
Weak error analysis of tau-leaping methods for multi-scale

stochastic chemical kinetic systems

David F. Anderson1 and Masanori Koyama2

June 23, 2011

Abstract

A chemical reaction network is a chemical system involving multiple reactions and chemical
species. The simplest stochastic models of such networks treat the system as a continuous
time Markov chain with the state being the number of molecules of each species and with
reactions modeled as possible transitions of the chain. For such models, there is typically a wide
variation in temporal and other quantitative scales. In this multi-scale setting it is typically an
extremely difficult task to perform approximations, such as Langevin approximations or law of
large number type arguments, to simplify a system. Therefore, numerical methods oftentimes
are the only reasonable means by which such models can be understood in real time.

In this paper we provide a general framework for understanding the weak error of numerical
approximation techniques in the multi-scale setting. We quantify how the error of three different
methods depends upon both the natural scalings within a given system, and with the step-size
of the numerical method. Further, we introduce a new algorithm in this setting, the weak
trapezoidal algorithm, which was developed originally as an approximate method for diffusion
processes, and prove that the leading order of the error process scales with the square of the
time discretization, making it the first second order method in this setting.

1 Introduction

A chemical reaction network is a chemical system involving multiple reactions and chemical species.
The simplest stochastic models of such networks treat the system as a continuous time Markov
chain with the state being the number of molecules of each species and with reactions modeled as
possible transitions of the chain. For such models, there is typically a wide variation in scales in that
the different species and reaction rates vary over several orders of magnitude. In this multi-scale
setting it is typically an extremely difficult task to analytically perform approximations, such as
Langevin approximations or law of large number type arguments, to simplify or reduce a system.
In fact, this is an active research area [6, 18]. Therefore, numerical methods oftentimes are the
only reasonable means by which such models can be understood in real time. This paper provides
a general framework for understanding the weak error of numerical approximation techniques for
stochastically modeled chemical reaction networks, and introduces the first second order method
in this setting.

1Department of Mathematics, University of Wisconsin, Madison, Wi. 53706, anderson@math.wisc.edu, grant
support from NSF-DMS-1009275.

2Department of Mathematics, University of Wisconsin, Madison, Wi. 53706, koyama@math.wisc.edu, grant sup-
port from NSF-DMS-1009275 and NSF-DMS-0805793.

0AMS 2000 subject classifications: Primary 60H35, 65C99; Secondary 92C40

1

More specifically, suppose we have a process X, and a function of the state of the system, f ,
giving us some quantity of interest, perhaps the abundance of a particular species. Supposing that
Z is an approximation of X, we wish to quantify the behavior of

Ef(X(t))− Ef(Z(t)). (1.1)

To answer this question, we will demonstrate the need to take the natural scales of the problem
into account.

We will show that Euler’s method, also known as explicit τ -leaping in this setting, is an order
one method, in that the leading order of the error (1.1) decreases linearly with the step-size. Also,
we will show that the leading order of the error of the approximate midpoint method, introduced in
[15], involves some terms that scale linearly and others that scale quadratically with the step-size.
That is,

Ef(X(t))− Ef(ZM (t)) = cN1 h+ cN2 h
2 + o(cN1 h+ cN2 h

2),

where cN1 , c
N
2 depend upon the natural scalings of the system, quantified here by N > 0, and ZM

denotes the path generated by the approximate midpoint method. The term that dominates this
error then depends upon the specific scalings of a system, encapsulated in the constants cN1 and cN2 ,
and the size of the time discretization h. We will extend the weak trapezoidal method of Anderson
and Mattingly, which was originally formulated in the diffusive setting [5], to the discrete, stochastic
chemical kinetic setting. We will prove that it is second order accurate in the step-size regardless
of the scaling of the system.

This paper is best viewed as a merging and extension of [3], which provided the first error
analysis in the stochastic chemical kinetic setting that took the natural scales of the system into
account, and [5], which introduced and analyzed the weak trapezoidal algorithm in the diffusive
setting.

1.1 Paper outline

The paper is organized as follows. In Section 2 we introduce the basic models to be considered, and
discuss the relevant numerical methods. In Section 3, we discuss the multi-scale nature of stochastic
models of chemical reaction networks, and incorporate this into our model. In Section 4, we show
how bounds on the global weak errors of the different approximation methods can be expressed
using respective bounds on the local, one-step errors. In Section 5, we provide the local, one-step
analyses for the three methods considered in this paper. In Section 6, we provide results on how
the behavior of the exact process affects the global error of the numerical method. In Section 7, we
provide a brief discussion of the stability of the different explicit methods we have analyzed. We
then finish with examples demonstrating our results in Section 8.

2 The basic model and numerical methods

2.1 The basic model

An example of a chemical reaction is

2S1 + S2 → S3,

2

where we would interpret the above as saying two molecules of type S1 combine with a molecule
of type S2 to produce a molecule of type S3. The Si are called chemical species. Letting

ν1 =

 2
1
0

 , ν ′1 =

 0
0
1

 , and ζ1 = ν ′1 − ν1 =

 −2
−1
1

 ,

we see that every instance of the reaction changes the state of the system by addition of ζ1. Here
the subscript “1” is used to denote the first (and in this case only) reaction of the system.

In the general setting we denote the number of species by d, and for i ∈ {1, . . . , d} we denote
the ith species as Si. We then consider a finite set of R reactions, where the model for the kth
reaction is determined by

(i) a vector of inputs νk specifying the number of molecules of each chemical species that are
consumed in the reaction,

(ii) a vector of outputs ν ′k specifying the number of molecules of each species that are created in
the reaction, and

(iii) a function of the state λk that gives the transition intensity or rate at which the reaction
occurs. (Note that in the chemical literature, transition intensities are referred to as propen-
sities.)

Specifically, if we denote the state of the system at time t by X(t) ∈ Zd≥0, and if the kth reaction
occurs at time t, we update the state by addition of the reaction vector

ξk
def
= ν ′k − νk

and the new state becomes X(t) = X(t−) + ξk. For the standard Markov chain model, the number
of times that the kth reaction occurs by time t can be represented by the counting process Rk(t) =

Yk

(∫ t

0
λk(X(s))ds

)
, where the Yk are independent unit-rate Poisson processes (see, for example,

[20], [10] Chapter 6, or the recent survey [4]). The state of the system then satisfies the equation

X(t) = X(0) +
∑
k

Yk

(∫ t

0
λk(X(s))ds

)
ξk. (2.1)

The above formulation is termed a “random time change representation” and is equivalent to the
“chemical master equation representation” found in much of the biology and chemistry literature,
where the master equation is Kolmogorov’s forward equation in the terminology of probability.

A common choice of intensity function for chemical reaction systems, and the one we adopt
throughout, is that of mass action kinetics. Under mass action kinetics, the intensity function for
the kth reaction is

λk(x) = κk

d∏
i=1

xi!

(xi − νki)!
, (2.2)

where, νki is the ith component of νk. Implicit in the assumption of mass action kinetics is that
the vessel under consideration is “well-stirred.” Note that λk defined in (2.2) is a polynomial
function, and is therefore defined, and infinitely differentiable. While the natural state space is the
non-negative orthant, we extend λk to all of Rd by setting it to zero outside Rd≥0.

3

This model is a continuous time Markov chain in Zd with generator

(Af)(x) =
∑
k

λk(x)(f(x+ ζk)− f(x)),

where f : Zd → R. Throughout the paper, in order to gain control of the terms in (1.1), we will
make extensive use of Dynkin’s formula,

Exf(X(t)) = f(x) +

∫ t

0
Ex(Af)X(s)ds,

for suitably chosen f [10], and where the above equality holds so long as the expectations exist.
Kolmogorov’s forward equation for this model is

d

dt
P (x, t|π) =

∑
k

λk(x− ζk)1{x−ζk∈Zd≥0}P (x− ζk, t|π)−
∑
k

λk(x)P (x, t|π),

where for x ∈ Zd≥0, P (x, t|π) represents the probability that X(t) = x, conditioned upon the initial
distribution π.

Example 1. To solidify notation, we consider the network

S1
κ1
�
κ2
S2, 2S2

κk→ S3,

where we have placed the rate constants κk above or below their respective reactions. For this
example, equation (2.1) is

X(t) = X(0) + Y1

(∫ t

0
κ1X1(s)ds

) −1
1
0

+ Y2

(∫ t

0
κ2X2(s)ds

) 1
−1
0

+ Y3

(∫ t

0
κ3X2(s)(X2(s)− 1)ds

) 0
−2
1

 .
Defining ζ1 = [−1, 1, 0]T , ζ2 = [1,−1, 0]T , and ζ3 = [0,−2, 1]T , the generator A satisfies

(Af)(x) = κ1x1(f(x+ ζ1)− f(x)) + κ2x2(f(x+ ζ2)− f(x)) + κ3x2(x2 − 1)(f(x+ ζ3)− f(x))

2.2 Numerical methods

Exact methods. There are a number of numerical methods that produce statistically exact
sample paths for the model described above. These include the stochastic simulation algorithm,
best known as Gillespie’s algorithm [13, 14], the first reaction method [13], and the next reaction
method [1, 12]. All such algorithms perform the same two basic steps multiple times until a sample
path is produced over a desired time interval. Conditioned on the current state of the system, both
(i) the amount of time that passes until the next reaction takes place, ∆t, is computed and (ii)
the specific reaction that has taken place is found. Note that ∆t is an exponential random variable
with a parameter of

∑
k λk(X(t)). Therefore, if∑

k

λk(X(t))� 1 so that E∆t =
1∑

k λk(X(t))
� 1, (2.3)

4

then the runtime needed to produce a single exact sample path may be prohibitive. As such
methods are usually coupled with Monte Carlo techniques, this observation motivates the need to
consider approximate simulation methods, which we now introduce.

