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Abstract

In this dissertation, we study stochastically modeled chemical reaction networks and

associated simulation methods. The bulk of this dissertation focuses on three selected

topics. Firstly, we present an efficient Runge-Kutta type simulation method and compare

its weak error with those of other methods. In particular, we make a comparison with

the usual Euler method, which is termed tau-leaping in the current context. The new

method is found to be an order of magnitude more accurate than Euler’s method, making

it the first high-order numerical method for the models considered in this dissertation.

Secondly, we study different coupling methods of stochastically modeled biochemical

processes and provide an asymptotic relation between two such couplings found com-

monly in the literature. This work is motivated by the fact that variance reduction is a

critical aspect of many computational methods, such as in finite difference schemes for

the estimation of sensitivities and multi-level Monte Carlo algorithms for the estimation

of expectations. Thirdly, we will prove a large population result on a class of chemical

reaction networks which allow for reactions to have “interruptible” delay. The technique

of the proof is similar in nature to that of Nancy Garcia’s large population result on an

S.I.R model with generally distributed infectious period, though this was not known at

the time of writing. Finally, along with a package for the implementation of multi-level

Monte Carlo for MATLAB, we present two miscellaneous results including: (i) a proof

that complex balanced chemical reaction networks are non-explosive, and (ii) an appli-

cation of the multi-level Monte Carlo algorithm for the purpose of sensitivity analysis,

which produces the most efficient method for the approximation of sensitivities to date.
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Chapter 1

Introduction

1.1 Background

In 2004, geneticist John Venter and economist Daniel Cohen made the following famous

quote: “If the 20th century was the century of physics, the 21st century will be the

century of biology” [68]. One of the ultimate goals in the biological sciences, and in par-

ticular systems biology, is to predict and control the behaviors of cells and biochemical re-

actions. According to a recent report by the Japan Science and Technology Agency [34],

today’s frontier of this science mainly consists of two components: Bio-informatics and

mathematical modeling. In Bio-informatics, one uses statistical methods to learn from

raw data, in particular the so-called “omics”1 data, the underlining network of reactions

that governs the system. Hirai’s work is a recent example of a network inference from

metabolomics data [49]. In mathematical modeling, one constructs specific mathemat-

ical descriptions of the biological system and uses simulations or analytical techniques

to study the dynamical properties of the processes, including their limiting behaviors.

According to the JST [34], in both industry and academia alike, Bio-informatics was in

the center of spotlight in the last decade. However, [34] also reports that the trend is

slowly shifting toward mathematical modeling.

1omics stands for the group of chemical substances that ends in “-ome”; for example, genome,
transcriptome, proteome, glycome, metabolonome, etc.
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One may model the dynamics of a biochemical system deterministically or stochas-

tically. There is a vast literature studying the qualitative properties of deterministi-

cally modeled systems. For just a small sample, the works of Feinberg, Horn, Jackson,

Craciun, Sturmfels, Andersion, Shiu and others investigate the behavior of deterministi-

cally modeled systems using theories from ordinary differential equations, algebra, and

geometry [2, 3, 5, 12, 21, 26, 27, 28, 29, 33, 43, 44, 45, 46, 59] . On the other hand,

this dissertation studies (i) mathematical techniques to be used on models with stochas-

tic dynamics, and (ii) computational methods of stochastic simulations for biological

purposes.

Stochastic modeling of biological systems has dramatically increased in popularity

over the last decade in the field of mathematical modeling. With the development of

more efficient technologies to obtain “in vivo” data,2 like fluorescent-activated cell sort-

ing (FACS) to study the chemical dynamics within cells, biologists are finding ample

evidence that intrinsic stochasticity within the cell system is affecting its behavior in

pivotal ways. For example, Arkin and Adams [14] reports strong evidence that the de-

velopmental pathway of a phage infected E-coli cell is stochastically regulated. Lawson

et al. [54] have shown that a model that includes spatial stochasticity describes the ro-

bust cell polarization much more accurately than the deterministic counterpart. Elowitz

et al. [31] presented evidence that random fluctuations in gene expression contribute

substantially to overall phenotypic variation.

2data from living cells, as opposed to artificial data (“in vitro”)
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While it is clear that stochastic models have a role to play in elucidating our un-

derstanding of biological phenomena, there are many aspects to stochastic models and

their associated simulation methods that still need addressing. For example, there is a

problem of scaling in that different constituent species may be available in significantly

different abundances, and the rates of different reactions may vary by orders of magni-

tude. Stochasticity becomes especially important in the presence of chemical species in

low abundances. In one of the first results aimed at describing how models with a given

scaling behave, Kurtz introduced the notion of the “classical scaling,” or the situation

under which all species exist in the same scale and the reaction rates are proportional to

that scale. He showed that the law of large numbers limit of the system takes the form

of an ODE [52]. However, some chemical species can be present in the system in much

greater abundances than others, and this motivates a multiscale analysis, where there

has recently been significant research activity. For example, in [17], Ball, Kurtz, Popovic

and Rempala developed some of the first multi-scale techniques applicable in the setting

of biochemical processes, which utilized laws of large numbers and averaging methods in

order to simplify the dynamics of multiple models, including a model of viral infection

of a cell. Kurtz and Kang [48] specified a balance condition under which one can, with

a particular time scale, simplify the dynamics of even more complicated models.

Simulation methods are still in their embryonic stage of development in the current

setting: continuous efforts are being made to improve upon both the accuracy and the

runtime of the different algorithms being developed. Gillespie is considered a pioneer

in the field for the development of the stochastic simulation algorithm (SSA) [39] and

the tau-leaping algorithm [40]. Up until recently, the main focus of the study of sim-

ulation methods had been in applications of the tau-leaping algorithm (which is the
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usual Euler method in the present context) and on different exact stochastic simulation

algorithms (SSA), and their improvements and extension in terms of bias reduction and

speed. While extremely innovative and intuitive, the tau-leaping algorithm has multiple

problems associated with it. For example, it, along with all forward in time simulation

methods, can cause some populations to go negative in the course of a simulation, which

is an issue that has garnered widespread attention. For example, the work of Cao et al.

[23], Anderson [1], Chatterjee [25], Tian and Burrage [67] and others were all aimed at

countering this negativity problem. Implicit methods [62], Runge-Kutta methods [22],

midpoint methods [7], and trapezoidal methods [9], were also developed as improved

variations of the tau-leaping algorithm. Conversely, E, Liu, and Vanden-Eijnden devel-

oped a method to simulate chemical systems with multiple time scales by algorithmically

approximating the fast dynamics via homogenization methods [30], which had the effect

of greatly increasing the speed of computing single realizations for a myriad of models

at the cost of an unquantified bias.

The trend changed, however, with the advent of the multi-level Monte Carlo sim-

ulation algorithm (MLMC) by Mike Giles [38], which was developed in the context of

stochastic differential equation driven by Brownian motions. In that context MLMC

boasts an ability to produce highly precise, though still biased, estimates for expecta-

tions in a fraction of the time required by standard simulation methods such as Euler-

Maruyama and Milstein’s scheme together with standard Monte Carlo methods [38].

Later, in [8], Anderson and Higham extended the basic MLMC method to the setting of

stochastically modeled chemical reaction networks in a manner that produced unbiased

estimators, and which often produced its estimates in a fraction of the time required by

exact simulation methods coupled with naive Monte Carlo. This new MLMC method



5

combines multiple SSA-generated paths and multiple approximated paths in a telescopic

sum in a way that attempts to push the computational work away from highly precise

paths, which detail every reaction, and towards coarse-grained approximations. These

MLMC methods require tight couplings of the relevant simulated paths in order to work,

and the coupling employed by Anderson and Higham is based off the random time change

representation of Kurtz. However, this is not the only coupling available, and study-

ing the properties of and relationships between different couplings is motivation for the

material presented in Chapter 3 of this thesis.

1.1.1 Chapter outline

In this dissertation, we study simulation methods of stochastically modeled reaction

networks and selected topics around stochastic modeling, including some results on non-

Markovian systems. The dissertation is structured as follows.

In the remainder of the first chapter, we will introduce the specific stochastic models

we consider (section 1.2) and the tools that will be useful in their analysis (section 1.3).

In Chapter 2, we will introduce a Runge-Kutta type method for Monte Carlo simu-

lation, and analyze its weak error, or bias. We will show that this error scales like the

square of the time-step, making it the first higher order method in the current context.

In Chapter 3, we will study two methods found in the computational literature for

coupling processes. Coupling is a technique that is useful in any computational method

where a reduction of variance is desired, such as in finite difference methods for sensi-

tivity analysis and multi-level Monte Carlo for the computation of expectations. There

are two leading methods in the literature to couple two processes tightly. We will show
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a surprising relationship between the two by proving that a sequence of couplings of one

type converges to the other coupling in a particular topology. In essence, the analysis

shows that the coupling employed by Anderson and Higham in [8] maximizes the ability

of the two process to re-couple during the course of a simulation.

In Chapter 4 we analyze a class of systems with a delay in the completion in one

or more of their reactions. This problem was motivated by a series of conversations

with Prof. Laurence Loewe in the University of Wisconsin Laboratory of Genetics and

the Wisconsin Institute for Discovery. In particular, we assume that some reactions

take a nontrivial time to complete, and this assumption causes the system to be non-

Markovian. Such instances happen, for example, in gene transcription, a basic biological

event necessary for the modeling of any genetic network. Previous results in the literature

pertaining to biochemical models with delay detailed the expected behavior of the system

[65] and the modeling of the system via delayed ordinary differential equations [18]. In

this dissertation, we derive the law of large numbers limit under the classical scaling

for a special class of stochastic models with delay in order to derive the correct delayed

ODE model.

Finally, in Chapter 5 we conclude this dissertation with some miscellaneous results

and a description of a software package written in the Python language that auto-

matically generates MATLAB code for the implementation of multi-level Monte Carlo.

Complexity of writing such code is one of the bottlenecks to the widespread implementa-

tion of MLMC. The package generates the code from simple inputs of the basic network

stoichiometry, the system parameters, and an initial condition. Another result in this

final chapter, and the one which is perhaps the most immediately applicable of the en-

tire thesis, is the extension of the MLMC algorithm to the setting of sensitivity analysis
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for stochastically modeled biochemical systems, thereby producing the most efficient

method for sensitivities available today.

1.2 Mathematical Model

1.2.1 Base model and State Space

A chemical reaction network (CRN) consists of three components: a set of species S,

a set of complexes C, and a set reactions R. Each complex is a non-negative linear

combination of the species, and each reaction transforms a reactant complex to a product

complex. Each reaction has a corresponding reaction rate constant, which parametrizes

the rate at which the reaction takes place. A CRN can be represented by a weighted

digraph, with the complexes and the products serving as the nodes, and the reactions

as the directed edges. For instance, the CRN with

S = {A,B,C,D,E} C = {A+B,C,D,E}

and reactions

A+B
r1→ C

A
r2→ A+B

C
r3→ ∅

A
r4→ C

D
r5→ 2E

(1.1)

can be represented as the disconnected, weighted digraph given in Figure 1. Such a

graph is typically termed a reaction graph.
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A+B

r1

C

r3

∅A

r2
r4 D 2E

r5

Figure 1: A graph representation of CRN (1.1).

