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Abstract Object tracking has attracted recent attentiorabge of high demands for its everyday-life applicet. Handling
occlusions especially in cluttered environments introduced new challenges to the tracking problem; identity loss,
splitting/merging, shape changes, shadows and atbpearance artifacts trouble appearance-basekingatechniques.
Depth-maps provide necessary clues to retrieveuded objects after they reappear, recombine splitig of objects,
compensate drastic appearance changes, and rdaueffdct of appearance artifacts. In this study,net only proposed a
consistent way of integrating color and depth infation in a particle filter framework to efficieptpberform the tracking task,
but also enhanced the previous color-based pafiiileng to achieve trajectory independence aodsistency with respect to
the target scale. We also exploited local charesties to represent the target objects and propassalel confidence measure
for them. Applying to simple tracking problems, therformance of our method is discussed thoroughly.
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1 Introduction lasting occlusions explicitly using an occlusioagflattached
Object tracking is of emerging demands for everylifay = to each particle which signals if the bounding bigx
of people with various applications ranging fromntan- occluded, and serves to allow a search for theetargan

computer interfaces, to human behavior analysidewi increasing area in effect and to suppress the apdfathe
communication/compression, virtual/augmented neaind target template.

surveillance. To approach the object tracking pFoblthere
are two major strategies which are known as botipnand
top-down methods [1]. In a bottom-up approach, dkjare
segmented out from a frame-wise image which is dsed
tracking. In contrary, a top-down method generates
hypotheses and verifies them using the image; rdoastd
[10, 11] and template matching approaches [12]tygial
examples. Particle filter, which was used in thiglg, is one

of top-down approaches, since it generates multiple
hypotheses so that image features are evaluatext! lzas
those hypotheses.

Object tracking algorithms can be categorized atiogr
to the type and configuration of cameras useddfd it can
be 2D based on monocular cameras, 3D in the casterao
cameras or multiple cameras, and 2.5D on Micrasoféect
(which combines 2D image with depth map). Trackesisg
2D views often rely on appearance models, wherdarad
models have one-to-one correspondence to objecthein
image [6]. These trackers suffer from occlusiond il to
handle object interactions since modeling all gdesbbject
interactions is intractable. On the other handDP2ds 3D
approaches are more robust to occlusions but ameepto

Employing probabilistic framework, in this paper a major tracking issues.
particle filter is detailed which handles objectcking even
under persistent occlusions, is highly adaptivelject scale
and trajectory, and perform a color and depth mfation
fusion. The algorithm use rectangular bounding koas
hypotheses of target presencEhe target, described by a
color histogram and median of depth, was comparyezhth
bounding box in terms of the Bhattacharyya distarine
order to increase the accuracy of target locabmatiand
granting scale adaptation to system, each bourubngwas
divided into regular grids, for each confidence swra was
calculated as a ratio of foreground pixels to alefs in the
grid. A novelty of the proposed method is to hanldieg-

There are a plenty of literature and a wealth ofsdor
enabling object tracking from 2D images taken bsiragle
camera (a famous survey could be found in [13])eyTh
include model-based, appearance-based, and fezdses
methods [7]. Although tracking separated targets ha
become a popular competition scenario, multipleechj
tracking still remains a challenging task due tmaiyic
change of object attributes, such as color distigin shape
and visibility [7].

New generation of trackers, the ones that tracktipiel
objects could be categorized into generative and



discriminative methods. Generative models keepsth&us
of each object represented by a probability distidn
function. Existing studies in this line used paeifiltering
[15],

mandatory, generative methods trades the number
evaluated solutions and the granularity of eachtgwoi. The

general trend toward compensating the computationa

charge of having multiple hypotheses is to use @unp
appearance models e.g. color histograms or
distribution [15, 16]. Color distributions, as a llx@efined
feature, play a crucial role in many of the sucfidss
generative tracking algorithms. Mean shift tracke?] uses
color distributions and employs multiple hypothesesl a
model of the system dynamics. Another trend to ader
histograms is to model them as Gaussian mixtureetadd
combination with multi-hypothesis adaptive moddls][