Approximate methods. Throughout the paper, we let X denote the solution to (2.1). For
approximate methods, we will sometimes consider an arbitrary method and will in such cases
denote the solution as Z. Other times we will distinguish the Euler, midpoint, and Trapezoidal
methods, by ZE , ZM , Ztrap, respectively. We will always begin the methods from the same initial
condition, namely X(0) = Z(0) = x0.

Remark 2.1. Historically the time discretization parameter for the methods described in this
paper has been τ , thus giving these methods the general name “τ -leaping methods.” We choose
to break from this tradition and denote our time-step by h so as not to confuse τ with a stopping
time.

The approximate algorithm termed explicit tau-leaping was developed by Dan Gillespie in [15]
in an effort to overcome the problem described above that ∆t, the amount of time that must pass
before the next reaction event, may be prohibitively small. The basic idea of tau-leaping is to hold
the intensity functions fixed over the time interval [tn, tn+h] at the values λk(X(tn)), where X(tn)
is the current state of the system, and, under this assumption, compute the number of times each
reaction takes place over this period. Note that this method will potentially yield lower runtimes
only if h � 1/

∑
k λk(X(tn)) ≈ ∆t. As the waiting times for the reactions are exponentially

distributed this leads to the following algorithm, which simulates up to a time of T > 0. Below and
in the sequel, for x ≥ 0 we will write Poisson(x) for a Poisson random variable with a parameter
of x.

Algorithm 1 (Euler tau-leaping). Fix h > 0. Set ZE(0) = x0, t0 = 0, n = 0 and repeat the following
until tn+1 = T :

(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

(ii) For k ∈ {1, . . . , R}, let Λk = Poisson(λk(ZE(tn))h) be independent of each other and all
previous random variables.

(iii) Set ZE(tn+1) = ZE(tn) +
∑

k Λkζk.

(iv) Set n← n+ 1.

Several improvements and modifications have been made to the basic algorithm described above
over the years. However, they are mainly concerned with how to choose the step-size adaptively
[8, 16] and/or how to ensure that population values do not go negative during the course of a
simulation [2, 7, 9], and are not explicitly relevant to the current discussion of convergence analysis.

Similar to (2.1), a path-wise representation of Euler tau-leaping defined for all t ≥ 0 can be
given through a random time change of Poisson processes:

ZE(t) = ZE(0) +
∑
k

Yk

(∫ t

0
λk(ZE ◦ η(s))ds

)
ζk, (2.4)

where the Yk are as before, and η(s)
def
=
⌊ s
h

⌋
h. Thus, ZE(η(s)) = ZE(tn) if tn ≤ s < tn+1. Noting

that
∫ tn+1

0 λk(ZE ◦ η(s))ds =
∑n

i=0 λk(ZE(ti))(ti+1 − ti) explains why this method is called “Euler

5

tau-leaping.” Defining the operator

(Bzf)(x)
def
=
∑
k

λk(z)(f(x+ ζk)− f(x)), (2.5)

we see that for t > 0

Ef(ZE(t)) = Ef(ZE ◦ η(t)) + E
∫ t

η(t)
(BZE◦η(t)f)(ZE(s))ds, (2.6)

so long as the expectations exist. Equation (2.6) points out why we care about the associated
operators for each of our approximate methods: they will be used to gain the necessary control
over the difference Ef(X(t))− Ef(Z(t)), called the weak error of the approximation, which is the
focus of our paper.

A midpoint type method was first described in [15]1 and analyzed in [3]. Define the function

ρ(z)
def
= z +

1

2
h
∑
k

λk(z)ζk,

which computes an approximate midpoint for the system assuming the state of the system is z and
the time-step is h. The following algorithm simulates up to a time of T > 0. Note that only step
(ii) changes from Euler tau-leaping.

Algorithm 2 (Midpoint tau-leaping). Fix h > 0. Set ZM (0) = x0, t0 = 0, n = 0 and repeat the
following until tn+1 = T :

(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

(ii) For k ∈ {1, . . . , R}, let Λk = Poisson(λk ◦ ρ(ZM (tn))h) be independent of each other and all
previous random variables.

(iii) Set ZM (tn+1) = ZM (tn) +
∑

k Λkζk.

(iv) Set n← n+ 1.

Similar to (2.1) and (2.4), ZM (t) constructed via Algorithm 2 can be represented for all t ≥ 0
via a random time change of Poisson processes:

ZM (t) = ZM (0) +
∑
k

Yk

(∫ t

0
λk ◦ ρ(ZM (η(s)))ds

)
ζk, (2.7)

where η(·) is as before. For Bz defined via (2.5), any t > 0, and ZM generated via (2.7) we have

Ef(ZM (t)) = Ef(ZM ◦ η(t)) + E
∫ t

η(t)
(Bρ◦ZM◦η(t)f)(ZM (s))ds,

so long as the expectations exist.

The weak trapezoidal method. We will now propose a trapezoidal type algorithm to approx-
imate the solutions of (2.1). The method was originally introduced in the work of Anderson and

1The midpoint method detailed in [15] is actually a slight variant of the method described here. In [15] the
approximate midpoint, called ρ(z) above, is rounded to the nearest integer value.

6

Mattingly in the diffusive setting where it is best understood by using a path-wise representation
that incorporates space-time white noise processes, see [5]. It can similarly be understood in the
current setting of jump processes by using a representation that utilizes Poisson random measures.
See Appendix A.

In the algorithm below, which simulates a path up to a time T > 0, it is notationally convenient
to define [x]+ = x ∨ 0 = max{x, 0}.

Algorithm 3 (Weak trapezoidal method). Fix h > 0. Set Z(0) = x0, t0 = 0, and n = 0. Fixing a
θ ∈ (0, 1), we define

ξ1
def
=

1

2

1

θ(1− θ)
and ξ2

def
=

1

2

(1− θ)2 + θ2

θ(1− θ)
. (2.8)

We repeat the following steps until tn+1 = T , in which we first compute a θ-midpoint y∗, and then
the new value Ztrap(tn+1):

(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

(ii) For k ∈ {1, . . . , R}, let Λk,1 = Poisson(λk(Ztrap(tn))θh) be independent of each other and all
previous random variables.

(iii) Set y∗ = Ztrap(tn) +
∑

k Λk,1ζk.

(iv) For k ∈ {1, . . . , R}, let Λk,2 = Poisson([ξ1λk(y
∗)− ξ2λk(tn)]+(1− θ)h) be independent of each

other and all previous random variables.

(v) Set Ztrap(tn+1) = y∗ +
∑

k Λk,2ζk.

(vi) Set n← n+ 1.

Remark 2.2. Notice that on the (n + 1)st-step, y∗ is the Euler approximation to X(nh + θh)
starting from Ztrap(tn) at time nh.

Remark 2.3. Notice that for all θ ∈ (0, 1) one has ξ1 > ξ2 and ξ1 − ξ2 = 1.

We define the operator Bz1,z2 by

(Bz1,z2f)(x)
def
=
∑
k

[ξ1λk(z1)− ξ2λk(z2)]+(f(x+ ζk)− f(x)).

Then, for η(t) ≤ t ≤ η(t) + θh, the process Ztrap satisfies

Ef(Ztrap(t)) = Ef(Ztrap(η(t))) + E
∫ t

η(t)
(BZtrap(η(t))f)(Ztrap(s))ds,

where we recall that Bz is defined via (2.5), and for η(t) + θh ≤ t ≤ η(t) + h, the process Ztrap
satisfies

Ef(Ztrap(t)) = Ef(Ztrap(η(t) + θh)) + E
∫ t

η(t)+θh
(BZtrap(η(t)+θh),Ztrap(η(t))f)(Ztrap(s))ds.

7

2.3 Previous error analyses

Under the scaling h → 0, Rathinam et al. performed a consistency check of Euler tau-leaping
and found that the local truncation error was O(h2) for all moments [22]. They also showed that
under this same scaling Euler tau-leaping is first order accurate in a weak sense in the case that the
intensity functions λk are linear [22]. Li extended these results by showing that as h → 0, Euler
tau-leaping has a strong error (in the L2 norm) of order 1/2 and a weak error of order one [21],
which agree with classical results pertaining to numerical analysis of SDEs driven by Brownian
motions (see, for example, [19]).

Under the scaling h → 0 it is readily seen that midpoint tau-leaping is no more accurate than
Euler tau-leaping. This follows since midpoint tau-leaping consists of making an O(h2) correction
to the intensity functions used in Euler tau-leaping. As h → 0, this correction becomes negligible
as Poisson processes “ignore” O(h2) corrections, and the accuracy of the two methods will be the
same.

However, in many examples the midpoint method is readily seen to be more accurate than
Euler’s method in the discrete stochastic setting. In [3], Anderson, Ganguly, and Kurtz provided
an error analysis of Euler’s method and the approximate midpoint method under the assumptions
that (i) the system of interest satisfies the classical scaling described in Section 3 below and (ii)
the time discretization satisfies the requirement

h� 1∑
k λk(Z(t))

, (2.9)

where Z(t) is the state of the system at time t. The requirement (2.9) is reasonable as such
approximation methods would only be used in a regime where h � ∆t, where ∆t is the expected
amount of time between reactions, for otherwise an exact method would be performed. They proved
that, in this specific setting, Euler’s method is an order one method in both a weak and a strong (in
the L1 norm) sense. They proved that the strong error of the midpoint method falls between order
one and two (see [3] for precise statements), and that the weak error of the midpoint method scales
quadratically with the step-size when condition (2.9) is satisfied. The importance of the analysis in
[3] is that it pointed out the need to incorporate the natural scales of the system into the analysis.