Having a notion of a network, we turn to developing a dynamical system governing

the behavior of the populations of the species. We may represent a state of the system

by a vector in Rd, where d is the number of species. In the case of (1.1), d = 5, and the

coordinates 1 through 5 correspond to species A through E, respectively. If X is a state

of the system, Xi represents the number of particles of the ith species present in the

system. We associate with the reactions a set of vectors determining the net change in

the composition of the system due to their occurrences, {ζk; k = 1, ..., R}, with ζk ∈ Zd.

For the example (1.1) we have,

ζ1 =



−1

−1

1

0

0


, ζ2 =



0

1

0

0

0


, ζ3 =



−1

0

1

0

0


, ζ4 =



0

0

−1

0

0


, ζ5 =



0

0

0

−1

2


(1.2)

For example, in the first reaction, one of the A particles and one of the B particles are

consumed to make a C particle, and hence the entries in vector ζ1. We can also associate
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to each reaction the reactant complexes vector;

ν1 =



1

1

0

0

0


, ν2 =



1

0

0

0

0


, ν3 =



0

0

1

0

0


, ν4 =



1

0

0

0

0


, ν5 =



0

0

0

1

0


(1.3)

The entries for ν3 is zero everywhere except for the third coordinate, because the reactant

complex of the third reaction is C. Associating to each reaction the product complex ν ′k,

we see that ζk = ν ′k − νk. Throughout the text, we will use d for the number of species,

R for the number of reactions, and ζk for the kth reaction vector.

1.2.2 Dynamical System

Biologists are interested in the dynamics of the populations of chemical species over time.

Let (S, C,R) be a CRN, withR consisting of R > 0 reactions. For k = 1, ..., R, we would

like to define the reaction intensity (or rate/propensity) functions λk : Rd
≥0×R≥0 → R≥0,

which represent the rates at which the reactions take place. If Xi(t) represents the

amount of the ith species in the system at time t, the natural deterministic model to

consider would be the solution to the ODE

X(t) = X(0) +
R∑
k=1

∫ t

0

λk(X(s), s)dsζk.

On the other hand, we can also consider the stochastic model

X(t) = X(0) +
R∑
k=1

Nk(t)ζk (1.4)
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where Nk is a counting processes for the number of occurrences of the reaction k. For

simplicity, we would like to use a Markovian model for now. That is, we will assume

λk : Rd
≥0 → R≥0 and

P (Reaction k occurs in (t, t+ ∆t]|Xt) ∼= λk(X(t))∆t (1.5)

so that the likelihood for a specific reaction to take place in the next infinitesimal time

frame depends only on the current state of the system. The assumption is indeed

not perfect. No chemical reactions are processed instantly. In a strict sense, we must

consider the delay within each reaction. We shall revisit this point later in Chapter 4.

Let {Yk; k = 1, ..., R} be a set of unit rate Poisson process. The following model based

on a random time change of Poisson process is in accord with (1.5), and is a critically

important representation used throughout this thesis,

X(t) = X(0) +
R∑
k=1

Yk

(∫ t

0

λk(X(s))ds

)
ζk. (1.6)

This model, however, is defined only up to τ∞
def
= limn→∞ τn. Depending on the choice

of propensity functions, the process might explode in that τ∞ <∞. We will discuss this

issue later in Chapter 5.

We have not yet discussed the choice of intensity function λk. The most common

choice for both biologists and chemists is that of mass-action kinetics, and its usage

dates back to the work of Guldberg and Waage [42] in 1864. Under mass action kinetics,

intensity functions take the following form.

λk(x) = rk

d∏
`=1

(
x`

x` − νk`

)
.

For example, for the model with reactions (1.1), the intensity functions are

r1XA(t)XB(t), r2XA(t), r3XC(t), r4XA(t), r5XD(t),
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yielding the representation

X(t) =X(0) + Y1

(∫ t

0

r1XA(s)XB(s)ds

)
ζ1 + Y2

(∫ t

0

r2XA(s)ds

)
ζ2

+ Y3

(∫ t

0

31XC(s)ds

)
ζ3 + Y4

(∫ t

0

r4XA(s)ds

)
ζ4 + Y5

(∫ t

0

r5XD(s)ds

)
ζ5.

(1.7)

1.3 Properties and characterizations of the stochas-

tic models based on the random time change

representation

In this section, we will discuss our stochastic model with more concreteness. We will

describe its probability space and introduce properties that will become useful in this

dissertation. The works in this section are organized from [10], [51], [57], the last of

which is in French. We filled in the details which we deemed essential.

1.3.1 Probability Space of the Stochastic Model and the Meyer-

Knight theorem

Let (S, C,R) be a CRN with d species and R reactions. Any path of our stochastic

dynamical process X realized in the way of (1.4) (in particular of (1.6)) is determined

completely by the set of counting processes {Nk; k = 1, ..., R} that counts the number

of reaction occurrences. Let J [0,∞) be the collection of non-negative integer valued

càdlàg functions that are constant except for jumps of size 1. The probability space of

our stochastic model will hence be Ω = J [0,∞)R. We are going to derive the probability
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measure for the process X given by a solution to

X(t ∧ τn) = X(0) +
R∑
k=1

Yk

(∫ t∧τn

0

Z(s)ds

)
(1.8)

with

τn = inf

{
r;

R∑
k=1

Yk

(∫ r

0

Z(s)ds

)
= n

}
. (1.9)

where Z is a process adapted to the natural filtration of X. We will assume that X(0) is

deterministic. Because we are stopping the system at time τn this model never explodes.

To construct the desired probability measure, we will begin from the probability mea-

sure Q under which processes {Nk; k = 1, ..., R} are mutually independent unit Poisson

processes. We will suppose that the processes are adapted to the complete filtration Ft.

Based on Q, we will construct a measure P � Q under which {Nk} are equal in law to{
Yk

(∫ t
0
Z(s)ds

)}
in (1.8). Our main tool will be the Meyer-Knight theorem (theorem

1.8). The Meyer Knight theorem is a generalization of the Watanabe’s characterization

of the Poisson process, which states that a pure jump process N with jump size 1 is a

Poisson process with rate λ if and only if N(t)− λt is a martingale with respect to the

natural filtration of N .

When changing the measure, Bayes formula and the ensuing theorem become useful.

Theorem 1.1. (Bayes formula, generalized) Let L and Z be random variables on a

probability space Ω. If D is a sigma algebra and dP = LdQ, then

EP [Z|D] =
EQ[ZL|D]

EQ[L|D]
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Theorem 1.2. Let M be a martingale with respect to a filtration Ft under Q. Also,

let P be an absolutely continuous probability measure with respect to Q, and suppose

M(t)dQ|Ft = dP |Ft. Then a process G is a P -martingale with respect to Ft if and only

if GM is a Q-martingale with respect to Ft.

Proof. By Bayes formula, EQ[M(t+h)(G(t+h)−G(t))|Ft] = 0 if and only if EP [(G(t+

h)−G(t))|Ft] = 0. Also, by the martingale property of M ,

EQ[M(t+ h)G(t)|Ft] = G(t)EQ[M(t+ h)|Ft] = M(t)G(t)

Thus EQ[M(t+ h)G(t+ h)|Ft] = M(t)G(t) if and only if EP [G(t+ h)|Ft] = G(t).

Also, we will be using the following basic facts about martingales and stochastic

integrals. For simplicity we denote
∫ t

0
A(s)dB(s) by (A ·B)(t).

Lemma 1.3. A positive local martingale Mt with E[Mt] = E[M0] for all t is a martin-

gale.

Proof. Let τn be the localizing sequence of M . We know that E[Mt∧τn ] = E[M0], so

E[ lim
n→∞

Mt∧τn ] = E[Mt] = E[M0] = lim
n→∞

E[Mt∧τn ]

If s ≤ t and A ∈ Fs, by the martingale property of Mt∧τn ,

E[Mt∧τn1A] = E[Ms∧τn1A]

Now, use the generalized dominated convergence theorem to take n → ∞ on both

sides.

Lemma 1.4. If V is càdlàg and M is a positive square integrable martingale, then V ·M

is a martingale.
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Proof. Without loss of generality we may suppose that V is non-negative. This follows

since any V can be written as the difference V+ − V− of non-negative càdlàg functions,

and a difference of two martingales is a martingale. Since V is locally bounded with some

localizing sequence, V ·M is a locally square integrable martingale. Let V C = V ∧ C.

Then clearly

E[(V C ·M)(t)] = E[(V ·M)(0)].

By the monotone convergence theorem we obtain

E[(V ·M)(t)] = E[(V ·M)(0)].

By lemma 1.3, V ·M is a martingale.

Lemma 1.5. Let N be a Poisson process adapted to Ft, and let V be a càdlàg pro-

cess adapted to Ft . Denote by Ñ the compensated Poisson process. Then V · Ñ is a

martingale.

Proof. Again without loss of generality assume V positive. Let V C = V ∧ C. Then

V C · Ñ is a martingale. If A ∈ Fs, then by martingale property,

E[{(V C · Ñ)t − (V C · Ñ)s}1A] = 0

E[(V C ·N)t1A]− E[(V C ·N)s1A] = E

[∫ t

s

V C(r)dr1A

] (1.10)

By the Monotone convergence theorem applied to each expectation,

E[(V ·N)t1A]− E[(V ·N)s1A] = E

[∫ t

s

V (r)dr1A

]
Implying that

E[((V · Ñ)t − (V · Ñ)s)1A] = 0.

The claim follows.
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Now, let {Ni} be Poisson processes on (Ω,F , Q) and let {Zi, i = 1, ..., R} be processes

with the following properties:

• Zi(t ∧ τn) is càdlàg.

• Ni(s) = Ni(s−) when Zi(s) = 0.

• Zi is adapted to Ft.

• Zi is non-negative.

In what follows, Zi will serve as the reaction rate function for the reaction i, and Ni

will be the counting process that counts the number of the occurrences of the reaction

i. We need the first assumption to prevent the propensity from exploding with only a

finite number of reactions. We need the second assumption because no reaction shall

take place when the propensity is 0. We want the third assumption because we do not

want the value of Zi to depend on future information.

We define the Girsanov exponential Radon Nikodym Derivative based on Z as follows:

L(t) =
R∏
i=1

exp

(∫ t

0

ln(Zi(s−))dNi(s)−
∫ t

0

(Zi(s)− 1)ds

)
(1.11)

We then change the measure Q to the measure P defined by dP = L(τn)dQ on Fτn ,

where τn is as in (1.9). The following property of L(t) ensures that our change of measure

is a bona-fide change of probability measure.