Being widely used in generative schemes,
filtering is a sophisticate technique that appkesecursive
Bayesian filter based on sample set [10, 11]. gifweninent
advantage of this scheneits applicability to nonlinear and
non-Gaussian systems [1]. Among various versions
particle filtering, this study is based on Conddiosa
algorithm [10, 11] which was developed initially toack
objects in cluttered environments. Particle filbgris robust
as it benefits from multiple hypotheses. In theecafshort-
time occlusion, the probability of object statesrdases but
particles still remain in the tracking process. Ikvé the
occlusion continues, we suppress track loss bywailp
particles to scatter gradually to look for the &rgbject all
over the frame.

Typically, generative models do not address ocgtusi
explicitly, but since they maintain a large sethgpotheses
some of them survive and are recovered after thkision.
In contrary discriminative models generally deatedily
with problem of occlusion detection [6]. Althoughete
methods are robust against partial and temporalusions,
long-lasting occlusions hinder their tracking héavi

color®

particle

information provides valuable information aboutreter of
the object, it can be used to facilitate trackimgl dandle
occlusions.

Monte Carlo-based methods [9] and Bayesian
networks with HMM [17]. If real-time computation is

Occlusions can be classified into three classes:
cﬁjynamic occlusion, in which there are pixels clase
camera; (2) scene occlusion, in which still objearts closer
fo camera than the target object; and (3) appamxzitsion,
a result of shape change, silhouette motion, shadomself-
cclusions [8]. When devising an update model dogédt, it
is important to consider which type of occlusion deal
with. If occlusions are of (1) or (2), the updatke abject
model should be performed slowly to keep memory,ibu
the case of (3), a fast update is preferred to keeys on the
target.

Tracking in hybrid domain of color and depth ne¢als
maintain a balance between information obtainechfeach.
Difficulties a tracker faces include appearance ngesa
(ilumination changes, shadows, affine transforovai non-
rigid body deformations, and occlusion), parametdrshe
sensors and their compatibility (field of view, pms,
Ofresolution, and signal-to-noise ratio) and segmi@mta

inherent problems (partial segmentation split anerga).
The design choices we made in this system, tachtest of
these challenges as will be explained later
manuscript. Following this introduction, next wesdebe
our proposed method, and compare it with adaptilerc
based particle filter tracker [1] in single and tiplé target
cases along with short and long occlusions. Theus@aipt
then concludes with discussion and future works.

2 Proposed model
2.1 Overview of the proposed model

Proposed model, a version of particle filter, i& af state-
space models which consist of the observation madel
state-transition model. The state specifies a bimgntox
for each particle along with the correspondent wsiohn

(1

in this

flags. Then the observation model describes how the

bounding box is observed by RGB-camera and deptbose
while the state-transition model describes howkibending

Yet other approaches are employing stereo and/obox with occlusion flag transits along with time.

multiple cameras or data fusion with range sensBosne
tracking methods focus on usage of depth informatioly
[20], while others use depth information for
foreground segmentation [21], or employ depth imfation
to statistically estimate 3D object positions [22F depth

better

2.2 Target Representation

A rectangular bounding box is used as hypothesis
target presence. The bounding box at tinis specified by
four parameter8 ={x,y,,w,,h} where (x,y) denotes

of



2D-coordinate of the top-left corner of the boumdinox, illustrates these two effects. In this step, thé-ajtrange
w, andh, denote the width and height of the bounding box,values are clipped to valid range, and hyperbadizertion
respectively. Furthermore, the bounding box isd#di into was applied to remove sensor systematic errorttandesult
several grid cells (in the experiment below, theirming is up-sampled to match the RGB resolution usingdin
box is partitioned into four equal parts) to fitethocal interpolation. Since the way we use the depth tatabust
statistics and represent the partial occlusion.nThdéinary  to noise, outliers and noise due to the high alisgrb
occlusion flag z_ [0{0,1} is introduced for each cell; material, is not treated in our approach.