3 Scaled models

As discussed in and around (2.3), the approximate algorithms being considered are only useful on
the class of models which satisfy

∑
k λk(X(·)) � 1. There are at least two different ways this

behavior can be achieved. The first is that there could be a large number of reactions, R � 1, in
which case the approximate algorithms currently being discussed will not provide an appreciable
improvement in terms of runtime over the exact simulation methods. The other common way for∑

k λk(X(·)) � 1 to hold is to have either large abundances of certain species, or to have large
rate constants, or both. We will study the behavior of the different algorithms under this latter
assumption. To do so, we will introduce a scaling parameter, N , used to quantify the variations
in the sizes of the abundances and parameters. We emphasize that the scaling detailed below is
an analytical tool used to understand the behavior of the different processes, and that the actual
simulations using the different methods make no use of, nor have need for, an understanding of N .

The specifics of the scaling used here have previously been used in [4, 6, 18]. Let N � 1.
Assume that we are given a model of the form

X(t) = X(0) +
∑
k

Yk

(∫ t

0
λ′k(X(s))ds

)
ζk,

8

where the λ′k are of the form

λ′k(x) = κ′k

d∏
i=1

xi!

(xi − νki)!
,

and where we recall that ζk
def
= ν ′k − νk. For each species i, define the normalized abundance (or

simply, the abundance) by
XN
i (t) = N−αiXi(t),

where αi ≥ 0 should be selected so that XN
i = O(1). Here XN

i may be the species number (αi = 0)
or the species concentration or something else.

Since the rate constants may also vary over several orders of magnitude, we write κ′k = κkN
βk

where the βk are selected so that κk = O(1). Note that for a binary reaction

κ′kXiXj = Nβk+αi+αjκkX
N
i X

N
j ,

and we can write
βk + αi + αj = βk + νk · α.

We also have,

κ′kXi = Nβk+νk·ακkX
N
i , κ′kX

N
i (XN

i − 1) = Nβk+νk·ακkX
N
i (XN

i −N−αi),

where the source vectors are νk = ei in the first example and νk = 2ei in the second, with similar
expressions for intensities involving higher order reactions. That is, under the mass-action kinetics
assumption, we always have that λ′k(X(s)) = Nβk+νk·αλk(XN (s)), where λk is deterministic mass-
action kinetics with rate constants κk. Note that for reactions of the form 2Si → ∗, where ∗
represents an arbitrary linear combination of the species, the rate is Nβk+2αiκkX

N
i (t)(XN

i (t) −
N−αi), so if αi > 0, we should write λNk instead of λk, but to simplify notation, we will simply
write λk. Our model has become

XN
i (t) = XN

i (0) +
∑
k

N−αiYk

(∫ t

0
Nβk+νk·αλk(X

N (s))ds

)
ζki, i ∈ {1, . . . , d}. (3.1)

Remark 3.1. We emphasize that the models (3.1) and (2.1) are equivalent in that XN is a scaled
version of X. This scaling will allow us to quantify the behavior of the different algorithms, though
plays no role in the simulation of the processes.

Remark 3.2. If βk + νk · α = αi = 1 for all i, k in (3.1), then we have what is typically called the
classical scaling. It was specifically this scaling that was used in the analyses of Euler and midpoint
τ -leaping found in [3]. In this case it is natural to consider XN as a vector whose ith component
gives the concentration, in moles per unit volume, of the ith species.

The focus of the paper will now shift from (2.1) to the equivalent (3.1). To analyze how the
different algorithms approximate XN , we will need some terminology which we collect below.

3.1 Terminology and definitions

For any vector w ∈ Rd, define wN to be the vector with ith component

wNi
def
=

wi
Nαi

,

9

and define
LN =

{
xN | x ∈ Zd

}
.

By construction, the process (3.1) lives in LN , and its generator is

ANf(x) =
∑
k

Nβk+νk·αλk(x)(f(x+ ζNk)− f(x)). (3.2)

For f : LN → R and any t ≥ 0, Dynkin’s formula is now

Ex0f(XN (t)) = f(x0) + Ex0
∫ t

0
ANf(X(s))ds, (3.3)

which holds so long as the expectations exist.
To quantify the natural time-scale of the system, define γ ∈ R via

γ
def
= max
{i,k : ζNki 6=0}

{βk + νk · α− αi},

where we recall that νk is the source vector for the kth reaction. It is worth noting that γ = 0 if
one assumes the system satisfies the classical scaling discussed in Remark 3.2. However, γ = 0 in
many other settings as well. We will see that our main results are most useful when γ ≤ 0.

Example 2. As an instructive example, consider the system

S1
100
�
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000 and α1 = α2 = 1. As
the rate constants are 100 =

√
10,000, we take β1 = β2 = 1/2 and find that γ = 1/2. The equation

governing the normalized process XN
1 is

XN
1 (t) = XN

1 (0)− Y1
(
N1/2N

∫ t

0
XN

1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0
(2−XN

1 (s))ds

)
1

N

where we have used that XN
1 +XN

2 ≡ 2.

We define the operator ∇Nk for the kth reaction via

∇Nk f(x)
def
= Nβk+νk·α−γ(f(x+ ζNk)− f(x)). (3.4)

In Example 2 above, we have

∇N1 f(x) = N(f(x+ (e2 − e1)/N)− f(x))

∇N2 f(x) = N(f(x+ (e1 − e2)/N)− f(x)),

where S1 → S2 is arbitrarily labeled as the first reaction, and ei ∈ Z2 is the vector of all zeros
except with a one in the ith location.

Note that if f is globally Lipschitz, then by the definition of γ, ∇Nk f(x) is uniformly bounded
over k and x. We may now write (3.2) as

ANf(x) =
∑
k

Nγλk(x)∇Nk f(x).

10

Defining the vector valued operators

λ
def
= [λ1, . . . , λR], ∇N def

= [∇N1 , . . . ,∇NR], (3.5)

where we recall that R is the number of reactions, we obtain

ANf(x) = (Nγλ · ∇N)f(x).

For k ∈ {1, . . . , R} we define

ck
def
= βk + νk · α− γ, (3.6)

so that (3.4) becomes
∇Nk f(x) = N ck(f(x+ ζNk)− f(x)).

For i ∈ {1, . . . , d} and k ∈ {1, . . . , R}, we define

mk
def
= min{αi : ζNki 6= 0},

so that O(|ζNk |) = N−mk . Note that mk ≥ 0, and by the choice of γ we have ck −mk ≤ 0 for all
k. Further, we point out that γ is chosen so that ck = 0 for at least one k. Finally, we note that if
‖∇f‖∞ is bounded, then ∇Nf is in O(N ck−mk).

To obtain the analog of (3.3) for the approximate methods we first define the operator BNz by

BNz f(x)
def
= (Nγλ(z) · ∇N)f(x).

If ZNE represents the approximation to (3.1) via Euler’s method, then for all t > 0

Ef(ZNE (t)) = Ef(ZNE (η(t))) + E
∫ t

η(t)
(BN

ZNE (η(t))
f)(ZNE (s))ds,

so long as the expectations exist. If ZNM represents the approximation to (3.1) via the midpoint
method, then for t > 0

Ef(ZNM (t)) = Ef(ZNM (η(t))) + E
∫ t

η(t)
(BN

ρ(ZNM◦η(t))
f)(ZNM (s))ds,

so long as the expectations exist, where now

ρ(z) = z +
1

2
h
∑
k

Nβk+νk·αλk(z)ζ
N
k .

While we should write ρN in the above, we repress the “N” in this case for ease of notation. Finally,
define the operator BNz1,z2 by

(BNz1,z2f)(x)
def
= (Nγ [ξ1λ(z1)− ξ2λ(z2)]

+ · ∇N)f(x),

where for some θ ∈ (0, 1), ξ1 and ξ2 satisfy (2.8), and for v ∈ Rd the ith component of v+ is
[vi]

+ = max{vi, 0}. Then, if ZNtrap represents the approximation to (3.1) via the weak trapezoidal
method, then for η(t) ≤ t < η(t) + θh

Ef(ZNtrap(t)) = Ef(ZNtrap(η(t))) + E
∫ t

η(t)
(BN

ZNtrap(η(t))
f)(ZNtrap(s))ds,

11

whereas for η(t) + θh ≤ t < η(t) + h

Ef(ZNtrap(t)) = Ef(ZNtrap(η(t) + θh)) + E
∫ t

η(t)+θh
(BN

ZNtrap(η(t)+θh),Z
N
trap(η(t))

f)(ZNtrap(s))ds.

As in [3], we modify the kinetics λ via multiplication by a C∞ cutoff function, which sets
the intensities to zero outside of our scaling region of interest. This has the effect of confining the
dynamics to a compact subset of LN , which we denote by LN ⊂ Rd≥0. Supposing the cutoff function

were denoted g ∈ C∞c (Rd,RR), we should technically henceforth write gλ, with the multiplication
defined component-wise, as our intensity function. The function g is chosen so that gλ(x) = λ(x)
for all x in a region of interest in the interior of LN . However, for ease of notation, we refrain from
adding the cutoff function in the notation, and continue to solely write λ. Note that ‖λ‖n is now
bounded for all n ≥ 0 where ‖ · ‖n is defined in (5.1). See Section 2.2 of [3] for a further discussion
of the need for such a cutoff function.