Lemma 1.6. L(t) is a local martingale with localizing stopping time τn.
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Proof. By Ito’s formula,

L(t) = L(0) +
R∑
i=1

∫ t

0

L(s−) ln(Zi(s−))dNi(s)−
∫ t

0

L(s)(Zi(s−)− 1)ds

+
1

2

∫ t

0

L(s−) ln(Zi(s−))dNi(s) +
∑
s≤t

(L(s)− L(s−))

−
∑
s≤t

L(s−)
∑
i

lnZi(s−)(Ni(s)−Ni(s−))− 1

2

∑
s≤t

L(s−)
R∑
i=1

(Ni(s)−Ni(s−))

Now noting that

∑
s≤t

(L(s)− L(s−)) =
R∑
i=1

∫ t

0

L(s−)(Zi(s−)− 1)dNi(s)

and that the first derivative and the second derivative terms cancel out, we see that

L(t) = 1 +
R∑
i=1

∫ t

0

L(s−)(Zi(s−)− 1)d(Ni − s).

Since Z(t ∧ τn) and L(t ∧ τn) are both càdlàg and positive, L(t ∧ τn) is a martingale by

lemma 1.5

Lemma 1.7. If dP = L(τn)dQ, then this is a change of probability measure, and dP =

L(t ∧ τn)dQ on Ft∧τn.

Proof. We will use the method similar to theorem 1.12, which will mention later. Since

we know that Q(τn < ∞) = 1, P (τn < ∞) = 1 as well by the absolute continuity of P

with respect to Q. Therefore P (L(τn ∧∞) = L(τn) <∞) = 1. By definition,

P (L(τn) < K) = EQ[L(τn);L(τn) < K]

Then applying monotone convergence theorem to the both sides, we see that

P (L(τn) <∞) = EQ[L(τn);L(τn) <∞]

1 = EQ[L(τn)].

(1.12)
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This shows that

1 = lim
t→∞

EQ[L(t ∧ τn)] = EQ[ lim
t→∞

L(t ∧ τn)] = EQ[L(τn)].

Now, if A ∈ Ft∧τn , and t < T , then by optional sampling theorem

E[L(T ∧ τn)1A] = E[L(t ∧ τn)1A].

By the generalized dominated convergence theorem, as T ↑ ∞ the left hand side con-

verges to E[L(τn)1A], and the claim follows.

In the next subsection, as promised, we will finally show that the set of processes

{Nk, k = 1, .., R}, which are independent unit Poisson under Q, are solutions to the

system

Nk(t ∧ τn) = Yk

(∫ t∧τn

0

Zk(s)ds

)
under the measure P with dP = L(τn)dQ. To proceed, we need a theorem developed by

Meyer based on the work of Knight [57].

1.3.2 The Meyer-Knight theorem

We need some definitions before introducing the Meyer-Knight theorem. Let X and Y be

càdlàg processes which are both adapted to Ft. Let us denote the quadratic covariation

of X and Y by [X, Y ]. The sharp bracket 〈X, Y 〉 is defined as the unique predictable

process such that

[X, Y ]− 〈X, Y 〉

is a martingale. We say X and Y are orthogonal if 〈X, Y 〉 = 0. Also, we say that

a stopping time σ is predictable if there is a sequence of stopping times σn for which
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σn → σ. A stopping time τ is totally inaccessible if for any predictable stopping time σ,

P (σ = τ <∞) = 0.

In other words, totally inaccessible stopping time cannot be approximated by any in-

creasing sequence of stopping times.

Theorem 1.8. (Meyer-Knight) Suppose {Xi}ni=1 are mutually orthogonal (In the

sense of sharp Bracket) purely discontinuous 3martingales with totally inaccessible jumps

of size 1. If

γ(t) = 〈Xi, Xi〉

and

Qi(t) = Xi(γ
−1(t)),

then {Qi}ni=1 is a set of mutually independent, compensated unit Poisson processes.

We are going to use theorem 1.8 together with lemma 1.2 to prove the following;

Lemma 1.9. Put

Ui(t) = Ni(t)−
∫ t

0

Zi(s)ds.

Then Ui(t ∧ τn) is a martingale with respect to P . That is,

〈Ni(t ∧ τn), Ni(t ∧ τn)〉 =

∫ t∧τn

0

Zi(s)ds.

Proof. With integration by parts,

L(t ∧ τn)Ui(t ∧ τn) = L(0)Ui(0) +

∫ t∧τn

0

L(s−)dUi(s)

+

∫ t∧τn

0

Ui(s−)dL(s) + [Ui, L](t ∧ τn)

(1.13)

3its quadratic variation is a pure jump process
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The third term is a martingale by lemma 1.4. Now the remaining terms simplify to∫ t∧τn

0

L(s−)dUi(s) + [Ui, L](t) =

∫ t∧τn

0

L(s−)(dNi(s)− Zi(s)ds))

+

∫ t

0

L(s−)(Zi(s)− 1)dNi(s)

=

∫ t∧τn

0

L(s−)Zi(s)d(Ni − s)

(1.14)

This is a martingale by lemma 1.5. Now seeing that Ui(t∧τn) is adapted to F·∧τn , we can

apply lemma 1.2 with M(t) = L(t∧ τn) together with lemma 1.7 to claim that Ui(t∧ τn)

is a martingale with respect to P .

Now we are one step away from applying the Meyer-Knight theorem. We need to

show that Ui has totally inaccessible jumps.

Lemma 1.10. If G is a pure counting process for which G − γ is a martingale for a

continuous, monotonic γ, then G’s jump times are totally inaccessible.

Proof. By definition, a jump time τ is totally inaccessible if for any predictable stopping

time σ, P (σ = τ < ∞) = 0. Clearly, {G(σ) − G(σ−) > 0} on the event {σ = τ < ∞}.

Therefore P (σ = τ) ≤ P (G(σ)−G(σ−)), and it suffices to show that, for any predictable

stopping time σ, E[G(σ) − G(σ−)] = 0. Note that, since σ is predictable, there is an

increasing sequence of stopping times σn such that limn→∞ σn = σ. By the monotone

convergence theorem (MCT), we get

E[G(σ)−G(σ−)] = lim
n→∞

E[G(σ)−G(σn)] (1.15)

By the optional stopping theorem, E[G(σn)] = E[γ(σn)]. Therefore again by the MCT

and the continuity of γ,

lim
n→∞

E[G(σ)−G(σn)] = lim
n→∞

E[γ(σ)− γ(σn)] = 0 (1.16)
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With all of the above in mind, we finally have the following claim;

Theorem 1.11. Let dP = L(τn)dQ. Then {Ni} under P is distributionally equal to the

solution of {
Ni(t ∧ τn) = Y

(∫ t∧τn

0

Zi(s)ds

)}
.

under P .

Proof. Put Gi(t) = Ni(t ∧ τn). By lemma 1.9,

〈Gi(t), Gi(t)〉 =

∫ t∧τn

0

Z(s)ds

under P . That 〈Gi(t), Gj(t)〉 = 0 for i 6= j is obvious. Note that γi(t) =
∫ t∧τn

0
Z(s)ds is

absolutely continuous, and this makes the jumps of Gi totally inaccessible. If γ−1
i (t) =

inf{s; γi(s) ≤ t}, the Meyer-Knight theorem tells us that {Gi(γ
−1
i (t))} is a set of inde-

pendent unit rate Poisson processes. Since γi(t) is monotonically increasing for every

event w, this tells us that

Gi(γ
−1
i (t)) = Y (t)

Gi(t) = Y (γi(t))

Ni(t ∧ τn) = Yi

(∫ t∧τn

0

Zi(s)ds

) (1.17)

as desired.

It is critical that we change the measure with L(τn) instead of L(t) if the process is

explosive. For example, suppose R = 1, and let Ω be the space of the set of all paths of

a Poisson process. Consider a process N1 which is a unit rate Poisson process under a
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probability measure P1, and a process N2 which is a solution to

N2(t) = Y

(∫ t

0

(1 +N2
2 (s))ds

)
under another probability measure P2. Then while P2|F·∧τn � P1|F·∧τn holds, P2|Ft �

P1|Ft does not hold for any t. To see this, note that for each t, the event of explosion

has positive measure with respect to P2, while it has measure zero with respect to P1.

Also, if N3 is a Poisson process with constant rate 2 under the measure P3, then

while P3|Ft � P1|Ft for all finite t, P3|F∞ is not absolutely continuous with respect to

P1|F∞. To see this, note that the measure of the event on which limt→∞
N(t)
t

= 2 is zero

under P1, while it is 1 under P2.

On the other hand, If P (limn→∞ τn > T ) = 1, that is, if under P the process N up

to T is not explosive, we hope to use L(T ) to change the measure Q on FT . When the

process is non-explosive, we can appeal to the following very useful theorem.

Theorem 1.12. Let (Ω,F) be a measurable space, and let P and Q be probability mea-

sures on F . Suppose that Dn ⊂ Dn+1 and that for each n, P |Dn � Q|Dn. Put Ln = dP
dQ

∣∣
Dn

and limLn(t) = L(t) . Then P � Q on D = ∨nDn and L(t)dQ = dP on D if and only

if P (lim supn→∞ Ln <∞) = 1.

Proof. It suffices to show that EQ[L(t)] = 1 = limEQ[Ln(t)]. To see this, note that

with this assumption, we can use the generalized dominated convergence theorem to

show EQ[L1A] = limn→∞E
Q[Ln1A] = EQ[Ln(t)1A] for any arbitrary n and for any

A ∈ Dn(t). First, by Fatou’s lemma EQ[L(t)] ≤ 1. This in particular means that

Q(supn Ln(t) < ∞) = 1. Next, using the dominated convergence theorem and the
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monotone convergence theorem,

P (sup
n≤N

Ln ≤ K) = EQ[LN1(sup
n≤N

Ln ≤ K)]

P (sup
n
Ln ≤ K) = EQ[L1(sup

n
Ln ≤ K)]

1 = P (sup
n
Ln <∞) = EQ[L1(sup

n
Ln <∞)]

= EQ[L].

(1.18)

Corollary 1.1. Define dP = L(τn)dQ on Ft∧τn as before, and suppose P (limn→∞ τn >

T ) = 1. Then P |FT � Q|FT with L(T )dQ = dP on FT , and {Ni} under P |FT is a

solution to {
Ni(t ∧ T ) = Yi

(∫ t∧T

0

Zi(s)ds

)}
under P .

Proof. Since lim τn > T P -almost surely,
∑R

i=1Ni(T ) <∞ P -almost surely. Also, since

Z is càdlàg,
∫ T

0
Z(s)ds <∞ as well. Thus by our assumption

Ln(T ) <
R∏
i=1

exp

{∫ T

0

log(Zi(s−))dNi(s) +

∫ T

0

Zi(s)ds

}
<∞

for all n. We can therefore appeal to theorem 1.12, and use L(t∧T ) in place of L(t∧ τn)

everywhere in the arguments above.

We will mention a condition of non-explosivity in Chapter 5. For the rest of this

dissertation, we will consider non-explosive CRNs. We use the representation (1.6) in

all other Chapters.
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Let λk : J [0,∞)R × R≥0 → R≥0 be a non-anticipating function; that is, λk(x, s) =

λk(x(· ∧ s), s). Then we may use λ(N, s) in place of Z, and we obtain the model (1.6).