z, =0 representd-th cell is not occluded while, =1
representsi-th cell is occluded.z, ={z |i=1,---,C} 15 ‘_,_._.m..mmnwim-m“";li:??!!
denotes the set of all the occlusion indicators tte T "
bounding box. As mentioned above, we €et 4 in our E
experiment. Since botB, and z, is not observed directly, 05
they are treated as the hidden state and estinaataaiding &li

to the state-space model described below. L

Fig. 2. Left: Effects of hyperbolic resolution loss. Side view two

. example persons at different ranges from the serGlose subjects are
2.3 Observation accurately described in high detail. Farther avgagntization is becoming

We employed a fixed camera in this paper and theincreasingly dominant and heavily compromises thepe information on
people. Geometric approaches to people detectiinpeiform poorly in

stationary background could be assumed. Having thissuch dataRight: Example frame to illustrate that IR-absorbing sces at
- . large distances lead to blobs of missing depth (lgtper body of leftmost

assumption, the background could be extracted \sgugral subject, white means missing data). [5]

frames of the video, so that the median value ohexxel in

several frames is considered to be the backgrobwith, in 2.4 Observation model

RGB and depth domains (Fig 1). This method is aifieati The preprocessed foreground RGB image at timie
version of algorithm proposed in [3] which firstessa  denoted ay, and depth image at tintds stated ag

depth,t "

variance filter to balance the brightness varigteomd then a  Assumed to be independent in this paper, these two
temporal median background update technique is tmed components from the observation={Y ,Y 1} .The

rgb,t? " depth t

obtaining accurate reference background. observation model for given by B, and occlusion flags

Z

is elaborated as follows.

t

é p(Y‘IB[’Zt’et)zl_lwp(Y‘ IB‘ ,i ,Z‘" lei")
p(Y IB.i,z, =16 )= const

p(Y |B.i,z =08,) (1)

it

i O p(#Ylt | Bl ’Hm )prgb (Hla (ngb‘\,( ) |B( ’Hl,( )pd Fdemh,l,l |Bt ’gul )

whereli is a grid index#Y , Hist(v, ) andY_  denote

the ratio of foreground pixels, histogram ¢f and the

j median value ofr_ in thei-th grid cell of the bounding
box B, respectively. Finallyp ={g |i=1,---,C} is a

Fig 1. Left: Several frames of the videGenter: Their extracted  Set of adaptive parameters containing typical RGB

backgroundRight: Background subtracted image and d-map (with same . . - .
threshold). histogram and typical depth which are explaineerlat

The depth information is assumed to be collected by o S
) ] ) We employed beta distribution fop@#Y |B) which is
cheap range sensors like Kinect. The relation betwaw ) . o
) . defined over the domain of [0, 1] parameterized tlvp
depth values and metric depth has been experinhental .
) ) ) ] ] positive shape parametei@, andbI , that control the shape
determined to be a hyperbolic relationship, desctim [2]. o
) ) ) o of the distribution.
Another artifact of such sensors is their sensitivo IR-
absorbing material, especially in long distancegute 2

pery, 18)0 (#y,)* " (- ) @



We extract sufficient samples of target boundingdsoand
fit the beta distribution to foreground ratio segaty on
each cell (fig 3). This distribution works as thenidence of
each grid cell since it tends to take high valuemwthe grid
cell is dominated by the foreground pixels whildeibds to
take low value, or zero when the cell does not @onthe
significant number of the foreground pixels.

H m_;_.l|,|J|...mﬂll.m|

Fig 3. (@) A 2x2 particle bounding box vs. target bounding lfgreen);
(b)The gridding of bounding box, on the backgroundtadbed image(c)
Corresponding depth mayfgd) Confidence map; brighter cells are more
reliable cells to rely on(e) Particles around target(f) Surface plot of the
Bhattacharyya coefficient of a small area arourdt#iiget. The black points
illustrate the centers of some of the particledevtiie white point represents
the mean location, close to the peak of the plpt (g) The histogram of
colors of the illustrated sample bounding box ghyl target; (i) Beta
distributions fit to a 2x2 grid bounding box to dkathe target and the
confidence calculate for grid cells of left image.