For any function f : Rd → R, we denote

‖f‖∞
def
= sup

x∈LN
{|f(x)|}.

We abuse notation this way because the processes XN and ZN have domain LN throughout our
analysis.

4 Global error from local error

Throughout the section, we will denote the vector valued process whose ith component satisfies
(3.1) by XN , and denote an arbitrary approximate process via ZN . Also, we define the following
semigroup operators acting on f ∈ C0(LN ,R) as follows

Ptf(x)
def
= Exf(XN (t))

Ptf(x)
def
= Exf(ZN (t)),

where for ease of notation we choose not to incorporate the notation N into either Pt or Pt.
We will interpret the difference between the above two operators, for t ∈ [0, T], as the weak

error of the approximate process ZN on the interval [0, T]. For our purposes, there will be a time
discretization associated with ZN , and we will then interpret Ph − Ph as the one step local error,
as is common in the literature. These concepts are defined formally below.

Definition 1. Let n be an arbitrary non-negative integer, and M be a m dimensional vector of
C(Rd,R) valued operators on C(Rd,R), with its `th coordinate denoted by M`. Then we define

‖f‖Mn = sup

{∥∥∥∥∥
(

p∏
i=1

M`i

)
f

∥∥∥∥∥
∞
, 1 ≤ `i ≤ m, p ≤ n

}
.

For example, if j, k, ` ∈ {1, ..., R} then

|(∇Nj ∇Nk ∇N` f)(x)| ≤ ‖f‖∇N3 ,

12

where we recall that ∇N is defined in (3.5). Note that, for any M,

‖f‖M0 = ‖f‖0 = ‖f‖∞. (4.1)

Also note that, by definition, for n ≥ 0

‖f‖Mn ≤ ‖f‖Mn+1.

Definition 2. Suppose M : C(Rd,R) → C(Rd,RR) and Q : C(Rd,R) → C(Rd,R) are operators.
Then define

‖Q‖Mj→`
def
= sup

f∈Cj ,f 6=0

‖Qf‖M`
‖f‖Mj

.

The purpose of this paper can now be stated succinctly. We will derive bounds for the global
weak error of the different approximate processes, which, due to (4.1), consists of deriving bounds
for ‖(Pnh −Pnh)‖Mm→0, for an appropriately definedM and a reasonable choice of m ≥ 0. Theorem
4.1 below quantifies how the global error ‖(Pnh −Pnh)‖Mm→0 can be bounded using the one-step local
error ‖Ph − Ph‖Mm→0. As is common, we will denote by O(h) a set of values bounded by a fixed
constant multiple of h. Later, in Section 5, we will derive the requisite bounds for the local weak
error.

Theorem 4.1. Let M be a C(Rd,RR) valued operator on C(Rd,R). Then for any n,m ≥ 0, and
h > 0

‖(Pnh − Pnh)‖Mm→0 = O(n ‖Ph − Ph‖Mm→0 max
`∈{1,...,n}

{‖P`h‖Mm→m})

Proof. Let f ∈ C0(Rd,R). Note that, since ‖g‖0 = ‖g‖M0 for any g,

‖P j−1h ‖M0→0‖Ph − Ph‖Mm→0 = ‖P j−1h ‖0→0‖Ph − Ph‖Mm→0.

With this in mind

‖(Pnh − Pnh)f‖0 =
∥∥ n∑
j=1

(P jhPh(n−j) − P
j−1
h Ph(n−j+1))f

∥∥
0

≤
n∑
j=1

‖P j−1h (Ph − Ph)Ph(n−j)f‖0

≤
n∑
j=1

‖P j−1h ‖0→0‖Ph − Ph‖Mm→0‖Ph(n−j)‖Mm→m‖f‖Mm .

Since Ph is a contraction, i.e. ‖Ph‖0→0 ≤ 1, the result is shown.

From the proof of the above theorem, the following result is immediate with ∇N in place ofM.

Corollary 4.2. Under the same assumptions of Theorem 4.1 and with f ∈ Cm0 (Rd,R),

‖(Pnh − Pnh)f‖∇N0 = O(n‖Ph − Ph‖∇
N

m→0 max
`∈{1,...,n}

{‖P`hf‖∇
N

m }).

13

The following generalization, which allows for variable step sizes, is straightforward.

Corollary 4.3. For f ∈ Cm0 (Rd,R)

‖Ex[f(Ztn)]− Ex[f(Xtn)]‖∞ = O(n max
i=1,...,n

{‖Phi − Phi‖
∇N
m→0} max

`∈{1,...,n}
{‖Pt`f‖

∇N
m }).

Thus, once we compute the local one step error ‖Ph − Ph‖∇
N

m→0, we have a bound on the weak
error of the algorithm that depends only on the semigroup Pt of the original process. We will
delay discussion of ‖Ptf‖∇

N

m for now, as this term is independent of the numerical approximation

method. Instead, in the next section we provide a bound of ‖Ph−Ph‖∇
N

m→0 for each of the different
algorithms.

5 Local errors

Section 5.1 will present some necessary analytic tools. Sections 5.2, 5.3, and 5.4 will present the
local analysis of the Euler, midpoint, and weak trapezoidal tau-leaping, respectively.

5.1 Analytical tools

Definition 3. Denote the jth directional derivative of f into the direction [v1, v2, ...vj] by f ′[v1, ..., vj]
and

‖f‖j
def
= sup

x
{f ′[v1,, vj](x), ‖v‖ = 1} (5.1)

Proposition 5.1. For d,R ≥ 0, let f ∈ C1
0 (Rd,RR). Then, for any k ∈ {1, . . . , R}

∇Nk f ∈ O(N ck−mk‖f‖1) ⊂ O(1).

In particular, N−ck∇Nk f is bounded.

Proof. The result follows from the fact that for any w ∈ Rd

|f(x+ w)− f(x)| ≤ |w|‖f‖1.

Define, for any multi-subset I of {1, ..., R},

∇NI f
def
=

(

|I|∏
i=1

∇N`i)f

 ,

so that,
‖f‖∇Nn = sup

|I|≤n
‖∇NI f‖∞.

Proposition 5.2. For d,R ≥ 0, let f ∈ Cj0(Rd,RR). Then,

‖f‖∇Nj = O(‖f‖j).

14

Proof. The case j = 1 follows from Proposition 5.1. Now consider ∇NI f(x) for a multi-set I of
{1, . . . , R}, with |I| = j ≥ 2. If mk > 0 for all k ∈ I, the statement is clear. If on the other hand,
mk = 0 for some k ∈ I, then for this specific k, we have ck ≤ 0 and

‖∇NI f‖∞ ≤ 2N ck‖∇NI\kf‖∞ = O(‖f‖j−1) = O(‖f‖j),

where the second to last equality follows by an inductive hypothesis.

We make some definitions associated with ∇N . Let g : Rd → RR. For i, j ∈ {1, . . . , R}

[DNg(x)]ij
def
= ∇Nj gi(x)

[(∇N)2]ij
def
= ∇Ni ∇Nj

diag(N c)
def
= diag(N c1 , ..., N cR).

(5.2)

Also, we define 1R to be the R dimensional vector whose entries are all 1.

Lemma 5.3. (Product Rule) Let g, q : Rd → RR be vector valued functions. Then

∇Nk (g · q)(x) = (∇Nk g · q)(x) + (g · ∇Nk q)(x) +N−ck(∇Nk g · ∇Nk q)(x).

Also,

∇N (g · q)(x) = [DNg]T q(x) + [DNq]T g(x) + diag(N c)−1([DNg]T × [DNq]T)(x)1Rf.

Proof. Note that, for any k,

∇Nk (g · q)(x) =N ck(g(x+ ζNk)q(x+ ζNk)− g(x)q(x))

= N ck(g(x+ ζNk)− g(x))q(x) +N ck(q(x+ ζNk)− q(x))g(x)

+N−ckN ck(q(x+ ζNk)− q(x))N ck(g(x+ ζNk)− g(x))

= (∇Nk g) · q)(x) + (∇Nk q · g)(x) +N−ck(∇Nk g · ∇Nk q)(x),

verifying the first statement. To verify the second, one simply notes that the above calculation
holds for every coordinate, and the result follows after simple bookkeeping.

Corollary 5.4. Let λ : Rd → RR be a vector valued function, and f : Rd → R. Then

∇Nk (λ · ∇Nf)(x) = (∇Nk λ · ∇N)f + λ · ∇N∇Nk f +N−ck∇Nk λ · ∇N∇Nk f.

Also,

∇N (λ · ∇Nf) = [DNλ]T∇Nf + [(∇N)2f]λ+ diag(N c)−1([DNλ× (∇N)2]1Rf. (5.3)

Proof. Simply put g = λ and q = ∇Nf , and recall that ∇2 is symmetric.

5.2 Euler’s method

Throughout subsection 5.2, we let ZNE be the Euler approximation to XN computed via Algorithm
1, and for x ∈ LN let

PE,hf(x)
def
= Exf(ZNE (h)),

where h is the step-size taken in the algorithm. Below, we will assume h < N−γ , which is a natural
stability condition, and is discussed further in Section 7.

15

Theorem 5.5. Suppose that the step size h satisfies h < N−γ. Then

‖PE,h − Ph‖∇
N

2→0 = O(N2γh2).