Also, if ζk 6∝ ζ ′k for all k 6= k′, a path of X determines the paths of {Nk} completely, and

indeed vice versa. Therefore the natural filtration of {Nk} agrees with that of X. For

example, if

A→ 2A

is our CRN, and if XA(0) = 1, then λi(N, s) = N(s) + 1.

In fact we can construct the process N from X under P forward in time. The

construction not only justifies the condition (1.5), but also gives rise to a simulation

algorithm known as the next reaction method ([58], [24]).

Algorithm 1.1. Let t = 0 be the current time, and let T be the terminal time of the

observation. First, assign τk = expok(1) for each k = 1, . . . R.

1. Compute λk(X, t) for each k = 1, . . . R.

2. Compute τ = min({τk/λk(X, t)}), and win = {k ; τk/λk(X, t) = τ}

3. update

(a) τwin = expo(1)

(b) Update t to be t+ τ/λwin(X(t)). If t > T, break from the algorithm.

(c) X(t) = X(t) + ζwin

(d) return to 1.
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The algorithm also illuminates the fact that we are constructing the probability

measure for the process from that of unit rate Poisson processes.

1.3.3 Intensity

The result of lemma 1.9 assures that

Ni(t ∧ τn) = Yi

(∫ t∧τn

0

Zi(s)ds

)
−
∫ t∧τn

0

Zi(s)ds

is a martingale with respect to the filtration Ft∧τn . In the context above, we say Zi is

the intensity of Ni.

With the definition of intensity, we can also discuss the concept of “thinning” a

counting process. Let, for instance, R be a nonexplosive pure counting process with

intensity λ(R, s). If p : Z≥0 → [0, 1], we would like to construct a new counting process

R1 such that only when R jumps at time t, R1 jumps with probability p(R(t−)). Let

ξ0, ξ1, ... be independent, uniform random variables. Also, for n ≥ 1 let τn again be the

nth jump time of R. Then we can define

R1(t ∧ τn)
def
=

∫ t∧τn

0

1[0,p(R(s−))(ξR(s−))dR(s) =

R((t∧τn)−)∑
k=0

1[0,p(R(s−))(ξk). (1.19)

If R̃(t ∧ τn)
def
= R(t ∧ τn)−

∫ t∧τn
0

λ(R, s)ds, then we see that

R1(t ∧ τn)−
∫ t∧τn

0

p(R(s−))λ(R, s)ds =

∫ t∧τn

0

1[0,p(R(s−)))(ξR(s−))− p(R(s−))dRs

+

∫ t∧τn

0

p(R(s−))dR̃(s)

(1.20)

is a martingale. We can therefore say that the intensity of R1 is p(R(s−))λ(R, s), and

by the Meyer-Knight theorem, it is distributionally equal to Y
(∫ t

0
p(R(s−))λ(R, s)ds

)
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for a Poisson process Y .

The notion of thinning allows us to craft still another representation of (1.6). Let

N be a pure counting process with intensity λ0(N, s)
def
=
∑R

k=1 λk(N, s). Then we can

decompose N into

N =
R∑
k=1

Nk,

with Nk such that whenever N(t) − N(t−) = 1, Nk(t) − Nk(t−) = 1 with probability

pk(N, t−) = λk(N,t−)
λ0(N,t−)

. By appealing to the Meyer-Knight theorem again, we see that X in

(1.4) constructed from this set of Nk is equal in law to the solution of (1.6). As opposed

to the next reaction method (1.1), this construction motivates the following method of

generating the distribution of (1.6).

Algorithm 1.2. Let t = 0 be the current time, and let T be the terminal time of the

observation.

1. Compute λ0(X, t) =
∑R

k=1 λk(N, t).

2. Generate a categorical random variable η(X(t)) such that η(X(t)) = ζk with prob-

ability λk(X, t)/λ0(X, t).

3. update

(a) t = t+ τ . If t > T, break from the algorithm.

(b) X(t) = X(t) + η(X(t))

(c) return to 1.

This method is referred to as Gillespie’s method, or the stochastic simulation algo-

rithm (SSA) [39].
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1.3.4 Martingale Problem

Lemma 1.9 tells us that, if X is given by (1.8), then

X(t ∧ τn)−
∑
k

ζk

∫ t∧τn

0

λk(X, s)ds (1.21)

is a martingale with respect to its natural filtration. In fact X can satisfy another

martingale property.

Let U be a Feller Markov process, and denote E[f(U(t))|U(0) = u] = Eu[f(U(t))].

Then we define

Af(u) = lim
∆t→0

Eu[f(U(t+ ∆t)]− Eu[f(U(t)]

∆t

to be the generator of X. Then

M(t) = f(U(t))−
∫ t

0

Af(U(s))ds

is a local martingale relative to the natural filtration of U [32]. Let C be the vector

space of bounded continuous functions. We may associate the operator A with its graph

G, which is the completion of

{(f, Af), f ∈ C}

in the uniform continuity norm. We say U is a solution to a local martingale problem

for the closed graph G if for each (f, g) ∈ G,

f(U(t))−
∫ t

0

g(U(s))ds

is a local martingale.

We would like to address the martingale problem for a process of type (1.6). Let us

suppose that λk(X, s) depends only on X(s), that is, λk : Rd → R≥0 and we can write
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λk(X, s) = λk(X(s)). Then we have a very simple formulation of the generator of X .

Let E = Rd ∪ υ be the one point compactification of Rd, and let

τ∞ = inf{t : X(t−) = υ}.

Next, for f ∈ C vanishing off a finite subset of Zd, put

Af(x) =


∑R

k=1 λk(x)(f(x+ ζk)− f(x)) if x ∈ Zd

0 if x = υ
(1.22)

Theorem 1.13. Suppose X satisfies (1.6) with X(t) = ν for t ≥ τ∞. Then X is a

solution of the local martingale problem for A. Moreover, if X̃ is another solution of the

local martingale problem for A with càdlàg sample paths satisfying X̃(t) = ν for t ≥ τ∞,

then X̃ is version of X.

Ethier and Kurtz ([32], Chapter 6, section 4) provides a rigorous proof to this theorem

using random time change theory. Although less rigorous, we also have an intuitive

description of A as well. Note that

E[f(X(t+ δt))|f(X(t))] =
R∑
k=1

f(X(t) + ζk)P (kth reaction occurs in [t, t+ δt])

+ f(X(t))P (no reaction occurs in [t, t+ δt])

∼=
R∑
k=1

f(X(t) + ζk)λk(X(t)) + f(X(t))

(
1−

R∑
k=1

λk(X(t))

)

E[f(X(t+ δt))|f(X(t)]− f(X(t)) ∼= Af(x)δt

(1.23)

taking δt to 0, we obtain the expression in (1.22). When f is an identity function, we

obtain (1.21). We note that f(X) is a statistics of X, and its expectation is oftentimes

a value of interest for Biologists.



28

1.3.5 Multiparameter Filtration

Sometime, it is useful to use the filtration of the unit rate Poisson processes in place

of the natural filtration. The following definition becomes useful in Chapter 2 which

considers the weak-analysis of Runge-Kutta type simulation methods. Let u ∈ RR
≥0. We

define the multiparameter filtration F̃u as follows:

F̃u = σ{Yk(sk) : sk ≤ uk, k = 1, ..., R} (1.24)

F̃ku = σ{Yk(sk) : sk ≤ uk, Ym(sm), sm <∞} (1.25)

Also define

ηk(t) =

∫ t

0

λk(X(s))ds,

Lemma 1.14. ηk(t) is a stopping time with respect to F̃ku .

Proof. Define υk by

t =

∫ υk(t)

0

λk(X(s))ds.

Then

{ηk(t) < u} = {t < υk(u)}∈̃Fku .

and the claim follows.

Multiparameter filtrations are described in more detail in Chapter 6 of [32]. By the

optional sampling theorem,

E[Yk(ηk(t))] = E[ηk(t)]

Also, if

η(t) = {η1(t), η2(t), ...ηR(t)},

and ζk 6∝ ζ ′k for all k 6= k′, then the natural filtration of X is F̃η(t).
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Chapter 2

Numerical methods for the weak

analysis of biochemical processes

The content of this chapter has appeared in SIAM journal of multi-scale modeling and

simulation [9]. If X is a càdlàg stochastic process in Rd describing the population

dynamics of a chemical reaction network (CRN) as in (1.6), and if JRd [0,∞) is the set

of all càdlàg paths in Rd, we often would like to know the value of E[f(X)] for some

function f mapping JRd [0,∞) to R. Since E[f(X)] is determined by the distribution

of X, its analysis can be referred to as “weak analysis.” One way to approach this

problem is to use Monte Carlo methods, which is a computational algorithm that relies

on repeated sampling. If, for example, {Xi, i = 1, ..., N} are independent samples of X,

then

1

N

N∑
i=1

f(Xi) (2.1)

serves as an unbiased estimator for E[f(X)]. As we introduced in the first chapter,

we can simulate the continuous time Markov chain model of a CRN exactly by us-

ing Gillespie’s algorithm (1.2) or the next reaction method (1.1). There is, however,

a shortcoming associated with these exact algorithms in that they must simulate ev-

ery transition of the Markov model. To be more specific, note that, in the Gillespie’s

algorithm, the time ∆t between the jumps is an exponential random variable with a
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parameter of
∑

k λk(X(t)). If

∑
k

λk(X(t))� 1 so that E∆t =
1∑

k λk(X(t))
� 1, (2.2)

then the runtime needed to produce a single exact sample path can be prohibitive.

A straightforward resolution is to compromise bias in favor of runtime cost. In other

words, we may reduce the complexity of the model and allow some bias. Munsky [61],

for example, took the route of simplifying the system itself to a finite state space and

then explicitly computing the solution to the forward equation

d

dt
g(x, t) = Ag(x, t)

where g(x, t) = Ex[f(X(t))] and A is the generator of X. This method is used, for exam-

ple, in Marques-Lago’s work [56]. Another approach is to use Euler/Runge-Kutta type

algorithms. These algorithms discretize the continuous time Markov chain with a fixed

time step and reduces the number of random variables to be generated per path. These

numerical methods are oftentimes the most reasonable choices to aid in understanding

the models in real time. Euler/Runge-Kutta type stochastic simulation algorithms are

also referred as tau leaping methods [24].

In this chapter we provide a general framework for understanding the weak error of

numerical approximation techniques in the setting of CRNs. We quantify how the errors

of three different methods depend upon both the natural scalings within a given system

and the step-size of the numerical method. Further, we will introduce a new Runge-

Kutta type algorithm, the weak trapezoidal algorithm, which was developed originally
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as an approximate method for diffusion processes [11] . We prove that the leading order

of the bias of this new algorithm scales with the square of the time discretization, making

it the first of the kind. As the cost per path is not appreciably more than that of the

Euler’s method, the new algorithm is an attractive choice.

