de-polymerization

Treadmilling

Branching Capping Severing

Actin treadmill would provide 
driving force for cell motility

Neuroinformatics 2011



Within each step (Δt)

• Space is compartmentalized.
• Membrane is expressed by polygon.
• Actin filament is expressed by line segments.

Capping

Membrane vertex

Reaction-diffusion

Depolymerization

Actin
filament

Polymerization

Branching

Compartment model of multi-physics

Intracellular signaling
Reaction-diffusion

Cytoskeleton (actin)
Actin filament reorganization  

Membrane
Energy-based deformation

Neuroinformatics 2011



Blanchoin, et. al, Biophy J, 2005

Bear, et. al, Cell, 2002

Schafer, et. al, J Cell Biol, 1996

Active Arp2/3

Active Capping 

protein.

Actin filament

Capping protein • Arp2/3 is activated 
in the vicinity of the membrane.

• Capping protein is inactivated
in the vicinity of the membrane.

Meshed network of actin filament is organized.

Simulation: self-organization of lamellipodia

Neuroinformatics 2011



Chemo-attractant gradient

• Chemo-attractant activates receptor.

• Activated receptor activates Arp2/3 
complex.

Simulation: chemotactic migration 

Neuroinformatics 2011



• Locate obstacles, which correspond 
to other cells or extra-cellular 
matrix.

• Energy optimization is performed 
with a constraint such that the 
membrane vertices are not 
overlapped with the obstacles.

Chemo-attractant gradient

Simulation: invasive migration 

Neuroinformatics 2011



Simulation on K supercomputer

• Current status
– tested up to 512 cores
– hybrid of MPI and OpenMP

enabled more efficient 
computations on larger scale 
settings

– accomplished moderate 
parallelization on the 
membrane energy 
optimization (p=99.729%)

p=93.753% (flat MPI) 

p=82.069%

p=93.489%

p=99.729%

p=99.772%

p=98.377%

p=73.736%

p=93.617%

p=92.707%

Simulation setup
• initial number of actin filaments > 106

• small: 147456
• middle: 294912
• large: 442368

• initial number of membrane nodes
• 1200 ms biological time simulation



Svitkina et al., J Cell Biol, 2003

Bendable F-action and linker protein are 
required for filopodial formation

then, the initial concentration of Arp2/3 in solution plays a major
role in determining the conditions for the fascin-mediated
assembly of actin bundles, thus (albeit indirectly) controlling
bundles thickness and length.
Finally, when the amount of fascin was further elevated to 3 mM

(red arrow), a transition from ‘stars’to ‘a network of bundles’was
observed in the 12.5 nM Arp2/3 system (Fig. 2d). In contrast, the
system with 100 nM Arp2/3 remained unchanged (Fig. 2h) and
did not show any structural transition up to 6 mM fascin (data not
shown). Actually ‘networks of bundles’did not appear in any of the
systems containing more than 25 nM of Arp2/3 complex,
regardless of [fascin].
In Fig. 3 we present a phase diagram of the system, depicting

the regions of existence of the three types of experimentally
observed structures, as a function of the initial [Arp2/3] and
[fascin]. The data shown here corresponds to experiments
conducted at [G-actin] = 7 mM ; a similar qualitative behavior
was observed for the other concentrations of actin we have tested,
ranging between 1 mM and 5 mM (data not shown). Careful
inspection shows that below 3 nM of fascin only aster-like
structures form (circles), regardless of [Arp2/3]. Increasing
[fascin], for a given amount of Arp2/3 complex, induces structural
transitions into stars (inverted triangles). The amount of fascin
required to mediate this transition increases nonlinearly with
[Arp2/3], saturating above 40 nM Arp2/3, (the blue curve marks
the approximate boundary between the two regions). W hile only
few nano-molars of fascin are sufficient to induce the transition
from asters to stars, the subsequent transition to ‘networks’
(squares) requires much larger amounts of fascin (several mM ; the
red curve marks the approximate boundary between the two
regions). W e note that a transition to ‘networks’ is observed only
for sufficiently low [Arp2/3] (, 25 nM ), within this region, the

amount of fascin required for the nucleation of bundles increases
monotonically with Arp2/3 content.