Proof. For Euler’s method with initial condition x0,

PE,hf(x0) = f(x0) + hBNx0f(x0) +
h2

2
(BNx0)2f(x0) +O(N3γ‖f‖∇N3 h3), (5.4)

where, noting ∇Nλ(x0) = 0 and using the product rule in Lemma 5.3, we have

BNx0f = Nγλ(x0) · ∇Nf
(BNx0)2f = Nγλ(x0) · ∇N (Nγλ(x0) · ∇Nf)

= N2γλ(x0)
T [(∇N)2f]λ(x0). (5.5)

On the other hand, for the exact process (3.1),

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(AN)2f(x0) +O(N3γ‖f‖∇N3 h3), (5.6)

where, again,
ANf = Nγλ · ∇Nf.

Noting that,

(AN)2f(x) = N2γ(λ · ∇N (λ · ∇Nf(x)))

= N2γλT ([DNλ]T∇Nf(x) + [(∇N)2f]λ(x) +N2γλT (diag(N−c)[DNλ× (∇)2]1Rf)

(5.7)

and defining

a(x)
def
= N2γλT [DNλ]T∇Nf(x)

b(x)
def
= N2γλT [(∇N)2f]λ(x)

c(x)
def
= N2γλT [diag(N−c)[DNλ× (∇N)2]1Rf(x)],

we can write

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(a(x0) + b(x0) + c(x0)) +O(N3γ‖f‖∇N3 h3).

Note that BNx0f(x0) = ANf(x0) and b(x0) = (BNx0)2f(x0). We may then compare (5.4) and (5.6)

(PE,h − Ph)f(x0) =
h2

2
((BNx0)2f(x0)− (a(x0) + b(x0) + c(x0))) +O(N3γ‖f‖∇N3 h3)

=
h2

2
(−a(x0)− c(x0)) +O(N3γ‖f‖∇N3 h3).

The term a(x) + c(x) = O(N2γ‖f‖∇N2) is clearly non-zero in general, giving the desired result.

16

5.3 Approximate midpoint method

Throughout subsection 5.3, we let ZNM be the midpoint method approximation to XN computed
via Algorithm 2, and for x ∈ LN let

PM,hf(x)
def
= Exf(ZNM (h)),

where h is the step-size taken in the algorithm. As before, we will assume h < N−γ , which is a
natural stability condition, and is discussed further in Section 7.

Theorem 5.6. Suppose that the step size h satisfies h < N−γ. Then

‖(PM,h − Ph)‖∇N3→0 = O(N3γh3 +N2γ−min{mk}h2).

Remark 5.7. Theorem 5.6 predicts that the midpoint method behaves locally like a third order
method and globally like a second order method if h is in a regime satisfying Nγh� N−min{mk},
or equivalently if h � N−γ−min{mk}. This agrees with the result found in [3] pertaining to the
midpoint method, which had γ = 0, mk ≡ 1, and the running assumption that h � 1/N . This
behavior is demonstrated via numerical example in Section 8.

Proof. (of Theorem 5.6) Let ζN denote the matrix with kth column ζNk , i.e.

[ζN] = [ζN1 , ζ
N
2 ,, ζ

N
R].

Recall that ρ is defined via

ρ(z) = z +
h

2
Nγ
∑
k

λk(z)N
ckζNk .

After some algebra, we have

BNρ(x0)f(x) = Nγ(λ(x0 +
h

2
Nγ
∑
k

λk(x0)N
ckζNk)) · ∇Nf(x)

= Nγλ(x0) · ∇Nf(x) + w(x0) +O(N2γ‖f‖∇N1 h2).

where

w(x)
def
= N2γ h

2
[Dλ(x0)][ζ

N]diag(N c)λ(x0) · ∇Nf(x).

Next, using the product rule (5.3), we see

(BNρ(x0))
2f(x) = Nγλ(x0 +

h

2
[ζN]diag(N c)λ(x0)) · ∇N (Nγλ(x0 +

h

2
[ζN]diag(N c)λ(x0)) · ∇Nf)(x)

= N2γλ(x0 +
h

2
[ζN]diag(N c)λ(x0))

T [(∇N)2f]λ(x0 +
h

2
[ζN]diag(N c)λ(x0)) · ∇Nf)(x)

= g(x0) +O(N2γ‖f‖∇N2 h),

where
g(x0)

def
= N2γλ(x0)

T [(∇N)2f(x)]λ(x0).

Therefore, since Nγλ(x0) · ∇Nf(x0) = ANf(x0),

PM,hf(x0) = f(x0) + hBNρ(x0)f(x0) +
h2

2
(BNρ(x0))

2f(x0) +O(N3γ‖f‖∇N3 h3)

= f(x0) + h
(
ANf(x0) + w(x0) +O(N2γ‖f‖∇N2 h2)

)
+
h2

2

(
g(x0) +O(N2γ‖f‖∇N2 h)

)
+O(N3γ‖f‖∇N3 h3).

17

Recall that

(AN)2f(x) = a(x) + b(x) + c(x),

where

a(x) = N2γλT [DNλ]T∇Nf(x),

b(x) = N2γλT [(∇N)2f]λ(x),

c(x) = N2γλT [diag(N−c)[DNλ× (∇N)2]1Rf(x)], (5.8)

and

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(a(x0) + b(x0) + c(x0)) +O(N3γ‖f‖∇N3 h3).

Noting that b(x0) = g(x0), we see

(PM,h − Ph)f(x0) = hw(x0) +
h2

2
(g(x0)− (a(x0) + b(x0) + c(x0))) +O(N3γ‖f‖∇N3 h3)

= (hw(x0)−
h2

2
a(x0))−

h2

2
c(x0) +O(N3γ‖f‖∇N3 h3).

(5.9)

We will now gain control over the terms (hw(x0)− h2

2 a(x0)) and h2

2 c(x0), separately.

Handling h2

2 c(x0) first, we simply note that by the discussion surrounding (3.6), we have that
∇Nλk ∈ O(N ck−mk), and so

c(x0) = O(N2γ−min{mk}‖f‖∇N2).

Next, we will show that

hw(x0)−
h2

2
a(x0) = O(N2γ−min{mk}‖f‖∇N1 h2).

We have

hw(x0)−
h2

2
a(x0) =

h2

2
N2γ [Dλ(x0)][ζ

N]diag(N c)λ(x0) · ∇Nf(x0)−
h2

2
N2γλT [DNλ]T∇Nf(x)

=
h2

2
N2γ

(
[Dλ(x0)][ζ

N]diag(N c)− [DNλ(x0)]

)
λ(x0) · ∇Nf(x0).

(5.10)

By Proposition 5.2, ∇Nf(x) is bounded by ‖f‖∇N1 . Therefore, we just need to show that the
difference between the two square matrices

[DNλ(x0)] and [Dλ(x0)][ζ
N]diag(N c) (5.11)

is O(N−min{mk}). Recalling the definitions in (5.2), the (i, j)th entry of the left side of (5.11) is

N cj (λi(x0 + ζNj)− λi(x0))

whereas that of the right side of (5.11) is

N cj∇λi · ζNj .

18

Also, note that, for λ ∈ C2
c (Rd,R),

((λ(x+ v)− λ(x))−∇λ(x) · v) ∈ O(|v|2‖λ‖2).

where
‖λ‖2 = sup{‖λ‖∞, ‖∂xiλ‖∞, ‖∂xj∂x`λ‖∞, i, j, k ≤ d.}

Since ‖λk‖2 is bounded for any k, the difference between the (i, j)th entries of the two expressions
in (5.11) is hence

O(N cjN−2mj)

Also, recall that cj −mj ≤ 0 by our choice of γ, with equality at at least one j. Thus the above is
also

O(N−min{mk}).

Therefore (5.10) is of order

O(N2γ−min{mk}h2‖f‖∇N1),

as desired. Combining the above with (5.9) gives us

‖(Ph − PM,h)f‖0 = O(N2γ−min{mk}‖f‖∇N1 h2 +N2γ−min{mk}‖f‖∇N2 h2 +N3γ‖f‖∇N3 h3)

= O(‖f‖∇N3 [N3γh3 +N2γ−min{mk}h2]),
(5.12)

implying
‖PM,h − Ph‖∇

N

3→0 = O(N3γh3 +N2γ−min{mk}h2),

as desired.

We can strengthen Theorem 5.6 slightly. Suppose that f explicitly depends only on a subset of
species S0 ⊂ S. More precisely, suppose that

S0(f) = {i ∈ {1, .., d} : f(x+ εei) 6= f(x) for some x and ei ∈ Rd, ε ∈ R }.

Next define R0 to be the subset of all reactions that affect any element in S0; that is,

R0(f) = {k ∈ {1, .., R} : ζki 6= 0 for some i ∈ S0}.

Therefore,

∇Nk f = 0 ∀k 6∈ R0. (5.13)

Finally, define

R00(f) = {k ∈ {1, .., R} : λ`(x+ ζk) 6= λ`(x), for some ` ∈ R0 and some x ∈ LN}

Thus, by construction, the set R00 corresponds to those reactions that affect those of R0, which in
turn affect S0.

Corollary 5.8. For a given f , define S0(f), R0(f),and R00(f) as above. Then if h < N−γ,

‖(PM,h − Ph)f‖∞ = O
(

(N3γh3 +N2γ−mink∈R00(f)
{mk}h2)‖f‖∇N3

)
.