2.1 Tau leaping methods

Throughout the chapter let X denote the solution to (1.6) in the first chapter. For

approximate methods, we will sometimes consider an arbitrary method and will in such

cases denote the solution as Z. Other times we will distinguish the Euler, midpoint, and

Trapezoidal methods, by ZE, ZM , Ztrap, respectively. We will always begin the methods

from the same initial condition, namely X(0) = Z(0) = x0.

Remark 2.1. Historically the time discretization parameter for the methods described

in this dissertation has been τ , thus giving these methods the general name “τ -leaping

methods.” We choose to break from this tradition and denote our time-step by h so as

not to confuse τ with a stopping time.

2.1.1 Euler tau leaping

The approximate algorithm termed explicit tau-leaping was developed by Dan Gillespie

in [40] in an effort to overcome the problem described above that ∆t, the amount of

time that must pass before the next reaction event, may be prohibitively small. The

basic idea of tau-leaping is to hold the intensity functions fixed over the time interval

[tn, tn + h] at the values λk(X(tn)), where X(tn) is the current state of the system,

and, under this assumption, compute the number of times each reaction takes place
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over this period. Note that this method will potentially yield lower runtimes only if

h � 1/
∑

k λk(X(tn)) ≈ ∆t. As the waiting times for the reactions are exponentially

distributed this leads to the following algorithm, which simulates up to a time of T > 0.

Below and in the sequel, for x ≥ 0 we will write Poisson(x) for a Poisson random variable

with a parameter of x.

Algorithm 2.1 (Euler tau-leaping). Fix h > 0. Set ZE(0) = x0, t0 = 0, n = 0 and

repeat the following until tn+1 = T :

1. Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

2. For k ∈ {1, . . . , R}, let Λk = Poisson(λk(ZE(tn))h) be independent of each other

and all previous random variables.

3. Set ZE(tn+1) = ZE(tn) +
∑

k Λkζk.

4. Set n← n+ 1.

Several improvements and modifications have been made to the basic algorithm de-

scribed above over the years. However, they are mainly concerned with how to choose

the step-size adaptively [24, 41] and/or how to ensure that population values do not go

negative during the course of a simulation [1, 23, 25], and are not explicitly relevant to

the current discussion of convergence analysis.

Similar to (1.6), a path-wise representation of Euler tau-leaping defined for all t ≥ 0

can be given through a random time change of Poisson processes:

ZE(t) = ZE(0) +
∑
k

Yk

(∫ t

0

λk(ZE ◦ η(s))ds

)
ζk, (2.3)
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where the Yk are as before, and η(s)
def
=
⌊ s
h

⌋
h. Thus, ZE(η(s)) = ZE(tn) if tn ≤ s < tn+1.

Noting that
∫ tn+1

0
λk(ZE ◦η(s))ds =

∑n
i=0 λk(ZE(ti))(ti+1− ti) explains why this method

is called “Euler tau-leaping.” Defining the generator-like operator

(Bzf)(x)
def
=
∑
k

λk(z)(f(x+ ζk)− f(x)), (2.4)

we see that for t > 0

Ef(ZE(t)) = Ef(ZE ◦ η(t)) + E
∫ t

η(t)

(BZE◦η(t)f)(ZE(s))ds, (2.5)

so long as the expectations exist. Equation (2.5) points out why we care about the

associated operators for each of our approximate methods: they will be used to gain the

necessary control over the difference Ef(X(t))− Ef(Z(t)), called the weak error of the

approximation, which is the focus of our dissertation.

2.1.2 Midpoint tau leaping

A midpoint type method was first described in [40]1 and analyzed in [7]. Define the

function

ρ(z)
def
= z +

1

2
h
∑
k

λk(z)ζk,

which computes an approximate midpoint for the system assuming the state of the

system is z and the time-step is h. The following algorithm simulates up to a time of

T > 0. Note that only step (ii) changes from Euler tau-leaping.

Algorithm 2.2 (Midpoint tau-leaping). Fix h > 0. Set ZM(0) = x0, t0 = 0, n = 0 and

repeat the following until tn+1 = T :

1The midpoint method detailed in [40] is actually a slight variant of the method described here. In
[40] the approximate midpoint, called ρ(z) above, is rounded to the nearest integer value.
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1. Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

2. For k ∈ {1, . . . , R}, let Λk = Poisson(λk ◦ ρ(ZM(tn))h) be independent of each

other and all previous random variables.

3. Set ZM(tn+1) = ZM(tn) +
∑

k Λkζk.

4. Set n← n+ 1.

Similar to (1.6) and (2.3), ZM(t) constructed via Algorithm 2.2 can be represented

for all t ≥ 0 via a random time change of Poisson processes:

ZM(t) = ZM(0) +
∑
k

Yk

(∫ t

0

λk ◦ ρ(ZM(η(s)))ds

)
ζk, (2.6)

where η(·) is as before. For Bz defined via (2.4), any t > 0, and ZM generated via (2.6)

we have

Ef(ZM(t)) = Ef(ZM ◦ η(t)) + E
∫ t

η(t)

(Bρ◦ZM◦η(t)f)(ZM(s))ds,

so long as the expectations exist.

2.1.3 Weak Trapezoidal tau leaping

We will now propose a trapezoidal type algorithm to approximate the solutions of (1.6).

The method was originally introduced in the work of Anderson and Mattingly in the

diffusive setting where it is best understood by using a path-wise representation that

incorporates space-time white noise processes, see [11]. It can similarly be understood

in the current setting of jump processes by using a representation that utilizes Poisson

random measures.
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In the algorithm below, which simulates a path up to a time T > 0, it is notationally

convenient to define [x]+ = x ∨ 0 = max{x, 0}.

Algorithm 2.3 (Weak trapezoidal method). Fix h > 0. Set Z(0) = x0, t0 = 0, and

n = 0. Fixing a θ ∈ (0, 1), we define

ξ1
def
=

1

2

1

θ(1− θ)
and ξ2

def
=

1

2

(1− θ)2 + θ2

θ(1− θ)
. (2.7)

We repeat the following steps until tn+1 = T , in which we first compute a θ-midpoint y∗,

and then the new value Ztrap(tn+1):

1. Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

2. For k ∈ {1, . . . , R}, let Λk,1 = Poisson(λk(Ztrap(tn))θh) be independent of each

other and all previous random variables.

3. Set y∗ = Ztrap(tn) +
∑

k Λk,1ζk.

4. For k ∈ {1, . . . , R}, let Λk,2 = Poisson([ξ1λk(y
∗)− ξ2λk(tn)]+(1− θ)h) be indepen-

dent of each other and all previous random variables.

5. Set Ztrap(tn+1) = y∗ +
∑

k Λk,2ζk.

6. Set n← n+ 1.

Remark 2.2. Notice that on the (n+1)st-step, y∗ is the Euler approximation to X(nh+

θh) starting from Ztrap(tn) at time nh.

Remark 2.3. Notice that for all θ ∈ (0, 1) one has ξ1 > ξ2 and ξ1 − ξ2 = 1.
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We define the operator Bz1,z2 by

(Bz1,z2f)(x)
def
=
∑
k

[ξ1λk(z1)− ξ2λk(z2)]+(f(x+ ζk)− f(x)).

Then, for η(t) ≤ t ≤ η(t) + θh, the process Ztrap satisfies

Ef(Ztrap(t)) = Ef(Ztrap(η(t))) + E
∫ t

η(t)

(BZtrap(η(t))f)(Ztrap(s))ds,

where we recall that Bz is defined via (2.4), and for η(t) + θh ≤ t ≤ η(t) +h, the process

Ztrap satisfies

Ef(Ztrap(t)) = Ef(Ztrap(η(t) + θh)) + E
∫ t

η(t)+θh

(BZtrap(η(t)+θh),Ztrap(η(t))f)(Ztrap(s))ds.

2.1.4 Previous error analyses

Under the scaling h → 0, Rathinam et al. performed a consistency check of Euler

tau-leaping and found that the local truncation error was O(h2) for all moments [62].

They also showed that under this same scaling Euler tau-leaping is first order accurate

in a weak sense in the case that the intensity functions λk are linear [62]. Li extended

these results by showing that as h→ 0, Euler tau-leaping has a strong error (in the L2

norm) of order 1/2 and a weak error of order one [55], which agree with classical results

pertaining to numerical analysis of SDEs driven by Brownian motions (see, for example,

[50]).

Under the scaling h → 0 it is readily seen that midpoint tau-leaping is no more

accurate than Euler tau-leaping. This follows since midpoint tau-leaping consists of

making an O(h2) correction to the intensity functions used in Euler tau-leaping. As h→

0, this correction becomes negligible as Poisson processes “ignore” O(h2) corrections, and

the accuracy of the two methods will be the same.
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However, in many examples the midpoint method is readily seen to be more accu-

rate than Euler’s method in the discrete stochastic setting. In [7], Anderson, Ganguly,

and Kurtz provided an error analysis of Euler’s method and the approximate midpoint

method under the assumptions that (i) the system of interest satisfies the classical scaling

described in Section 2.2 below and (ii) the time discretization satisfies the requirement

h� 1∑
k λk(Z(t))

, (2.8)

where Z(t) is the state of the system at time t. The requirement (2.8) is reasonable as

such approximation methods would only be used in a regime where h � ∆t, where ∆t

is the expected amount of time between reactions, for otherwise an exact method would

be performed. They proved that, in this specific setting, Euler’s method is an order

one method in both a weak and a strong (in the L1 norm) sense. They proved that the

strong error of the midpoint method falls between order one and two (see [7] for precise

statements), and that the weak error of the midpoint method scales quadratically with

the step-size when condition (2.8) is satisfied. The importance of the analysis in [7] is

that it pointed out the need to incorporate the natural scales of the system into the

analysis.

2.2 Scaled models

As discussed in and around (2.2), the approximate algorithms being considered are only

useful on the class of models which satisfy
∑

k λk(X(·)) � 1. There are at least two

different ways this behavior can be achieved. The first is that there could be a large

number of reactions, R � 1, in which case the approximate algorithms currently being

discussed will not provide an appreciable improvement in terms of runtime over the
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exact simulation methods. The other common way for
∑

k λk(X(·)) � 1 to hold is to

have either large abundances of certain species, or to have large rate constants, or both.

We will study the behavior of the different algorithms under this latter assumption. To

do so, we will introduce a scaling parameter, N , used to quantify the variations in the

sizes of the abundances and parameters. We emphasize that the scaling detailed below

is an analytical tool used to understand the behavior of the different processes, and that

the actual simulations using the different methods make no use of, nor have need for,

an understanding of N .

The specifics of the scaling used here have previously been used in [10, 17, 48]. Let

N � 1. Assume that we are given a model of the form

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λ′k(X(s))ds

)
ζk,

where the λ′k are of the form

λ′k(x) = κ′k

d∏
i=1

xi!

(xi − νki)!
,

and where we recall that ζk
def
= ν ′k − νk. For each species i, define the normalized

abundance (or simply, the abundance) by

XN
i (t) = N−αiXi(t),

where αi ≥ 0 should be selected so that XN
i = O(1). Here XN

i may be the species

number (αi = 0) or the species concentration or something else.

