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Morphological divergence of neurons

Basic hypothesis:
Morphology and structure are information representation in the brain.

Development process in the brain

How do neurons obtain their morphology?
How do neural circuits form their patterns?
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Structural plasticity in neural development

Activity-dependent
Sponteneous dendrite formation
dendrite formation

Neurite formation

Axon-dendrite
Polariztion o
characterization
o

Filopodia formation

Branching
Growth cone »

Axon %

(1) Polarization

Axon branching
Axon guidance

(2) Axonal elongation (axon guidance) (2)

* A decoding process from analog (and sometimes weak) molecular
signals to digital morphology
* Can be symmetry breaking phenomena
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Spontaneous neuronal polarization:
model, mathematics and biology

Naoki, H., Nakamuta, S., Kaibuchi, K., Ishii, S. PLoS ONE, 6, 2011.
Toriyama, M., Sakumura, Y., Shimada, T., Ishii, S., Inagaki, N.
Molecular Systems Biology, 6, 2010.



Axon determination of differentiated neurons
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Axon determination of differentiated neurons
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Axon determination of differentiated neurons

Stage: 1 2 3

Lamellipodia Minor Axonal Dendntlc Malu ation

Processes Outgrowth QOutgrowth *\/
Days in W
0.5 15

Culture: 0.25

Dotti et. al, J Neurosci, 1988 from website of Banker Lab

Stage2 Stage3
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%'% o Correction
Sometime, multiple neurites mistakenly happen to
Unstable be selected, but this failed pattern is flexibly

cancelled out to yield a single axon.

What is the mechanism of such a flexible morphogenesis?



Model: axon determination molecule

« Compartment model
e Soma, several neurites

« Axon determination molecule: factor X
e Gene expression in the soma
e Degradation or inactivation
e Diffusion
e Active transport from the soma to each neurite tip

ODE (Concentration of factor X in the soma)

9C, ke +L Z{DAaC 10 aCS]
dt V < OX

PDE (Concentration of factor X along each neurite)
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Model: axon determination molecule

« Compartment model
e« Soma, several neurites

« Axon determination molecule: factor X
e Gene expression in the soma
e Degradation of inactivation
e Diffusion
e Active transport from the soma to each neurite tip

ODE (Concentration of factor X in the soma)
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Model: axon determination molecule

« Compartment model
e Soma, several neurites
« Axon determination molecule: factor X
e Gene expression in the soma
e Degradation or inactivation
e Diffusion
e Active transport from the soma to each neurite tip
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Model: axon determination molecule

« Compartment model
e« Soma, several neurites

« Axon determination molecule: factor X
e Gene expression in the soma
e Degradation or inactivation
e Diffusion
e Active transport from the soma to each neurite tip

ODE (Concentration of factor X in the soma)

dc 1 oC, (0,t)
1= Gk, + 23| DA% )
© | Vz[ i }

PDE (Concentration of factor X along each neurite)

2
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Model: cytoskeleton regulating molecule

i(pm)
) :
¢«n *Cytoskeleton regulating molecule: factor Y
e Work at each neurite tip

e Activated by the axon determination factor (X)

e Bistable switch (hysteresis)
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Fivaz et. al, Curr Biol, 2008
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The concentration of Factor X

at the growth cones HRas behaves like a molecular
switch, being highly activated in the

e When factor Y is “up state”, neurite elongates.
selected neurite.

e When factor Y is “down state”, neurite shrinks.



Model: cytoskeleton regulating molecule

Growth cone
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The concentration of Factor X
at the growth cones

_/

e When factor Y is “up state”, neurite elongates.
e When factor Y is “down state”, neurite shrinks.

Z«n *Cytoskeleton regulating molecule: factor Y
e Work at each neurite tip

o Activated by the axon determination factor (X)
o Bistable switch (hysteresis)

Fivaz et. al, Curr Biol, 2008

HRas behaves like a molecular

switch, being highly activated in the
selected neurite.



Mathematics: Winner-take-all mechanism

* Local activation in the growth cone

— Factor X is accumulated in the growth
cone due to the increasing active

transportation
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* Global inhibition in the somatic pool oo eron e

— As the neurite becomes long, it is difficult

C (L)=C, { “_ tanh (\/ﬁLi ) +cosh (Mg )_l}
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for factor X to diffuse back to the soma.