19

Proof. Returning to the proof of Theorem 5.6, we consider again (5.9). First we handle

c(x0) = N2γλT [diag(N−c)[DNλ× (∇N)2]1Rf(x0)].

By (5.13), ∇Ni ∇Nj f(x0) = 0 if either i /∈ R0(f) or j /∈ R0(f). Thus, in the matrix DNλ × (∇N)2,
the only non-zero entries are those with indices i, j ∈ R0(f). Further, by construction

[DNλ]i,j = ∇jλi 6= 0 only if i ∈ R0(f), j ∈ R00(f).

Therefore, after recalling that ∇jλi(x0) ∈ N cj−mj we have that,

c(x0) ∈ N2γ−mink∈R00(f)
{mk}.

By similar arguments,

hw(x0)−
h2

2
a(x0) ∈ O(N2γ−mink∈R00(f)

{mk}‖f‖∇N1 h2),

and the remainder of the argument proceeds in exactly the same manner as the proof of Theorem
5.6.

Definition 4. The system (2.1) is called a first order system if each λk is linear.

Noting that it is always possible to solve for the means of first order systems, see [11], the
following is pointed out for completeness.

Corollary 5.9. If XN is the solution of a first order system, and if f is linear, then

‖(PM,h − Ph)f‖∞ = O(N3γh3).

Proof. It is sufficient to show that c(x0) in (5.8) and the right hand side of (5.10) are both zero.
The fact that c(x0) = 0 follows immediately from the linearity of f , as (∇N)2f = 0. Moreover, by
the linearity of the intensity functions,

DNλ(·) = [Dλ(·)][ζN]diag(N c),

showing the right hand side of (5.10) is zero.

5.4 Weak trapezoidal method

Throughout subsection 5.4, we let ZNtrap be the approximation to XN computed via Algorithm 3,
and for x ∈ LN let

Ptrap,hf(x)
def
= Exf(ZNtrap(h)),

where h is the size of the time discretization. We will again only consider the case h < N−γ , which
is a natural stability condition and is discussed further in Section 7.

We make the standing assumption that for all x ∈ LN and k, j ∈ {1, . . . , R}, we have

ξ1λk(x+ ζj)− ξ2λk(x) ≥ 0, (5.14)

where ξ1 > ξ2 are defined in (2.8) for some θ ∈ (0, 1).

Theorem 5.10. Suppose that the step size h satisfies h < N−γ. Then

‖(Ptrap,h − Ph)‖∇N3→0 = O(N3γh3).

20

Proof. Consider one step of the method with a step-size of size h and with initial value x0. Note
that the first step of the algorithm produces a value y∗ that is distributionally equivalent to one
produced by a Markov process with generator BN

1 given by

BN
1 f(x) = Nγλ(x0) · ∇Nf(x).

Next, given both x0 and y∗, step 2 produces a value which is distributionally equivalent to one
produced by a Markov process with generator

BN
2 f(x) = Nγ [ξ1λ(y∗)− ξ2λ(x0)]

+ · ∇Nf(x). (5.15)

Recall that for the exact process,

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(AN)2f(x0) +O(N3γ‖f‖∇N3 h3).

For the approximate process we have,

Ptrap,hf(x0) = Ex0 [Ex0 [f(ZNtrap(h))|y∗]]

= Ex0f(y∗) + (1− θ)hEx0 [BN
2 f(y∗)] +

(1− θ)2h2

2
Ex0 [(BN

2)2f(y∗)] +O(N3γ‖f‖∇N3 h3).

(5.16)

We will expand each piece of (5.16) in turn. Noting that BN
1 f(x0) = ANf(x0), the first term is

Ex0f(y∗) = f(x0) + Ex0
[∫ θh

0
BN

1 f(Zs)ds

]
= f(x0) + θhANf(x0) +

θ2h2

2
(BN

1)2f(x0) +O(N3γ‖f‖∇N3 h3).

We turn attention to the second term, (1 − θ)hEx0 [BN
2 f(y∗)], and begin by making the following

definition:

g(y∗) def
= BN

2 f(y∗) = Nγ [ξ1λ(y∗)− ξ2λ(x0)]
+ · ∇Nf(y∗),

so that g(x) = Nγ([ξ1λ(x)− ξ2λ(x0)]
+ · ∇N)f(x). Because ξ1 − ξ2 = 1, we have

g(x0) = Nγλ(x0) · ∇Nf(x0) = ANf(x0).

By our standing assumption (5.14)

g(x0 + ζk)− g(x0) = Nγ(ξ1λ(x0 + ζk)− ξ2λ(x0)) · ∇Nf(x0 + ζk)−Nγλ(x0) · ∇Nf(x0).

After some algebra

BN
1 g(x0) = Nγ(λ(x0) · ∇Ng)(x0) = Nγ

∑
k

N ckλk(x0)[g(x0 + ζk)− g(x0)]

= ξ1N
γλ(x0) · ∇N (Nγλ · f)(x0)− ξ2Nγλ(x0) · ∇N (λ(x0) · f)(x0)

= ξ1(B
N
1 ANf(x0))− ξ2((BN

1)2f)(x0).

21

Thus,

Ex0 [BN
2 f(y∗)] = Ex0 [g(y∗)] = g(x0) + θhBN

1 g(x0) +O(N3γ‖f‖∇N3 h2)

= ANf(x0) + θh
[
ξ1(B

N
1 ANf)(x0)− ξ2(BN

1)2f(x0)
]

+O(N3γ‖f‖∇N2 h2)

= ANf(x0) + θh
[
ξ1(AN)2f(x0)− ξ2(BN

1)2f(x0)
]

+O(N3γ‖f‖∇N3 h2),

where the last line follows since BN
1 f(x0) = ANf(x0) for any f .

Finally, we turn the the last term in (5.16). Define

q(y∗) def
= (BN

2)2f(y∗)

= [ξ1λ(y∗)− ξ2λ(x0)]
+ · ∇N ([ξ1λ(y∗)− ξ2λ(x0)]

+∇Nf)(y∗),

so that
q(x) = [ξ1λ− ξ2λ(x0)]

+ · ∇N ([ξ1λ− ξ2λ(x0)]
+∇Nf)(x).

By our standing assumption (5.14) we have

Ex0 [(BN
2)2f(y∗)] = Ex0 [q(y∗)]

= q(x0) +O(N3γ‖f‖∇N3 h)

= (BN
1)2f(x0) +O(N3γ‖f‖∇N3 h).

(5.17)

Noting that

(1− θ)θξ1 =
1

2
and (1− θ)θξ2 =

(1− θ)2 + θ2

2
,

we may conclude the following from the above calculations

Ex0 [f(ZNtrap,h)] = Ex0f(y∗) + (1− θ)hEx0 [BN
2 f(y∗)] +

(1− θ)2h2

2
Ex0 [(BN

2)2f(y∗)]

+O(N3γ‖f‖∇N3 h3)

= f(x0) + θhANf(x0) +
θ2h2

2
(BN

1)2f(x0)

+ (1− θ)hANf(x0) +
h2

2
(AN)2f(x0)−

h2

2
[(1− θ)2 + θ2](BN

1)2f(x0)

+
(1− θ)2h2

2
(BN

1)2f(x0) +O(N3γ‖f‖∇N3 h3)

= f(x0) +ANf(x0) +
h2

2
(AN)2f(x0) +O(N3γ‖f‖∇N3 h3).

Thus
‖(Ptrap,h − Ph)f‖0 ∈ O(N3γ‖f‖∇N3 h3),

and the proof is complete.

6 Bound on ‖Ptf‖∇
N

n

In this section we will provide a bound on ‖Ptf‖∇
N

n for any nonnegative n. We point out, however,

that for any process XN for which Pt is well behaved, in that ‖Pt‖∇
N

n→0 is bounded without any N
dependence, the following results are not needed, and, in fact, would most likely be a least optimal

22

bound, as the bound grows exponentially in Nγt. Note that any system satisfying the classical
scaling has γ = 0.

For t ≥ 0 and x ∈ LN , We define

v(t, x)
def
= Ptf(x) = Ex[f(XN

t)].

Theorem 6.1. If ‖f‖∇Nn <∞, then

‖v(t, ·)‖∇Nn = ‖Ptf‖∇
N

n ≤ ‖f‖∇Nn eN
γCnt

where
Cn = 2

(
‖λ‖∇N1 n R+R(n− 1)‖λ‖∇Nn

)
. (6.1)

We delay the proof of Theorem 6.1 until the following Lemma is shown, the proof of which is
similar to that found in [17], which itself was an extension of the proof of Lemma 4.3 in [3].

Lemma 6.2. Given a multiset I of {1, · · · , R}, there exists a function qI(x) that is a linear function
of terms of the form ∇NJ v(t, x) with |J | < |I|, so that

∂t∇NI v(t, x) = Nγ(λ · ∇N)∇NI v(t, x) +Nγ

|I|∑
i=1

(βi · ∇N)∇I\`iv(t, x+ ζ`i) +NγqI(x),

where βi = ∇N`i λ. Further, qI consists of at most R(|I| − 1) terms of the form ∇NJ v(t, x), each of

whose coefficients are bounded above by ‖λ‖∇N|I| .

Proof. This goes by induction. For |I| = 0, the statement follows because

∂tv(t, x) = Nγ(λ · ∇N)v(t, x). (6.2)

Note that in this case, there are no βi or q terms. It is instructive to perform the |I| = 1 case. We
have

∂t∇Nk v(t, x) = ∇Nk ∂tv(t, x)

= ∇Nk (Nγλ · ∇Nv(t, x))

= Nγ(∇Nk λ · ∇N)v(t, x) +Nγλ · ∇Nk ∇Nv(t, x) +Nγ(N−ck∇Nk λ · ∇Nk ∇Nv(t, x)).