Since the rate constants may also vary over several orders of magnitude, we write

κ′k = κkN
βk where the βk are selected so that κk = O(1). Note that for a binary reaction

κ′kXiXj = Nβk+αi+αjκkX
N
i X

N
j ,
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and we can write

βk + αi + αj = βk + νk · α.

We also have,

κ′kXi = Nβk+νk·ακkX
N
i , κ′kX

N
i (XN

i − 1) = Nβk+νk·ακkX
N
i (XN

i −N−αi),

where the source vectors are νk = ei in the first example and νk = 2ei in the second, with

similar expressions for intensities involving higher order reactions. That is, under the

mass-action kinetics assumption, we always have that λ′k(X(s)) = Nβk+νk·αλk(X
N(s)),

where λk is deterministic mass-action kinetics with rate constants κk. Note that for

reactions of the form 2Si → ∗, where ∗ represents an arbitrary linear combination of the

species, the rate is Nβk+2αiκkX
N
i (t)(XN

i (t) − N−αi), so if αi > 0, we should write λNk

instead of λk, but to simplify notation, we will simply write λk. Our model has become

XN
i (t) = XN

i (0) +
∑
k

N−αiYk

(∫ t

0

Nβk+νk·αλk(X
N(s))ds

)
ζki, i ∈ {1, . . . , d}. (2.9)

Remark 2.4. We emphasize that the models (2.9) and (1.6) are equivalent in that XN is

a scaled version of X. This scaling will allow us to quantify the behavior of the different

algorithms, though plays no role in the simulation of the processes.

Remark 2.5. If βk + νk · α = αi = 1 for all i, k in (2.9), then we have what is typically

called the classical scaling. It was specifically this scaling that was used in the analyses

of Euler and midpoint τ -leaping found in [7]. In this case it is natural to consider XN

as a vector whose ith component gives the concentration, in moles per unit volume, of

the ith species.

The focus of the dissertation will now shift from (1.6) to the equivalent (2.9). To
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analyze how the different algorithms approximate XN , we will need some terminology

which we collect below.

2.2.1 Terminology and definitions

For any vector w ∈ Rd, define wN to be the vector with ith component

wNi
def
=

wi
Nαi

,

and define

LN =
{
xN | x ∈ Zd

}
.

By construction, the process (2.9) lives in LN , and its generator is

ANf(x) =
∑
k

Nβk+νk·αλk(x)(f(x+ ζNk )− f(x)). (2.10)

For f : LN → R and any t ≥ 0, Dynkin’s formula is now

Ex0f(XN(t)) = f(x0) + Ex0
∫ t

0

ANf(X(s))ds, (2.11)

which holds so long as the expectations exist.

To quantify the natural time-scale of the system, define γ ∈ R via

γ
def
= max
{i,k : ζNki 6=0}

{βk + νk · α− αi},

where we recall that νk is the source vector for the kth reaction. It is worth noting that

γ = 0 if one assumes the system satisfies the classical scaling discussed in Remark 2.5.

However, γ = 0 in many other settings as well. We will see that our main results are

most useful when γ ≤ 0.



41

Example 2.6. As an instructive example, consider the system

S1
100←→
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000 and

α1 = α2 = 1. As the rate constants are 100 =
√

10,000, we take β1 = β2 = 1/2 and find

that γ = 1/2. The equation governing the normalized process XN
1 is

XN
1 (t) = XN

1 (0)− Y1

(
N1/2N

∫ t

0

XN
1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0

(2−XN
1 (s))ds

)
1

N

where we have used that XN
1 +XN

2 ≡ 2.

We define the operator ∇N
k for the kth reaction via

∇N
k f(x)

def
= Nβk+νk·α−γ(f(x+ ζNk )− f(x)). (2.12)

In Example 2.6 above, we have

∇N
1 f(x) = N(f(x+ (e2 − e1)/N)− f(x))

∇N
2 f(x) = N(f(x+ (e1 − e2)/N)− f(x)),

where S1 → S2 is arbitrarily labeled as the first reaction, and ei ∈ Z2 is the vector of all

zeros except with a one in the ith location.

Note that if f is globally Lipschitz, then by the definition of γ, ∇N
k f(x) is uniformly

bounded over k and x. We may now write (2.10) as

ANf(x) =
∑
k

Nγλk(x)∇N
k f(x).

Defining the vector valued operators

λ
def
= [λ1, . . . , λR], ∇N def

= [∇N
1 , . . . ,∇N

R ], (2.13)
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where we recall that R is the number of reactions, we obtain

ANf(x) = (Nγλ · ∇N)f(x).

For k ∈ {1, . . . , R} we define

ck
def
= βk + νk · α− γ, (2.14)

so that (2.12) becomes

∇N
k f(x) = N ck(f(x+ ζNk )− f(x)).

For i ∈ {1, . . . , d} and k ∈ {1, . . . , R}, we define

mk
def
= min{αi : ζNki 6= 0},

so that O(|ζNk |) = N−mk . Note that mk ≥ 0, and by the choice of γ we have ck−mk ≤ 0

for all k. Further, we point out that γ is chosen so that ck = 0 for at least one k. Finally,

we note that if ‖∇f‖∞ is bounded, then ∇Nf is in O(N ck−mk).

To obtain the analog of (2.11) for the approximate methods we first define the op-

erator BNz by

BNz f(x)
def
= (Nγλ(z) · ∇N)f(x).

If ZN
E represents the approximation to (2.9) via Euler’s method, then for all t > 0

Ef(ZN
E (t)) = Ef(ZN

E (η(t))) + E
∫ t

η(t)

(BNZNE (η(t))f)(ZN
E (s))ds,

so long as the expectations exist. If ZN
M represents the approximation to (2.9) via the

midpoint method, then for t > 0

Ef(ZN
M(t)) = Ef(ZN

M(η(t))) + E
∫ t

η(t)

(BNρ(ZNM◦η(t))f)(ZN
M(s))ds,
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so long as the expectations exist, where now

ρ(z) = z +
1

2
h
∑
k

Nβk+νk·αλk(z)ζNk .

While we should write ρN in the above, we repress the “N” in this case for ease of

notation. Finally, define the operator BNz1,z2 by

(BNz1,z2f)(x)
def
= (Nγ[ξ1λ(z1)− ξ2λ(z2)]+ · ∇N)f(x),

where for some θ ∈ (0, 1), ξ1 and ξ2 satisfy (2.7), and for v ∈ Rd the ith component of

v+ is [vi]
+ = max{vi, 0}. Then, if ZN

trap represents the approximation to (2.9) via the

weak trapezoidal method, then for η(t) ≤ t < η(t) + θh

Ef(ZN
trap(t)) = Ef(ZN

trap(η(t))) + E
∫ t

η(t)

(BNZNtrap(η(t))f)(ZN
trap(s))ds,

whereas for η(t) + θh ≤ t < η(t) + h

Ef(ZN
trap(t)) = Ef(ZN

trap(η(t) + θh)) + E
∫ t

η(t)+θh

(BNZNtrap(η(t)+θh),ZNtrap(η(t))f)(ZN
trap(s))ds.

As in [7], we modify the kinetics λ via multiplication by a C∞ cutoff function, which

sets the intensities to zero outside of our scaling region of interest. This has the effect

of confining the dynamics to a compact subset of LN , which we denote by LN ⊂ Rd
≥0.

Supposing the cutoff function were denoted g ∈ C∞c (Rd,RR), we should technically

henceforth write gλ, with the multiplication defined component-wise, as our intensity

function. The function g is chosen so that gλ(x) = λ(x) for all x in a region of interest

in the interior of LN . However, for ease of notation, we refrain from adding the cutoff

function in the notation, and continue to solely write λ. Note that ‖λ‖n is now bounded

for all n ≥ 0 where ‖·‖n is defined in (2.16). See Section 2.2 of [7] for a further discussion

of the need for such a cutoff function.
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For any function f : Rd → R, we denote

‖f‖∞
def
= sup

x∈LN
{|f(x)|}.

We abuse notation this way because the processes XN and ZN have domain LN through-

out our analysis.

2.3 Global error from local error

Throughout the section, we will denote the vector valued process whose ith component

satisfies (2.9) by XN , and denote an arbitrary approximate process via ZN . Also, we

define the following semigroup operators acting on f ∈ C0(LN ,R) as follows

Ptf(x)
def
= Exf(XN(t))

Ptf(x)
def
= Exf(ZN(t)),

where for ease of notation we choose not to incorporate the notation N into either Pt

or Pt.

We will interpret the difference between the above two operators, for t ∈ [0, T ], as

the weak error of the approximate process ZN on the interval [0, T ]. For our purposes,

there will be a time discretization associated with ZN , and we will then interpret Ph−Ph

as the one step local error, as is common in the literature. These concepts are defined

formally below.

Definition 2.7. Let n be an arbitrary non-negative integer, and M be a m dimensional

vector of C(Rd,R) valued operators on C(Rd,R), with its `th coordinate denoted by M`.
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Then we define

‖f‖Mn = sup

{∥∥∥∥∥
(

p∏
i=1

M`i

)
f

∥∥∥∥∥
∞

, 1 ≤ `i ≤ m, p ≤ n

}
.

For example, if j, k, ` ∈ {1, ..., R} then

|(∇N
j ∇N

k ∇N
` f)(x)| ≤ ‖f‖∇N3 ,

where we recall that ∇N is defined in (2.13). Note that, for any M,

‖f‖M0 = ‖f‖0 = ‖f‖∞. (2.15)

Also note that, by definition, for n ≥ 0

‖f‖Mn ≤ ‖f‖Mn+1.

Definition 2.8. Suppose M : C(Rd,R) → C(Rd,RR) and Q : C(Rd,R) → C(Rd,R)

are operators. Then define

‖Q‖Mj→`
def
= sup

f∈Cj ,f 6=0

‖Qf‖M`
‖f‖Mj

.

The purpose of this dissertation can now be stated succinctly. We will derive bounds

for the global weak error of the different approximate processes, which, due to (2.15),

consists of deriving bounds for ‖(P n
h − Pnh)‖Mm→0, for an appropriately defined M and

a reasonable choice of m ≥ 0. Theorem 2.9 below quantifies how the global error

‖(P n
h − Pnh)‖Mm→0 can be bounded using the one-step local error ‖Ph − Ph‖Mm→0. As is

common, we will denote by O(h) a set of values bounded by a fixed constant multiple

of h. Later, in Section 2.4, we will derive the requisite bounds for the local weak error.



46

Theorem 2.9. Let M be a C(Rd,RR) valued operator on C(Rd,R). Then for any

n,m ≥ 0, and h > 0

‖(P n
h − Pnh)‖Mm→0 = O(n ‖Ph − Ph‖Mm→0 max

`∈{1,...,n}
{‖P`h‖Mm→m})

Proof. Let f ∈ C0(Rd,R). Note that, since ‖g‖0 = ‖g‖M0 for any g,

‖P j−1
h ‖M0→0‖Ph − Ph‖Mm→0 = ‖P j−1

h ‖0→0‖Ph − Ph‖Mm→0.