— If there are long neurites, the somatic

pool of factor X is dried up.
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Stage2 Stage3

ji e Mathematics:
N e Spontaneity and stability
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Biology: Neuronal polarization correlates with
expression of Shootinl

Before polarization After polarization

(Stage 2) (Stage 3)

Fluorescent antibody staining
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Biology: Active transportation of Shootinl

EGFP-shootinl mRFP

Intensity of Shootinl

Velocity

Normalized Speed / Intensity
o

10 20 30 40 50 60
Neuroliine{x2min)



Biology: Estimation of the diffusion constant
of Shootinl

Before UV irradiation

. After UV irradiation 55 min after UV irradiation
Kaede experiment

Green Kaede-shootinl

Red Kaede-shootinl

N
o

—
(62

-
-
Based on the linear relationship between
the neurite length and the decay time

constant, we can estimate the diffusion
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Simulation: Outgrowth velocity dependent on

Shootinl
> 2
.g .
@ 17 » .3‘9..::=.‘k
EE °° :.-& r
% - 0 T o 4 -;_(..'3_. """""""""
. ':"
D?!E :' e
-5' 1'1 n . Y 4
© B
£ - X ® Experiment
D ® \odel
Z -3 | 1 | | 1 |
0 1 2 3

Relative shootin1 conc. in growth cone



Experiment vs. simulation

Average time-series(n=9)
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Experiment: primary cultured neurons

Neuroinformatics 2011

Average time-series(n=50)

—
o
o

Axon candidate /

D 00
o o

/a/"

n
o

—

Mean neurite
length (um)

Other neurites

N
o

o

w

N

i

—

B R N S —— S ———

o

0 50 100
Time (min)

Computer simulation



High SNR in chemotaxis:
model and mathematics

Naoki, H., Sakumura, Y., Ishii, S. Journal of Theoretical Biology,
2008.



Spontaneous pulses in chemotactic cells

Chemotaxis is a property A chemotactic cell of immune system

that a cell detects the
gradient of chemical
substance and moves up
toward its direction.

o

0C:00

(Arrieumerlou et al, Dev Cell, 2005)

PIP3 pulse Spontanepus and transient |
Increase in PIP3 concentration
leads to cellular elongation and
determines moving direction.

Cellular slime molds
(from Website of Yanagida Lab in Osaka Univ.)
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A biochemical model of PIP3 pulse generation

chemo-attractants

d[PIP3] _

kcat,q PI3K,, [PIP2]

dt

KMy +[PIP2]
_ keatprg, PTEN,, [PIP3]

KMgrey +[PIP3]
, Koty PISKfD,, [PIP2

KmPI3be + [PIPZ]

kcat, oy, PTENTD,,

m,, ([PIP3])

[PIP3]@

KmPTENfb + [P I P3]

Feedback term

@_ _wHw, (IPIP3]
dt

T

where PIR, =[PIP2]+[PIP3]

hPI3K

K PTENfb

+[PIP3]

[PIP3]
moo ([PIP3]) hPIBK hPI3K
KP|3be + [PIP3]
PI P3 hPTEN
Woo ([PIPB]) IfiPTEN ] hPTEN

Positive Feedback PIP3 Negative Feedback
(Cdc42/Rac) (Rho)

Assumptions:

Positive feedback is fast and then chemically
equilibrated.

Negative feedback is slow.

Activities of PI3Kfb and PTENfb are provided
by Hill equations of [PIP3].

Total mass of PIP2 and PIP3 are constant.



PIP3 pathway constitutes an excitable system

0.3

aw _,
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L Similar structure to the excitable
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PIP3-related signal transduction consisting of positive and
negative feedback loops can be an excitable system.