Aster to star transition–Experimental results
The densi ties of aster s and star s depend on [Arp2/3] but

not on [fascin] . To test our assumption that each star
originates from a preformed aster, we have measured the
number of ‘‘aggregates’’ (i.e., asters or stars) per unit area
(surface density), within the 1 mm section of the bulk sample
observed. The surface density of aggregates s = d2 2was evaluated
by measuring the average distance, d, between adjacent
aggregates. K eeping a constant ratio [VCA]/[Arp2/3] = 2, we
have measured d2 2 for several values of the initial [Arp2/3] and
[fascin] (Fig. 4). For clarity we present only two concentrations of
fascin: 5 nM (triangles) and 0.2 mM (circles). Data points taken at
5 nM fascin correspond to density of asters, while those taken at
0.2 mM fascin are associated with density of stars. In both cases,
d2 2 increases monotonically with [Arp2/3]. In contrast, [fascin]
does not appear to affect d2 2 (see inset; conditions: [Arp2/
3] = 12.5 nM ), indicating that the density of aggregates is dictated
primarily by the amount of Arp2/3 complex in the system. These
results support our previous findings that Arp2/3 complexes are
aster nucleators and that stars develop from preformed asters [27].
This is consistent with our present conclusion that, at early times,
actin polymerization is governed by Arp2/3 nucleation and
branching. Fascin comes into play and becomes dominant in star
formation only later, when the structural properties of the aster
enable the onset of filament bundling.
The length of bund les in star s depends on Arp2/3 and

fascin concentr ations. For all the concentrations of Arp2/3
that we have tested, the mean final length of bundles, LFin, was
found to increase with [fascin], reaching asymptotically a maximal
([Arp2/3] dependent) value, LmaxFin (Fig. 5a). The system appears
more sensitive to fascin addition when [Arp2/3] is lower (as
reflected by the steeper slopes in Fig. 5a). Consequently, the
amount of fascin required to reach LmaxFin decreases with the

Fig u re 3. Phase d iag ram for actin -fascin -arp 2/3 com p lex .
Condition is: 7 mM G-actin, Arp2/3 complex and fascin concentration
was changed according to the graph. Condition for images is: 3 nM,
200 nM and 3 mM fascin; 6.25 nM, 12.5 nM and 6.25 nM Arp2/3
complex (a, b and c, respectively). Experimental points demonstrate
different type of structures formed; these are represented by squares -
entangled network, triangles -stars and circles -asters. Phase changes
from asters to stars (blue line) and from stars to entangled bundle
network (red line). Lines of phase separation are plotted as averages of
two points of different structures. For low concentration of Arp2/3
complex phase transition is more abrupt for the same change in fascin
concentration . No transition to entangled network was visible for high
concentrations of Arp2/3 complex.
doi:10.1371/journal.pone.0003297.g003

Fig ure 4. The surface density of ob jects (asters or stars) is
contro lled so lely b y Arp2/3 and not b y fascin . Conditions are:
7 mM G-actin; fascin concentration of 5 nM (triangles) and 200 nM
(circles); and variable amount of Arp2/3 complex: 6.25, 12.5, 25, 40, and
100 nM. The [VCA]/[Arp2/3 complex] = 2 in all experiments. We observe
a monotonic growth in density of objects with Arp2/3 complex
concentration. The density of objects doesn’t show a dependence on
fascin concentration (inset, a half log plot is given in order to see clearly
all experimental data points). Error bars represent standard deviation
from average values.
doi:10.1371/journal.pone.0003297.g004

Arp2/3 Network Control Bundles
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Filopodia-like structure appears in a membrane-free 
environment only with actin, Arp2/3 and fascin.

Ideses et al., PLoS ONE, 2008



Simulation of in vitro reconstruction of 
filopodia

Star-like structure of filopodia is self-organized
While line: bendable F-actin Red point: fascin



Brain Machine Interface
(decoding from the brain)

Future: from modeling to decoding

In house In vivo

Growth-cone Machine Interface?
(decoding from neurons and growth cones)



Summary
• Information processing in neuronal 

morphogenesis
– Neuronal polarization

– High SNR in chemotaxis

– Bidirectional responses by growth cones

• Large-scale simulations of neural systems 
– Large-scale simulation studies in Japan

– Multi-physics simulation of neuronal 
morphogenesis

• Lamellipodia formation and cell migration

• Bendable F-actin and filopodia formation