With this in mind

‖(P n
h − Pnh)f‖0 =

∥∥ n∑
j=1

(P j
hPh(n−j) − P j−1

h Ph(n−j+1))f
∥∥

0

≤
n∑
j=1

‖P j−1
h (Ph − Ph)Ph(n−j)f‖0

≤
n∑
j=1

‖P j−1
h ‖0→0‖Ph − Ph‖Mm→0‖Ph(n−j)‖Mm→m‖f‖Mm .

Since Ph is a contraction, i.e. ‖Ph‖0→0 ≤ 1, the result is shown.

From the proof of the above theorem, the following result is immediate with ∇N in

place of M.

Corollary 2.1. Under the same assumptions of Theorem 2.9 and with f ∈ Cm
0 (Rd,R),

‖(P n
h − Pnh)f‖∇

N

0 = O(n‖Ph − Ph‖∇
N

m→0 max
`∈{1,...,n}

{‖P`hf‖∇
N

m }).

The following generalization, which allows for variable step sizes, is straightforward.
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Corollary 2.2. For f ∈ Cm
0 (Rd,R)

‖Ex[f(Ztn)]− Ex[f(Xtn)]‖∞ = O(n max
i=1,...,n

{‖Phi − Phi‖∇
N

m→0} max
`∈{1,...,n}

{‖Pt`f‖∇
N

m }).

Thus, once we compute the local one step error ‖Ph −Ph‖∇
N

m→0, we have a bound on

the weak error of the algorithm that depends only on the semigroup Pt of the original

process. We will delay discussion of ‖Ptf‖∇
N

m for now, as this term is independent of

the numerical approximation method. Instead, in the next section we provide a bound

of ‖Ph − Ph‖∇
N

m→0 for each of the different algorithms.

2.4 Local errors

Section 2.4.1 will present some necessary analytic tools. Sections 2.4.2, 2.4.3, and 2.4.4

will present the local analysis of the Euler, midpoint, and weak trapezoidal tau-leaping,

respectively.

2.4.1 Analytical tools

Definition 2.10. Denote the jth directional derivative of f into the direction [v1, v2, ...vj]

by f ′[v1, ..., vj] and

‖f‖j
def
= sup

x
{f ′[v1, ...., vj](x), ‖v‖ = 1} (2.16)

Proposition 2.11. For d,R ≥ 0, let f ∈ C1
0(Rd,RR). Then, for any k ∈ {1, . . . , R}

∇N
k f ∈ O(N ck−mk‖f‖1) ⊂ O(1).

In particular, N−ck∇N
k f is bounded.
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Proof. The result follows from the fact that for any w ∈ Rd

|f(x+ w)− f(x)| ≤ |w|‖f‖1.

Define, for any multi-subset I of {1, ..., R},

∇N
I f

def
=

(

|I|∏
i=1

∇N
`i

)f

 ,

so that,

‖f‖∇Nn = sup
|I|≤n
‖∇N

I f‖∞.

Proposition 2.12. For d,R ≥ 0, let f ∈ Cj
0(Rd,RR). Then,

‖f‖∇Nj = O(‖f‖j).

Proof. The case j = 1 follows from Proposition 2.11. Now consider ∇N
I f(x) for a multi-

set I of {1, . . . , R}, with |I| = j ≥ 2. If mk > 0 for all k ∈ I, the statement is clear. If

on the other hand, mk = 0 for some k ∈ I, then for this specific k, we have ck ≤ 0 and

‖∇N
I f‖∞ ≤ 2N ck‖∇N

I\kf‖∞ = O(‖f‖j−1) = O(‖f‖j),

where the second to last equality follows by an inductive hypothesis.

We make some definitions associated with∇N . Let g : Rd → RR. For i, j ∈ {1, . . . , R}

[DNg(x)]ij
def
= ∇N

j gi(x)

[(∇N)2]ij
def
= ∇N

i ∇N
j

diag(N c)
def
= diag(N c1 , ..., N cR).

(2.17)

Also, we define 1R to be the R dimensional vector whose entries are all 1.
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Lemma 2.13. (Product Rule) Let g, q : Rd → RR be vector valued functions. Then

∇N
k (g · q)(x) = (∇N

k g · q)(x) + (g · ∇N
k q)(x) +N−ck(∇N

k g · ∇N
k q)(x).

Also,

∇N(g · q)(x) = [DNg]T q(x) + [DNq]Tg(x) + diag(N c)−1([DNg]T × [DNq]T )(x)1Rf.

Proof. Note that, for any k,

∇N
k (g · q)(x) =N ck(g(x+ ζNk )q(x+ ζNk )− g(x)q(x))

= N ck(g(x+ ζNk )− g(x))q(x) +N ck(q(x+ ζNk )− q(x))g(x)

+N−ckN ck(q(x+ ζNk )− q(x))N ck(g(x+ ζNk )− g(x))

= (∇N
k g) · q)(x) + (∇N

k q · g)(x) +N−ck(∇N
k g · ∇N

k q)(x),

verifying the first statement. To verify the second, one simply notes that the above

calculation holds for every coordinate, and the result follows after simple bookkeeping.

Corollary 2.3. Let λ : Rd → RR be a vector valued function, and f : Rd → R. Then

∇N
k (λ · ∇Nf)(x) = (∇N

k λ · ∇N)f + λ · ∇N∇N
k f +N−ck∇N

k λ · ∇N∇N
k f.

Also,

∇N(λ · ∇Nf) = [DNλ]T∇Nf + [(∇N)2f ]λ+ diag(N c)−1([DNλ× (∇N)2]1Rf. (2.18)

Proof. Simply put g = λ and q = ∇Nf , and recall that ∇2 is symmetric.
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2.4.2 Euler’s method

Throughout subsection 2.4.2, we let ZN
E be the Euler approximation to XN computed

via Algorithm 2.1, and for x ∈ LN let

PE,hf(x)
def
= Exf(ZN

E (h)),

where h is the step-size taken in the algorithm. Below, we will assume h < N−γ, which

is a natural stability condition.

Theorem 2.14. Suppose that the step size h satisfies h < N−γ. Then

‖PE,h − Ph‖∇
N

2→0 = O(N2γh2).

Proof. For Euler’s method with initial condition x0,

PE,hf(x0) = f(x0) + hBNx0f(x0) +
h2

2
(BNx0)

2f(x0) +O(N3γ‖f‖∇N3 h3), (2.19)

where, noting ∇Nλ(x0) = 0 and using the product rule in Lemma 2.13, we have

BNx0f = Nγλ(x0) · ∇Nf

(BNx0)
2f = Nγλ(x0) · ∇N(Nγλ(x0) · ∇Nf)

= N2γλ(x0)T [(∇N)2f ]λ(x0). (2.20)

On the other hand, for the exact process (2.9),

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(AN)2f(x0) +O(N3γ‖f‖∇N3 h3), (2.21)

where, again,

ANf = Nγλ · ∇Nf.
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Noting that,

(AN)2f(x) = N2γ(λ · ∇N(λ · ∇Nf(x)))

= N2γλT ([DNλ]T∇Nf(x) + [(∇N)2f ]λ(x) +N2γλT (diag(N−c)[DNλ× (∇)2]1Rf)

(2.22)

and defining

a(x)
def
= N2γλT [DNλ]T∇Nf(x)

b(x)
def
= N2γλT [(∇N)2f ]λ(x)

c(x)
def
= N2γλT [diag(N−c)[DNλ× (∇N)2]1Rf(x)],

we can write

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(a(x0) + b(x0) + c(x0)) +O(N3γ‖f‖∇N3 h3).

Note that BNx0f(x0) = ANf(x0) and b(x0) = (BNx0)
2f(x0). We may then compare (2.19)

and (2.21)

(PE,h − Ph)f(x0) =
h2

2
((BNx0)

2f(x0)− (a(x0) + b(x0) + c(x0))) +O(N3γ‖f‖∇N3 h3)

=
h2

2
(−a(x0)− c(x0)) +O(N3γ‖f‖∇N3 h3).

The term a(x) + c(x) = O(N2γ‖f‖∇N2 ) is clearly non-zero in general, giving the desired

result.

2.4.3 Approximate midpoint method

Throughout subsection 2.4.3, we let ZN
M be the midpoint method approximation to XN

computed via Algorithm 2.2, and for x ∈ LN let

PM,hf(x)
def
= Exf(ZN

M(h)),
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where h is the step-size taken in the algorithm. As before, we will assume h < N−γ,

which is a natural stability condition.

Theorem 2.15. Suppose that the step size h satisfies h < N−γ. Then

‖(PM,h − Ph)‖∇
N

3→0 = O(N3γh3 +N2γ−min{mk}h2).

Remark 2.16. Theorem 2.15 predicts that the midpoint method behaves locally like a

third order method and globally like a second order method if h is in a regime satisfying

Nγh � N−min{mk}, or equivalently if h � N−γ−min{mk}. This agrees with the result

found in [7] pertaining to the midpoint method, which had γ = 0, mk ≡ 1, and the

running assumption that h� 1/N .

Proof. (of Theorem 2.15) Let ζN denote the matrix with kth column ζNk , i.e.

[ζN ] = [ζN1 , ζ
N
2 , ...., ζ

N
R ].

Recall that ρ is defined via

ρ(z) = z +
h

2
Nγ
∑
k

λk(z)N ckζNk .

After some algebra, we have

BNρ(x0)f(x) = Nγ(λ(x0 +
h

2
Nγ
∑
k

λk(x0)N ckζNk )) · ∇Nf(x)

= Nγλ(x0) · ∇Nf(x) + w(x0) +O(N2γ‖f‖∇N1 h2).

where

w(x)
def
= N2γ h

2
[Dλ(x0)][ζN ]diag(N c)λ(x0) · ∇Nf(x).
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Next, using the product rule (2.18), we see

(BNρ(x0))
2f(x) = Nγλ(x0 +

h

2
[ζN ]diag(N c)λ(x0)) · ∇N(Nγλ(x0 +

h

2
[ζN ]diag(N c)λ(x0)) · ∇Nf)(x)

= N2γλ(x0 +
h

2
[ζN ]diag(N c)λ(x0))T [(∇N)2f ]λ(x0 +

h

2
[ζN ]diag(N c)λ(x0)) · ∇Nf)(x)

= g(x0) +O(N2γ‖f‖∇N2 h),

where

g(x0)
def
= N2γλ(x0)T [(∇N)2f(x)]λ(x0).

Therefore, since Nγλ(x0) · ∇Nf(x0) = ANf(x0),

PM,hf(x0) = f(x0) + hBNρ(x0)f(x0) +
h2

2
(BNρ(x0))

2f(x0) +O(N3γ‖f‖∇N3 h3)

= f(x0) + h
(
ANf(x0) + w(x0) +O(N2γ‖f‖∇N2 h2)

)
+
h2

2

(
g(x0) +O(N2γ‖f‖∇N2 h)

)
+O(N3γ‖f‖∇N3 h3).