Note that for any g : Rd → R

(∇Nk λ · ∇N)g(x) + (N−ck∇Nk λ · ∇N)∇Nk g(x) = (∇Nk λ · ∇N)g(x+ ζk). (6.3)

Therefore, with g(x) = v(t, x) in the above, we have

∂t∇Nk v(t, x) = Nγ(λ(x) · ∇N)∇Nk v(t, x) +Nγ(∇Nk λ(x) · ∇N)v(t, x+ ζk).

23

Now assume that it holds for a set of size ≤ |I|. Then, using the inductive hypothesis, Lemma
5.3, and equation (6.3) yields

∂t∇Nk ∇NI v(t, x)

= ∇Nk ∂t∇NI v(t, x)

= Nγ∇Nk
[
(λ · ∇N)∇NI v(t, x) +

|I|∑
i=1

(βi · ∇N)∇I\`iv(t, x+ ζ`i) + qI(x)

]
= Nγ

[
(λ · ∇N)∇NI∪kv(t, x) + (∇Nk λ · ∇N)∇NI v(t, x+ ζk)

]

+Nγ

|I|∑
i=1

[
(βi · ∇N)∇Nk ∇NI\`iv(t, x+ ζ`i) + (∇Nk βi · ∇N)∇NI\`iv(t, x+ ζ`i + ζk)

]
+Nγ∇Nk qI(x)

= Nγ(λ · ∇N)∇NI∪kv(t, x) +Nγ

[
(∇Nk λ · ∇N)∇NI∪k\kv(t, x+ ζk) +

|I|∑
i=1

(βi · ∇N)∇NI∪k\`iv(t, x+ ζ`i)

]
+Nγ

[
∇Nk qI(x) + (∇Nk βi · ∇N)∇NI\`iv(t, x+ ζ`i + ζk)

]
,

showing the result.

Proof. (of Theorem 6.1)
Let n ≥ 0. Define

Un(t)
def
= max

x∈LN ,|I|≤n
|∇NI v(t, x)| = ‖v‖∇Nn .

Each ∇NI v(t, x) is a continuously differentiable function with respect to t. Therefore, the maximum
above is achieved at some (I∗, x∗) for all t ∈ [0, t1] where t1 > 0. Fixing this choice of (I∗, x∗), we
have

Un(t) = ∇NI∗v(t, x∗)

for all t < t1.
Note that

[(λ · ∇N)∇NI∗v(t, x∗)]∇NI∗v(t, x∗) =
∑
k

λk(x)(∇Nk ∇NI∗v(t, x∗))∇NI∗v(t, x∗)

=
∑
k

N ckλk(x)(∇NI∗v(t, x∗ + ζk)−∇NI∗v(t, x∗))∇NI∗v(t, x∗)

≤ 0,

(6.4)

where the final inequality holds by the specific choice of I∗ and x∗. Also note that for any `i ∈ I∗
and any choice of x ∈ LN

|∇N∇NI∗\`iv(t, x)| ≤
R∑
k=1

|∇k∇NI∗\`iv(t, x)| ≤ R|∇NI∗v(t, x∗)|. (6.5)

24

From Lemma 6.2 and equations (6.4) and (6.5), we have

1

2
∂t(∇NI∗v(t, x∗))2 = (∂t∇NI∗v(t, x∗))∇NI∗v(t, x∗)

= Nγ

[
(λ · ∇N)∇NI∗v(t, x∗) +

|I∗|∑
i=1

(βi · ∇N)∇I∗\`iv(t, x∗ + ζ`i) + qI∗(x
∗)
]
∇NI∗v(t, x∗) (6.6)

≤ Nγ

[
‖λ‖∇N1 |I∗| R |∇NI∗v(t, x∗)|2 +R(|I∗| − 1)‖λ‖∇N|I∗| |∇

N
I∗v(t, x∗)|2

]
,

where we have used the fact that each βi = ∇`iλ for `i ∈ I∗. Setting

Cn = 2
(
‖λ‖∇N1 n R+R(n− 1)‖λ‖∇Nn

)
, (6.7)

we see by an application of Gronwall’s inequality that the conclusion of the theorem holds for all
t < t1. That is, for t < t1

Un(t) ≤ ‖f‖∇Nn eN
γCnt.

To continue, repeat the above argument on the interval [t1, t2), with I∗, x∗ again chosen to maximize
Un on that interval, and note that

Un(t1) ≤ ‖f‖∇
N

n eN
γCnt1 ,

so that we may conclude that for t1 ≤ t < t2,

Un(t) ≤ ‖f‖∇Nn eN
γCnt1eN

γCn(t−t1) = ‖f‖∇Nn eN
γCnt.

Continuing on, we see that ti →∞ as i→∞ by the boundedness of the time derivatives of v(t, x),
thereby concluding the proof.

Remark 6.3. In the theorem above, Cn ∈ ‖λ‖∇
N

n .

Combining all of the above results, we have the following theorems.

Theorem 6.4. (Global bound for the Euler method)
For Algorithm 1, suppose that the step size h satisfies h < N−γ , and T = nh. Then

‖(PnE,h − Pnh)‖∇N2→0 = O(N2γheC2NγT)

where C2 ∈ O(‖λ‖∇N2) is defined in (6.1).

Theorem 6.5. (Global bound for the midpoint tau-leap method)
For Algorithm 2, suppose that the step size h satisfies h < N−γ , and T = nh. Then

‖(PnM,h − Pnh)‖∇N3→0 = O([N3γh2 +N2γ−min{mk}h]eC3NγT)

where C3 ∈ O(‖λ‖∇N3) is defined in (6.1).

The following immediate corollary to the theorem above recovers the result in [3].

Corollary 6.6. Under the additional condition h > N−γ−min{mk} in Theorem (6.5), the leading
order of the error of midpoint tau-leaping is O(h2).

25

Theorem 6.7. (Global bound for the weak trapezoidal method)
For Algorithm 3, suppose that the step size h satisfies h < N−γ , and T = nh. Then

‖Pnh − Pnh‖∇
N

3→0 = O(h2N3γeN
γC3T)

where C3 ∈ O(‖λ‖∇N3) is defined in (6.1).

Thus, we see that the weak trapezoidal method detailed in Algorithm 3 is the only method that
boasts a global error of second order in the stepsize h in an honest sense. That is, it is a second
order method for the multiple scalings regardless of the relation of h with respect to N . This is in
contrast to the midpoint tau leaping method, Algorithm 2, which has second order accuracy only
when the step-size h is larger than N−γ−min{mk}.

7 Stability

The main results and proofs of our paper have incorporated stability concerns into the analysis.
This is seen in the statements of the theorems by the running condition that h < N−γ , where
we recall that Nγ should be interpreted as the time-scale of the system. Without this condition,
the methods are unstable, and in fact the convergence results do not hold. It is an interesting
question, and the subject of future work, to determine the stability properties of other methods in
this setting.

As an instructive example, again consider the system

S1
100
�
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000. As the rate constants
are 100 =

√
10,000, we take β1 = β2 = 1/2 and find that γ = 1/2. The equation governing the

normalized process XN
1 is

XN
1 (t) = XN

1 (0)− Y1
(
N1/2N

∫ t

0
XN

1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0
(2−XN

1 (s))ds

)
1

N

where we have used that XN
1 +XN

2 ≡ 2. It is now clear that if the condition h < N−γ is violated
a path generated by any of the explicit methods discussed in this paper will behave quite poorly.

8 Example

Consider the following first order reaction network

A
κ1
�
κ2
B

κ3
�
κ4
C,

with κ1 = 0.03, κ2 = 1, κ3 = 0.1, and κ4 = 1. Starting from the initial state

X(0) = (XA(0), XB(0), XC(0)) = (13000, 100, 20),

where we make the obvious associations X1 = XA, X2 = XB, and X3 = XC . We approximate X(2)
using the three methods considered in this paper: Euler, midpoint, and weak trapezoidal. For first
order systems, we may find the first moments and the covariances of X(t) as solutions of linear
ODEs using a Moment Generating function approach [11].

26

−2.5 −2 −1.5 −1 −0.5−1

0

1

2

3

4

5

Log h
Lo

g
Er

ro
r

Euler
Midptoint
Weak Trap

Figure 1: The log-log plot of |E[X2
3 (2)]−E[Z2

3 (2)]| against h for the three approximation methods.
The slope for Euler’s method is 1.21, whereas the slope for the weak trapezoidal solution is 3.06,
which is better than expected. The curve governing the solution from the midpoint method appears
to not be linear; a behavior predicted by Theorem 5.6.

In Figure 1, we show a log-log plot of |E[X2
3 (2)]−E[Z2

3 (2)]| against h for the three approximation
methods. Each data point was found from either 106, 2.9 × 106, 3.9 × 106, 4.9 × 106, 8 × 106, or
107 independent simulations, with the number of simulations depending upon the size of h and
the method being used. The slope for Euler’s method is 1.21, whereas the slope for the weak
trapezoidal solution is 3.06, which is better than expected. The curve governing the solution from
the midpoint method appears to not be linear; a behavior predicted by Theorem 5.6.