Mechanism of spontaneous sighal generation

Brownian motion under potential field

(comprised by stochastic nature of chemical reactions) Potential:
""" 0.01 d[PIP3]_ ag([PIP3])
e 0] dt O[PIP3]
e
S -0.01
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o 0.02| @
05 003 f |
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PIP3 (uM)
Langevin equation Kramers transition rate = HAKramers, Physica, 1940
d[PIP3] _ dg([PIP3]) /¢" g A
= +2D D k=Y Dl 22
dt d[PIP3] o | Sl eXp( j

(E(D)&(r))=s(t-t) D : Diffusion constant in potential field



Nonlinear amplification of the linear gradient

Chemical gradient are give as

die? . :
Chem'\ca\ crec localized accumulation of PI3K/PTEN
PI3K 4
PI3K
PTEN * PTEN
Lower Middle Higher Janetopoulos et al, PNAS, 2004
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Chemical gradient = 5% PIP3 (uM)



Monte-Carlo simulation of the signal pathway
reproduces the theoretical results

© Ligand
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Bidirectional response by growth cones:
biology and model

Nishiyama, M., Naoki, H., Ishii, S., Hong, K.



Bidirectional responses of growth cones

Receptor for cue molecule

Netrin-1 gradient

UNC5

(Xenopus spinal neuron) Attraction ——

Nishiyama et. al, Nature (2003)



cAMP/cGMP controls bidirectional responses
of the growth cone

Netrin-1 gradient/ Netrin-1

nee Netrin-1 (5]
_ Q (Cue molecules)
FM °
Growth .
cone
Bath application of I : DCC ‘
PP Attraction (Netrin-1 receptor) Y —

Sp-8-Br-cAMPS/8-Br-cGMP

Turning angle (degree)
(]

=10 4
20
w ] ||
30 i 1 L1 1 | II \* 1 1 L1 11 \I* 1 1 1 I*I Ll II
0.1 1.0 10

[Sp-8-Br-cAMPS] / [8-Br-cGMP]

Nishiyama et. al, Nature (2003) Total concentration is fixed at 10uM.



Gradient direction is encoded into steepness
or basal concentration of Ca2+

Ca2+ imaging with Sema3A gradient
Sema3A

Attractive ! \ '
" ' J.o“‘d v :

]
Attractive !

[Ca?],

-3 min 2 min 5 min

Nishiyama et al., Nat Neurosci (2008)
During attraction, a 2-fold greater Ca2+ increase is

induced than are induced by repulsive signals.

—— Questions

e How gradient information is encoded into Ca2+?
e How Ca2+ signal is decoded by downstream cascade?

.



A combined activator-inhibitor model

Netrin-1 (6}
Q (Cue molecules)

o 0 o ° * In this growth cone turning system,
DCC
. (0]
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.," Sy B9 o 0 oo between activator and inhibitor.
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Mathematics: an activator-inhibitor system
can exhibit bidirectionality

(Guidance Cue) DA S O 5 G‘a

G ______
_\ Extracell W
B! DI >0 .

Intracell 10+ -

otvator

(Inh|b|tor (Actlvator / AA
\/ / °

‘ . : . Growth
Factor X) -10 -5 0 5 10 cone
Distance (mm)

Spatial difference of X DX = X(L/2)- X(- LI2)= dh, A_(% Rf\
across the growth cone d(Al1)|= I
Repulsive condition (AX<0) A* > DA

1 D/

Magnitude relation between A”/I" and AA/Al determines
attractive or repulsive turnings.
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The mathematical model can reproduce
bidirectional responses
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The mathematical model further predicts
more complicated behaviors

When the activator and

A
inhibitor are upregulated
. . ® Inhibitor
INa non-llnear Manner,... gz
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The predicted complicated behaviors are
experimentally confirmed

EPAC activator (12)—f— - 15 n\
90/ 10 mM —F = 0.05; |
45/5 M (19) = 2 10 |'
18 /2 mM '—E (14) > N =
9/1mM —&=t (16) © 0 &
45/05mM = (19) = 5- \
0.9/0.1 mM 13) _
0/0mMm —Nea) K j \
T T T 0
30 20 -10 10\ 20 30 100 1 50 100 150
Turning angle (degrees) uM) CAM P+cGMP (uM)
repulsion attraction repulsion

cAMP/cGMP
-

When the activator/inhibitor exhibits non-linear responses,
Growth the system’s response become complicated.

This kind of nonlinearity may be used for situation-dependent

growth cone guidance in developing neurons.