The likelihood of the color histogram is definesifallows

y18.6,)0exp(dy, (s, )a,) @

whered , (His(yw),q”) denotes the Bhattacharyya distance.
The Bhattacharyya distance of two discrete distidioup
and q with m bins (number of color bins) weighted with
control parameter  is defined as follows:

d,,(p.q) =Ui\/1-211\/r%—q

rgb

p_ (Hist(Y,

rgb rbi t

()

Finally p, (Y.,  1B.,8,)= N, Ogpy,) is assumed to
be a Gaussian distribution whose mean and varianee
M, and Oy, . respectively. Since the resolution and
signal-to-noise ratio of the depth information assumed to
be low, only the median value is evaluated forlikedihood

to make the likelihood robust.

Note that our observation model for each grid deks not
depend on the size, shape and rotation of the ttarge
implying our grid cell model is scale, shape anthation
invariant.

2.5 State-Transition Model

Since the occluder does not affect how the tarjahges
with time assuming there is no direct interferesoeh as
collision between targets or target and environment
independence between the state-transitions of bogrizbx
and occlusion flag is imposed.

p(B.,.Z.,1B.Z2)=pZ, 1Z)pB, IB)

Bounding box transition probabilityp(B_ |B,)
represented by Gaussian distribution whose cenger i
specified byB, and the covariance matriX is diagonal
matrix assuming the independence between four peam
B, ={X,Y,,W,,n} . On the other hand, occlusion flag
transition probabilityp(z |z ) is a discrete distribution.
Since z has 2° distinct states, the distribution is
represented by2° x2° matrix T . Representing by full
matrix, state transition of the occlusion flag can take into
account of the spatial and temporal continuity ot
occluder.

(6)
is

3 Inference and lear ning of the proposed model
3.1 Inference by particlefilter

Since our model is complex and non-Gaussian, fpartic
filter is used for the filtering. Among various g@&ns of
particle filter, this research is based on Condémsa
algorithm [10, 11] which was developed initially toack
objects in clutter. Modeling uncertainty, partidiger very
is robust as it benefits from multiple hypotheses.

3.2Learning

Parameters to be set afa ,b,q, 4, |i=1--,C},
Ogp + Opwn » = », and T Among them,
{a,b,|i=1---,C} are learned from several training
sequences as mentioned earlier while , o, , 2, and

T are settled by hand and fixed through the whole



experiment. 0, ={q, 4 |i=1--,C} are adaptively multiple object tracker precision(MOTP) shows thelity
learned to follow the temporal and spatial chanfie¢he of the tracker to estimate precise object positions
target. However, we have to carefully update themabhse independent of its skill at recognizing object égufations,
the observation does not include meaningful infdfoma  keeping consistent trajectories, etc. Additiondlg multiple
when there is the occlusion. We resolve this pmobley object tracker accuracy (MOTA) criterion cares farch

utilizing the occlusion flag. high level objectives:
Having N particles from which several of them have the z d ®)
. - g MOTP = “——
occlusion flag set £=1), we can vote between particle if Z(C‘
the estimated target using expectation of all boxghoxes
. _ > (m + fp, +mme)
is expected to be occluded or not. Since the vbtthese MOTA=1-4———— . ©)
particles should have different effect on the resul Z(g‘
proportional to their probability, we simply takehet where ¢ is the indicator for tracker match the correct
expectation of all particle flags to validate thating. target, d: is the error in estimated position for matched
_ object-hypothesis pairgy is number of objects present in
o - A6 +A-Db (7, =0) o  framet m, fp, andmmeare the number of misses, of false
L o (z,=1) positives, and of mismatches, respectively, foetim

in which g , denotes theist(Y_ ) for ¢, andY_ for _
: ot ' ot Furthermore, we introduce a measure for scale atapt