In Figure 2 we again consider the log-log plots of |E[X2
3 (2)]−E[Z2

3 (2)]| against h, but now only
for Euler’s method and the midpoint method so that we may see the change in behavior in the
midpoint method predicted in Theorem 5.6. In (a), we see that for larger h the slope generated via
the midpoint method is 2.03, whereas in (b) the slope is 1.12 when h is smaller. For reference, in
(a) the slope generated by Euler’s method is 1.366, whereas in (b) it is 1.09.

−1.4 −1.2 −1 −0.8 −0.62

2.5

3

3.5

4

4.5

5

Log h

Lo
g

Er
ro

r

Euler
Midptoint

(a)

−2.6 −2.4 −2.2 −2 −1.8 −1.60.5

1

1.5

2

2.5

3

3.5

4

Log h

Lo
g

Er
ro

r

Euler
Midptoint

(b)

Figure 2: The log-log plot of |E[X2
3 (2)]−E[Z2

3 (2)]| against h. The slope for generated via midpoint
tauleaping shifts from 2.03 in (a) to 1.12 in (b).

27

−2 −1.5 −1 −0.5−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Log h
Lo

g
Er

ro
r

Euler
Midptoint
Weak Trap

Figure 3: Log-log plot of |E[X3(2)] − E[Z3(2)]| against h for the three approximation methods.
The slopes are: 1.02 for Euler’s methods, 2.372 for midpoint method, and 2.3 for the trapezoidal
method.

While the simulations make no use of the scalings inherent in the system, it is instructive
for us to quantify them in this example so that we are able to understand the behavior of the
midpoint method. We have N ≈ 104, α1 = 1, α2 = 1/2, α3 = 1/4, and mk = 1/4. Also, γ ≈ 0.
Therefore, Theorem 5.6 predicts the midpoint method will behave as an order two method if
h� N−1/4 ≈ 1/10, or if log(h)� −2.3, which roughly agrees with what is shown in Figures 1 and
2. Note that Theorem 5.6 will never provide a sharp estimate as to when the behavior will change
as it is a local result and the scalings in the system will change during the course of a simulation.

The fact that the trapezoidal method gave an order three convergence rate above does not hold
in general. This was demonstrated in the proof of Theorem 5.10, but it is helpful to also show this
via example. In Figure 3 we present a log-log plot of |EX2(2)−EZ2(2)| for the different algorithms
on this same example. The slopes are: 1.02 for Euler’s methods, 2.372 for midpoint method, and
2.3 for the trapezoidal method. Note that Corollary 5.9 explains why the midpoint method is as
accurate as the weak trapezoidal algorithm in this case. We point out that all of the plots above
represent results pertaining to the non-normalized processe as the simulation methods themselves
make no use of the scalings.

A Why the weak trapezoidal algorithm works

This discussion follows that of Section 3.1 in [5]. Equation (2.1) is distributionally equivalent2 to

X(t) = X(0) +
∑
k

ζk

∫ ∞
0

∫ t

0
1[0,λk(X(s)))(u)µk(du× ds), (A.1)

where the µk are independent, unit-rate Poisson random measures on [0,∞)2 with Lebesgue mean
measure. That is, if A,B ⊂ [0,∞)2 with A ∩ B = ∅, then µk(A) and µk(B) are independent
Poisson random variables with parameters Area(A) and Area(B), respectively. All other notation
is as before. In order to approximate the integral in (A.1) over the time interval [0, h), we must
approximate µk(A[0,h)(λk)) where A[0,h)(λk) is the region under the curve λk(X(t)) for 0 ≤ t < h.

2in that solutions to (A.1) are Markov processes that solve the same martingale problem as solutions to (2.1); that
is, they have the same generator [10].

28

Region 1

λk(X(0))

λk(y
∗)

1

λk(X(0))

λk(y
∗)

1

(a) First step

Region 2

Region 3

(b) Desired second step

Region 3

Region 4

Region 5

(c) Used second step

Figure 4: A graphical depiction of the Weak trapezoidal algorithm with θ = 1/2. In (a) the region
of space-time used in the first step of the Weak trapezoidal algorithm is depicted by the grey shaded
Region 1. In (b) the desired region to use, in order to perform a trapezoidal approximation, would
be Region 2. However, we have used Region 3 in our previous calculation and this is analytically
problematic to undo. In (c) we see that Region 5 gives the correct amount of new area wanted
as subtracting off the area of Region 4 “offsets” the used area of Region 3. The case θ 6= 1/2 is
similar.

We consider a natural way to approximate X(h) and focus on the double integral in (A.1) for
a single k. We also take θ = 1/2 for simplicity and simply note that the case θ 6= 1/2 follows
similarly. We begin by approximating the value X(h/2) by y∗ obtained via an Euler approximation
of the system on the interval [0, h/2). To do so, we hold X(t) fixed at X(0) and see that we need
to calculate µk(Region 1), where Region 1 is the grey shaded region in Figure 4(a). Because

µk(Region 1)
D
= Poisson(λk(X(0))h/2),

we see that this step is equivalent in distribution to the first step of Algorithm 3, where “
D
= ”

denotes “equal in distribution.”
If we were trying to determine the area under the curve λk(X(t)) using an estimated midpoint

y∗ for a deterministic X(t), one natural (and common) way would be to use the area of Region 2,
where Region 2 is the grey shaded region in Figure 4(b). Such a method would be equivalent to a
trapezoidal rule. However, in our setting we would have to ignore, or subtract off, the area already
accounted for in Region 3, which is depicted as the shaded green section of Figure 4(b). In doing
so, the random variable needed in order to perform this step would necessarily be dependent upon
the past (via Region 3), and our current analysis would break down. However, noting that Region
3 has the same area as Region 4, as depicted by the blue shaded region in Figure 4(c), we see that
it would be reasonable to expect that if one only uses Region 5, as depicted as the grey shaded
region in Figure 4(c), then the accuracy of the method should be improved as we have performed
a trapezoidal type approximation. Because, after some algebra,

µk(Region 5)
D
= Poisson(2λk(y

∗)− λk(X(0))),

we see that this is precisely what is carried out by Step 2 of the Weak Trapezoidal Algorithm.

29

References

[1] David F. Anderson, A modified next reaction method for simulating chemical systems with time
dependent propensities and delays, J. Chem. Phys. 127 (2007), no. 21, 214107.

[2] , Incorporating postleap checks in tau-leaping, J. Chem. Phys. 128 (2008), no. 5, 054103.

[3] David F. Anderson, Arnab Ganguly, and Thomas G. Kurtz, Error analysis of tau-leap simu-
lation methods, to appear in Annals of Applied Probability.

[4] David F. Anderson and Thomas G. Kurtz, Continuous time markov chain models for chemical
reaction networks, Design and Analysis of Biomolecular Circuits: Engineering Approaches to
Systems and Synthetic Biology (H. Koeppl et al., ed.), Springer, 2011, pp. 3–42.

[5] David F. Anderson and Jonathan C. Mattingly, A weak trapezoidal method for a class of
stochastic differential equations, Comm. Math. Sci. 9 (2011), no. 1, 301 – 318.

[6] Karen Ball, Thomas G. Kurtz, Lea Popovic, and Greg Rempala, Asymptotic analysis of mul-
tiscale approximations to reaction networks, Ann. Appl. Prob. 16 (2006), no. 4, 1925–1961.

[7] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold, Avoiding negative populations in explicit
poisson tau-leaping, J. Chem. Phys. 123 (2005), 054104.

[8] , Efficient step size selection for the tau-leaping simulation method, J. Chem. Phys. 124
(2006), 044109.

[9] Abhijit Chatterjee and Dionisios G. Vlachos, Binomial distribution based τ -leap accelerated
stochastic simulation, J. Chem. Phys. 122 (2005), 024112.

[10] Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and convergence,
John Wiley & Sons, New York, 1986.

[11] Chetan Gadgil, Chang Hyeong Lee, and Hans G. Othmer, A stochastic analysis of first-order
reaction networks, Bull. Math. Bio. 67 (2005), 901–946.

[12] M.A. Gibson and J. Bruck, Efficient exact stochastic simulation of chemical systems with many
species and many channels, J. Phys. Chem. A 105 (2000), 1876–1889.

[13] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions, J. Comput. Phys. 22 (1976), 403–434.

[14] , Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (1977),
no. 25, 2340–2361.

[15] , Approximate accelerated simulation of chemically reaction systems, J. Chem. Phys.
115 (2001), no. 4, 1716–1733.

[16] D. T. Gillespie and Linda R. Petzold, Improved leap-size selection for accelerated stochastic
simulation, J. Chem. Phys. 119 (2003), no. 16, 8229–8234.

[17] Yucheng Hu, Tiejun Li, and Bin Min, The weak convergence analysis of tau-leaping methods:
revisited, accepted to Comm. Math. Sci.

30

[18] Hye-Won Kang and Thomas G. Kurtz, Separation of time-scales and model reduction for
stochastic reaction networks, submitted.

[19] Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equa-
tions, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR
MR1214374 (94b:60069)

[20] Thomas G. Kurtz, Approximation of population processes, CBMS-NSF Reg. Conf. Series in
Appl. Math.: 36, SIAM, 1981.

[21] Tiejun Li, Analysis of explicit tau-leaping schemes for simulating chemically reacting systems,
SIAM Multiscale Model. Simul. 6 (2007), no. 2, 417–436.

[22] Muruhan Rathinam, Linda R. Petzold, Yang Cao, , and Daniel T. Gillespie, Consistency and
stability of tau-leaping schemes for chemical reaction systems, SIAM Multiscale Model. Simul.
3 (2005), 867–895.

31