Large-scale simulation of neural systems,
in Japan

Diesmann, M., Fukai, T., Usui, S., Kuroda, S., Ichikawa, K.,
Kanzaki, R., Doya, K., Ishii, S.,
and many young researchers



Japanese supercomputer K achieved the
world fastest (20, June, 2011)

LINPACK performance:
8.162 PFLOPS
(548, 352 cores)

“K” comes from the
Japanese word “Kei "
which means ten peta or
10 to the 16th power.




K supercomputer outlook

* QOver 80,000 processors 8 cores (@2GHz)
— Over 640K cores 126GFlops
CPU SPARC V8 + HPC extension
- Qver 1 Peta Bytes mer.nory (SPARC64 L1(I/D) Cache : 32KB/32KB
« Cutting-edge technologies — L2 Cache : 6MS
58W (typ. 30 C
— CPU: SPARC64 VIIifx, 8 cores, —
128GFlops » 1GPU Node
— Interconnect, Tofu”: 6-D oEe Memory capacity 16GB (2GB/core)
. . oar
— Parallel programming environment “Reck | Noorss o4 SBelrack

Nodes/system > 80,000

Topology 6D Mesh/Torus
5GBJs. for each link
inter- |__No- of link | 10 links/ node

connect Additional H/W barrier, reduction

. Routing chip structure
My (no outside switch box)
B _ CPU, ICC* Direct water cooling
“ Cooling
- Other parts Air cooling

http://www.fujitsu.com/downloads/TC/sc10/when-high-
performance-computing-meets-energy-efficiency.pdf

feature




Grand challenge: Next generation integrated
simulation of living matter

Promote the research and
development of simulation
software which helps
understand phenomena
from molecules to entire
organisms

Long-term "grand
challenges" aimed at the
construction of a basis for
future life science unifying
experiments and computer
simulations to gain new
knowledge for the first time.

RIKEN

A1

RIKEN ( close clallobc rations

Next-Generation Supercomputer R&D Center Y

Advanced Center for Computing and Communication

efc. SR .
VY

Computational Science Research Program
Steering Committee
Program Director { Research Review Committee
Advisory committee
Dupty Program Director
Coordinators

Infegrated Simulation of Living Matter Group
— Molecular Scale Team

— Cell Scale Team

— Organ and Body Scale Team

— Data Analysis Fusion Team

—MBrain and Neural Systems Team

— High-pertormance Computing Team

in collaboration with

™ Molecular Scale WG
” RIKEN, Yokohama city Univ.,

Kyoto Univ., Univ. of Tokyo,
Oscka Univ.

Cell Scale WG

Keio Univ., RIKEN,
Osaka Univ.,

Kobe Univ., Tokai Univ.

Organ and Body Scale WG
Univ. of Tokyo,RIKEN,
Tohoku Univ.,

Japan Advanced Institute of
Science and Technology,
Osaka Univ., Chiba Univ.,
Hiroshima Univ.,

Kyoto Univ.

Data Analysis Fusion WG

Univ. of Tokyo,

The Institute of Statistical
Mathematics,

Tokyo Institute of
Technology, RIKEN

Brain and Neural WG

Kyoto Univ.,
Univ. of Tokyo, RIKEN

http://www.csrp.riken.jp/index_e.html
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Software: neuron and circuits simulators

C, C++, MPI, OpenMP, GSL, NetCDF, GD, zlib

NeuroMorphoKit

A multiphysics simulation environment for neuromorphological dynamics S Ll

is a software platform for neuronal L, ,’_—‘——’ |
morphological simulation by integration of N -

. . . Capping Glymefizption g r f
kinetics of cytoskeletal filaments, cell SQ°P e 0o |

Seet—T|

Pt
=
/)

!:b
-

i- 'S
-—
e
o

membrane dynamics, and reaction-diffusion of
intracellular molecules = _Cappingprotein

Shin Ishii =2 ® 9 -0
Kazuhisa Ichikawa :

N EST C++, SLI, MPI, pthread

Neural Simulation Tool

simulates and predicts the signal processing for
10 million neurons equivalent to 100 columns
in the cortex, and 100 billion synapses
connecting the neurons

thalamo-cortical input

1000 1250 1500 1750 [ 2 4
time [ms] rate [Hz]