U .. A is aforgetting factor, which balances the _ _ _ L
d’ tivity and robust and since the tracker is not constrained to maiimgithe
adaptivity and robustness.

pivity aspect ratio of the object, it has two components:

4 Experiments D> AJ(aw,) +(ah )’
SA= :

In order to evaluate the performance of our alparitve (10)
prepared a toy dataset in laboratory environmentaioing Ztct
two scenarios. In the first one a single persomagking, in whichAw and Ah are the difference of the estimated
mostly in parallel with camera z-plane and in sopaets  width and height of estimated target with grouncthrat
towards the camera to test the tracking accuradysaale  timet and the measure will be sum of distance of eséithat
adoptability of the tracker. The appearance of dbbject  dimensions of bounding box to true value for all
changed drastically in several frames, and sevexpid successfully matched objects. Lower values of Siicites
changes in direction of movement and velocity al were better adaptation of algorithm to scale.
observed, while the depth information of those feam
remains intact to test the robustness of algoritgainst
changes of appearance, direction, and velocitymfement.
(fig. 5). In the second scenario, the same vidaséd while
a rectangular space of the data is occluded manukiie
data is acquired with Microsoft Kinect, with image
resolution of 640x480 and depth image resolution of _ ) ,
320x240. The dataset is also provided with targemnding 1 [ ]
box coordinates and occlusion status (states aoee, “'H”HH“"P

W L

partial, full) as ground truth.

i

To evaluate the system, we applied following twibecia Fig 5. Top: Two different screenshots of the walking persaacking
dataset with internal state of tracker. Each baumdbox represents a

that are specially designed metrics to evaluatentiog particle. Red boxes indicate particles with ocadosiag of one while gray-
; ; ; ; scale boxes are related to not occluded partitiethe latter case, brighter
boxes for multiple objects tracking, which were weed for color shows more probable bounding box. Green bwdicates the

a classification of events, activities and relasiops estimated target. The rightmost figure is the timgkesult of objects over
. L time (blue) and ground truth (re@®ottom: The same video with a toy
(CLEAR) project, and called CLEAR criteria [23]. &h  occiusion attached. The particles are scatteresetoch a wider area of

scene, while their occlusion flag indicates thatyttare occluded. The



expected target box, reasonably experienced sam@udltion during this
period.

In the experiments the performance of RGB parfittier
tracker proposed in [1], our proposed algorithmhuwitt

enabling the bounding box gridding option and with

gridding option enabled (2x2 grid), and last-memtid

algorithm plus occlusion flag is compared in regardhree
criteria of MOTA, MOTP, and SA defined earlier. Mahat

all of these algorithms are particle filters rura véame
platform with the same number of particles. Theultssof

the walking person scenario and walking person aien
with occlusion are shown in tables 1 and 2 respelgti

Table 1: Comparison of Algorithms performance for 1-pergcacking
scenario. The scenario contains changes in movewsdntity, trajectory,
appearance and scale.

Tracker MOTP MOTA SA
RGB 87.2 97.1% 112.8
RGB-D 38.1 100% 99.9
RGB-D Grid 2x2 23.6 100% 48.5
RGB-D Grid 2x2+ Occlusion Flag 24.1 100% 51.2

As it can be inferred from second row of table He t
precision of tracking
information, as this channel is invariant to appeae
changes and mitigate the low recognition ability color
domain tracker. Third row illustrates the importanof
constraining size of bounding box using informataitain
by local regions. This local information is proptghto the
decision via combining gridding strategy and coafice
measure. Fourth row suggests that although therpois
occlusion in this scenario, it should perform well.

Table 2: Comparison of Algorithms performance for 1-pergoecking
scenario. The scenario is similar to one in Tahlébdt there is a toy
occlusion in the middle of the subject trajectory.