Markus Diesmann
Tomoki Fukai
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Neural Simulation Tool (NEST) on K

NEST STDP benchmark, K =10*

Now available on K | o KupI + Openib), 10
200 [ : e o KMPI +0pe‘nMP(8),N:2 10
high degree of parallelization is I SR SR .
achieved by using hybrid MPI + 3
OpenMP threads with more than 8000 ¢ | ’ Opony =068 |
cores on K supercomputer 5 ! \ !
: s | . i
very good scaling up to 4096 cores, Z : \ :
> @ ! I
speedup a > 0.75 o o g .
good scaling for > 8000 cores, speedup .
a=0.68 | | | oo
. 1024 2048 4096 8192 12288
Actlon plan number of cores
06 ML | . — 1 . L
, . || *-+ 512 neurons / core {'
Employ computer’s specific _ 5T e+ 1024 neurons / core 2
optimizations of NEST code 204
~ , ’
Improves communication computation ool ]
balance o4l Pt |
0.0 ll-.-.-.h.-==.=4=.::.:‘.:‘.’.'. Ll N
10 10° 10*

number of cores



Software: whole-brain level circuits

VSM C, C++, OpenMPI, GSL, netCDF e

. 3 N . O 3 . o External l;!|J
The visual information processing analysis with a whole visual system model

Retomal

targets the visual system being built with the -
mathematical model that is described in each level
of function, cell, and ion current for cortex, retina,
ophthalmological optics, and eye motion

(brainstem)

Shiro Ushi, Kenji Doya
Shinya Kuroda

|OSSIM C, C++, MPI, SUNDIAL InterView

Whole-brain simulator for the insect’s olfactory system

performs a virtual-spatial real-time simulation for the
neural circuit's information processing of an insect from
sensing to action by the multi-compartment model that
considers each neural configuration

Simulation of Network Activity of Brain
(e.g. Pramotor Center)

1) Brain Based Robot
Controller

Ryohei Kanzaki PR i o
My s J 3) Reconstructionof
Desired Neuron

Network
4! Neuro-Rehabditation

Neuroinformatics 2011
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Large-scale simulation of insects’ whole olfactory system (I0SSIM)

— Methods to construct simulation ——\

3 Target
% p\\em“‘”‘e QY < ‘:::j _
Male Behaviol cemale \ s
Silkmoth’s zig-zag behaiior AN

synchronized

g Connectivity of

' connection
i 2 Wi T N

. | oIy .

Pheromone -1t A —og LAL-VPC regi e WL JLW Synaptic strength neural circuit simulation

Flip-flop like command‘signals L-VFL region Recording morphdlogy  estimation
:Flip flop generator? and physiology in standard silkmoth brain
\ (~600 neuron) K )

Standard brain

. { ;"XRL . . R
¢ extraction 0 mapping Estimation

71(/1

Multi-compartment H-H neurons

72 neurons, 12900 synapses

Inhibitory linter-neurons and excitatory bilateral neurons
Synaptic connections based on morphological analysis
of the LAL-VPC circuit

2048 -
Working on K computer
- - 1024 +
Large-scale simulation
on K supercomputer g 512 ¢
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Cytoskeleton-based morphogenesis:
a multi-physics simulation

Nonaka, S., Naoki, H., Ishii, S. Neural Networks, 2011.



Cytoskeleton in neuronal morphogenesis

Stage: 1 2
Lamellipodia Minor AxOnaI Dendntlc Maturat ion
Processes Qutgrowth Outgrowth *
Days in ﬁ
Cuiture: 0.25 05

Dotti et. al, J Neurosci, 1988

Actin filament

Microtubule
Neurites: Dendrite / Synapses:
Actin and Microtubule are localized Actin and Microtubule are localized
at tips and along shafts, respectively. at synapses and along dendritic shafts, respectively.

Cytoskeleton, especially actin, is involved in structural plasticity.



Multi-physics in cellular morphogene5|s

Actin polymerization inhibitor

Membrane

Deformation and motility (by Dr. Kaoru Katoh)
Mechanically sustain membrane

Boundary conditions for

reaction-diffusion Cytoskeleton (actin)

Polymerization, blanching, etc

: . Kinetics control
Intracellular signaling

Reaction-diffusion

Cdc42-FRET imaging in fibroblast by Matsuda lab



Actin filaments control cell motility

4 )
Polymerization and de-polymerization Actin treadmill would provide
Treadmilling driving force for cell motility
\. J
G-actin
@ ~ F-actin ‘,:w:eﬁzaﬁm.
Depolymerization on . .
O end () Emrihffjh o ©
[Branching ] [Capping ] [Severing ]
Capping protein cofilin
——) 6666568e00etbo0n -
(=) (+)
¢ severing
Neuroinformatics 2011 % ““ M‘“ """




Compartment model of multi-physics

Within each step (At)

.,
Ql
=
<
[
-
@
>

emt

Intracellular signaling
¢ Reaction-diffusion

1y

L)

Po zati
[/

Branchi

-~ 0
P
N
N\
/é
\\
\\‘

Cytoskeleton (actin)
) /Actin
\ />( \ﬁ \ fiI:rrent { Actin filament reorganization

AN INL N 1L

Depolymerization \

N [ Membrane J
Reaction-diffusion

Energy-based deformation

e Space is compartmentalized.
e Membrane is expressed by polygon.
 Actin filament is expressed by line segments.

Neuroinformatics 2011



Simulation: self-organization of lamellipodia

Actin filament Active Arp2/3
Capping protein e Arp2/3is activated
I in the vicinity of the membrane.

Blanchoin, et. al, Biophy J, 2005

e Capping protein is inactivated
in the vicinity of the membrane.

Bear, et. al, Cell, 2002
Schafer, et. al, J Cell Biol, 1996

Meshed network of actin filament is organized.

Neuroinformatics 2011



Simulation: chemotactic migration

Cprotein Arp2/3

e Chemo-attractant activates receptor.

e Activated receptor activates Arp2/3
complex.

Neuroinformatics 2011



Simulation: invasive migration

Neuroinformatics 2011

Locate obstacles, which correspond
to other cells or extra-cellular
matrix.

Energy optimization is performed
with a constraint such that the
membrane vertices are not
overlapped with the obstacles.



Simulation on K supercomputer

* Current status

— tested up to 512 cores

— hybrid of MPl and OpenMP
enabled more efficient

computations on larger scale
settings

— accomplished moderate
parallelization on the
membrane energy
optimization (p=99.729%)

K [Membrane] (flat MPI)

Simulation setup
initial number of actin filaments > 108
small: 147456
middle: 294912
large: 442368
initial number of membrane nodes
1200 ms biological time simulation

p=99.77

K [Total]

—e—#actin=147456 (flat MPI)
—e—#actin=294912 (flat MPI)
—e—#actin=442368 (flat MPI)
~o-#actin=147456 (hybrid)
~o#actin=294912 (hybrid)

~o-#actin=442368 (hybrid)
\p=93.753% (flat MP!I)

............

e

512

Number of CPU cores

—e—#actin=147456
—e—#actin=294912
—e—#actin=442368

p=08.377%

Number of CPU cores

K [Actin] (flat MPI)

—e—#actin=147456
—e—#actin=294912
—e—#actin=442368

12000

10000

8000

=93.617%

6000

4000 =9270 0
2000p=73.736%
ol —3

512 2 512
Number of CPU cores




Bendable F-action and linker protein are
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Simulation of in vitro reconstruction of
filopodia

Star-like structure of filopodia is self-organized
While line: bendable F-actin Red point: fascin



Future: from modeling to decoding

In house In vivo

Brain Machine Interface Growth-cone Machine Interface?
(decoding from the brain) (decoding from neurons and growth cones)



Summary

* Information processing in neuronal
morphogenesis

— Neuronal polarization
— High SNR in chemotaxis
— Bidirectional responses by growth cones

* Large-scale simulations of neural systems
— Large-scale simulation studies in Japan

— Multi-physics simulation of neuronal
morphogenesis

* Lamellipodia formation and cell migration
* Bendable F-actin and filopodia formation