Tracker MOTP MOTA SA
RGB 153.1 57.2% 98.8
RGB-D 93.2 59.1% 91.9
RGB-D Grid 2x2 73.1 46.1% 59.2
RGB-D Grid 2x2+ Occlusion Flag 53.1 83.39 67.5

Table 2 supports the conclusions drawn from tablByl
the way the second row shows the role of depthrimddion
in finding the subject quickly after it reappeaffie fourth
row illustrates the effectiveness of proposed asiolu
handling method, as it is deduced from MOTA.

5 Conclusion & FutureWorks
In this paper we described a probabilistic framdwior
tracking objects in hybrid space of color and depttwhich

we devised the ideas of gridding bounding box and

occlusion flag. The gridding bounding box was degigor
better representation of local statistics of fooemd image

and occlusion than that of simple bounding boxeke T

increases with adding depth

occlusion flag for each box was for distinguishitize
occluded and wun-occluded cases explicitly,
suppressed the template and extended the seaih spaer
the occlusion. In addition, we introduced a coniicke

measure that evaluates ratio of fore- and backgrqixels

in a box in order to track such box that has appatpvalue

of the ratio. Also we utilized the depth informatio
effectively to judge who occludes the others.

Giving flexibility to the bounding box size, our thed
prone to involve partial occlusion artifacts suchsplitting
and merging. This scheme is equipped with boundimgas
representation, in which histogram of colors andliare of
depth is extracted as feature, to compare the agiityilto
target features. We devised gridding bounding lmmbétter
representation of the local statistics and localusion and
employed Bhattacharya distance to compare distahteo
color distributions in each grid. In addition weroduced a

confidence measure to focus on the foreground image

Strictly speaking, it makes the tracking systenfatus on
the box where an appropriate ratio of foreground an
background pixels is realized. Furthermore the usioh is
handled in our framework with an occlusion flag fach
particle which distinguish the occluded case and un
occluded case explicitly. It enables the explicipgression
of the template and effective extension of the deapace
under the occlusion. Also we utilized the depttoinfation
effectively to judge who occludes the others.

Using a bounding box to represent objects, andhis t
case walking people, and giving flexibility to thesize,
could have put our method prone to partial occlusio
artifacts such as splitting and merging artifa@st since
there are multiple hypotheses for target in eaamé, which
stochastically search around expected target hmtadind
scale, there is no need to explicitly handle th€tearly this
secondary outcome is an advantage over cases gjhéctial
care for splitting and merging problem is requirdebr
example in the multi-object tracking system [7]ydk set
scheme is utilized to handle contour splitting amerging or
in another case, authors of [6] merged the adjaberes
having the same velocity, while the probability #as
periodically analyzed to check the presence of twonore
well-separated connected components

Another design choice we made was giving flexipitid
box dimension, such that they vary around the dgioers of

which



expected target, with a freedom degree parametkiize
variance of the Gaussian distribution they are sathfrom.
This freedom, aligned with gridding and confidemeoeasure
grants scale adaptation for the tracker. Other ouktleither
fails to show satisfying scale adaptation such asamshift
tracker [12], or are unable to recover after suddemges in
scale or scale change during occlusion such as [1].

To enhance this algorithm, it is possible to make of
occlusion information of each grid to handle differ
combinations of occlusion patterns in state tréssimatrix.
It is also possible to let the instances of thekea interact
with each other: exchanging information about depibre
accurate state transition, etc.

Our experiments shows that exploiting information i
depth channel helps resolving loss of track forupbr
appearance changes, and increase the robustneti®e of

method. Additionally decomposing bounding box into

regular grid improves scale adaptation of the atlgor,
preventing the size of bounding box to bewilderuadb the
optimal value. Finally by adding an explicit stostia
occlusion handling mechanism, the algorithm cowddidie
longer occlusion times without losing track of atije
because of small search region, or corrupted tempig
irrelevant data. The algorithm overtook its appreeabased
ancestors regarding localization accuracy, scasptation,
and occlusion handling.
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