Recall that

(AN)2f(x) = a(x) + b(x) + c(x),

where

a(x) = N2γλT [DNλ]T∇Nf(x),

b(x) = N2γλT [(∇N)2f ]λ(x),

c(x) = N2γλT [diag(N−c)[DNλ× (∇N)2]1Rf(x)], (2.23)

and

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(a(x0) + b(x0) + c(x0)) +O(N3γ‖f‖∇N3 h3).
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Noting that b(x0) = g(x0), we see

(PM,h − Ph)f(x0) = hw(x0) +
h2

2
(g(x0)− (a(x0) + b(x0) + c(x0))) +O(N3γ‖f‖∇N3 h3)

= (hw(x0)− h2

2
a(x0))− h2

2
c(x0) +O(N3γ‖f‖∇N3 h3).

(2.24)

We will now gain control over the terms (hw(x0)− h2

2
a(x0)) and h2

2
c(x0), separately.

Handling h2

2
c(x0) first, we simply note that by the discussion surrounding (2.14), we

have that ∇Nλk ∈ O(N ck−mk), and so

c(x0) = O(N2γ−min{mk}‖f‖∇N2 ).

Next, we will show that

hw(x0)− h2

2
a(x0) = O(N2γ−min{mk}‖f‖∇N1 h2).

We have

hw(x0)− h2

2
a(x0) =

h2

2
N2γ[Dλ(x0)][ζN ]diag(N c)λ(x0) · ∇Nf(x0)− h2

2
N2γλT [DNλ]T∇Nf(x)

=
h2

2
N2γ

(
[Dλ(x0)][ζN ]diag(N c)− [DNλ(x0)]

)
λ(x0) · ∇Nf(x0).

(2.25)

By Proposition 2.12, ∇Nf(x) is bounded by ‖f‖∇N1 . Therefore, we just need to show

that the difference between the two square matrices

[DNλ(x0)] and [Dλ(x0)][ζN ]diag(N c) (2.26)

is O(N−min{mk}). Recalling the definitions in (2.17), the (i, j)th entry of the left side of

(2.26) is

N cj(λi(x0 + ζNj )− λi(x0))
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whereas that of the right side of (2.26) is

N cj∇λi · ζNj .

Also, note that, for λ ∈ C2
c (Rd,R),

((λ(x+ v)− λ(x))−∇λ(x) · v) ∈ O(|v|2‖λ‖2).

where

‖λ‖2 = sup{‖λ‖∞, ‖∂xiλ‖∞, ‖∂xj∂x`λ‖∞, i, j, k ≤ d.}

Since ‖λk‖2 is bounded for any k, the difference between the (i, j)th entries of the two

expressions in (2.26) is hence

O(N cjN−2mj)

Also, recall that cj −mj ≤ 0 by our choice of γ, with equality at at least one j. Thus

the above is also

O(N−min{mk}).

Therefore (2.25) is of order

O(N2γ−min{mk}h2‖f‖∇N1 ),

as desired. Combining the above with (2.24) gives us

‖(Ph − PM,h)f‖0 = O(N2γ−min{mk}‖f‖∇N1 h2 +N2γ−min{mk}‖f‖∇N2 h2 +N3γ‖f‖∇N3 h3)

= O(‖f‖∇N3 [N3γh3 +N2γ−min{mk}h2]),

(2.27)

implying

‖PM,h − Ph‖∇
N

3→0 = O(N3γh3 +N2γ−min{mk}h2),

as desired.
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We can strengthen Theorem 2.15 slightly. Suppose that f explicitly depends only on

a subset of species S0 ⊂ S. More precisely, suppose that

S0(f) = {i ∈ {1, .., d} : f(x+ εei) 6= f(x) for some x and ei ∈ Rd, ε ∈ R }.

Next define R0 to be the subset of all reactions that affect any element in S0; that is,

R0(f) = {k ∈ {1, .., R} : ζki 6= 0 for some i ∈ S0}.

Therefore,

∇N
k f = 0 ∀k 6∈ R0. (2.28)

Finally, define

R00(f) = {k ∈ {1, .., R} : λ`(x+ ζk) 6= λ`(x), for some ` ∈ R0 and some x ∈ LN}

Thus, by construction, the set R00 corresponds to those reactions that affect those of

R0, which in turn affect S0.

Corollary 2.4. For a given f , define S0(f), R0(f),and R00(f) as above. Then if h <

N−γ,

‖(PM,h − Ph)f‖∞ = O
(

(N3γh3 +N2γ−mink∈R00(f)
{mk}h2)‖f‖∇N3

)
.

Proof. Returning to the proof of Theorem 2.15, we consider again (2.24). First we handle

c(x0) = N2γλT [diag(N−c)[DNλ× (∇N)2]1Rf(x0)].

By (2.28), ∇N
i ∇N

j f(x0) = 0 if either i /∈ R0(f) or j /∈ R0(f). Thus, in the matrix

DNλ× (∇N)2, the only non-zero entries are those with indices i, j ∈ R0(f). Further, by
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construction

[DNλ]i,j = ∇jλi 6= 0 only if i ∈ R0(f), j ∈ R00(f).

Therefore, after recalling that ∇jλi(x0) ∈ N cj−mj we have that,

c(x0) ∈ N2γ−mink∈R00(f)
{mk}.

By similar arguments,

hw(x0)− h2

2
a(x0) ∈ O(N2γ−mink∈R00(f)

{mk}‖f‖∇N1 h2),

and the remainder of the argument proceeds in exactly the same manner as the proof

of Theorem 2.15.

Definition 2.17. The system (1.6) is called a first order system if each λk is linear.

Noting that it is always possible to solve for the means of first order systems, see

[35], the following is pointed out for completeness.

Corollary 2.5. If XN is the solution of a first order system, and if f is linear, then

‖(PM,h − Ph)f‖∞ = O(N3γh3).

Proof. It is sufficient to show that c(x0) in (2.23) and the right hand side of (2.25)

are both zero. The fact that c(x0) = 0 follows immediately from the linearity of f , as

(∇N)2f = 0. Moreover, by the linearity of the intensity functions,

DNλ(·) = [Dλ(·)][ζN ]diag(N c),

showing the right hand side of (2.25) is zero.
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2.4.4 Weak trapezoidal method

Throughout subsection 2.4.4, we let ZN
trap be the approximation to XN computed via

Algorithm 2.3, and for x ∈ LN let

Ptrap,hf(x)
def
= Exf(ZN

trap(h)),

where h is the size of the time discretization. We will again only consider the case

h < N−γ, which is a natural stability condition.

We make the standing assumption that for all x ∈ LN and k, j ∈ {1, . . . , R}, we have

ξ1λk(x+ ζj)− ξ2λk(x) ≥ 0, (2.29)

where ξ1 > ξ2 are defined in (2.7) for some θ ∈ (0, 1).

Theorem 2.18. Suppose that the step size h satisfies h < N−γ. Then

‖(Ptrap,h − Ph)‖∇
N

3→0 = O(N3γh3).

Proof. Consider one step of the method with a step-size of size h and with initial value

x0. Note that the first step of the algorithm produces a value y∗ that is distributionally

equivalent to one produced by a Markov process with generator BN
1 given by

BN
1 f(x) = Nγλ(x0) · ∇Nf(x).

Next, given both x0 and y∗, step 2 produces a value which is distributionally equivalent

to one produced by a Markov process with generator

BN
2 f(x) = Nγ[ξ1λ(y∗)− ξ2λ(x0)]+ · ∇Nf(x). (2.30)
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Recall that for the exact process,

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(AN)2f(x0) +O(N3γ‖f‖∇N3 h3).

For the approximate process we have,

Ptrap,hf(x0) = Ex0 [Ex0 [f(ZN
trap(h))|y∗]]

= Ex0f(y∗) + (1− θ)hEx0 [BN
2 f(y∗)] +

(1− θ)2h2

2
Ex0 [(BN

2 )2f(y∗)] +O(N3γ‖f‖∇N3 h3).

(2.31)

We will expand each piece of (2.31) in turn. Noting that BN
1 f(x0) = ANf(x0), the first

term is

Ex0f(y∗) = f(x0) + Ex0
[∫ θh

0

BN
1 f(Zs)ds

]
= f(x0) + θhANf(x0) +

θ2h2

2
(BN

1 )2f(x0) +O(N3γ‖f‖∇N3 h3).

We turn attention to the second term, (1− θ)hEx0 [BN
2 f(y∗)], and begin by making the

following definition:

g(y∗)
def
= BN

2 f(y∗) = Nγ[ξ1λ(y∗)− ξ2λ(x0)]+ · ∇Nf(y∗),

so that g(x) = Nγ([ξ1λ(x)− ξ2λ(x0)]+ · ∇N)f(x). Because ξ1 − ξ2 = 1, we have

g(x0) = Nγλ(x0) · ∇Nf(x0) = ANf(x0).

By our standing assumption (2.29)

g(x0 + ζk)− g(x0) = Nγ(ξ1λ(x0 + ζk)− ξ2λ(x0)) · ∇Nf(x0 + ζk)−Nγλ(x0) · ∇Nf(x0).
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After some algebra

BN
1 g(x0) = Nγ(λ(x0) · ∇Ng)(x0) = Nγ

∑
k

N ckλk(x0)[g(x0 + ζk)− g(x0)]

= ξ1N
γλ(x0) · ∇N(Nγλ · f)(x0)− ξ2N

γλ(x0) · ∇N(λ(x0) · f)(x0)

= ξ1(BN
1 ANf(x0))− ξ2((BN

1 )2f)(x0).

Thus,

Ex0 [BN
2 f(y∗)] = Ex0 [g(y∗)] = g(x0) + θhBN

1 g(x0) +O(N3γ‖f‖∇N3 h2)

= ANf(x0) + θh
[
ξ1(BN

1 ANf)(x0)− ξ2(BN
1 )2f(x0)

]
+O(N3γ‖f‖∇N2 h2)

= ANf(x0) + θh
[
ξ1(AN)2f(x0)− ξ2(BN

1 )2f(x0)
]

+O(N3γ‖f‖∇N3 h2),

where the last line follows since BN
1 f(x0) = ANf(x0) for any f .

Finally, we turn the the last term in (2.31). Define

q(y∗)
def
= (BN

2 )2f(y∗)

= [ξ1λ(y∗)− ξ2λ(x0)]+ · ∇N([ξ1λ(y∗)− ξ2λ(x0)]+∇Nf)(y∗),

so that

q(x) = [ξ1λ− ξ2λ(x0)]+ · ∇N([ξ1λ− ξ2λ(x0)]+∇Nf)(x).

By our standing assumption (2.29) we have

Ex0 [(BN
2 )2f(y∗)] = Ex0 [q(y∗)]

= q(x0) +O(N3γ‖f‖∇N3 h)

= (BN
1 )2f(x0) +O(N3γ‖f‖∇N3 h).

(2.32)

Noting that

(1− θ)θξ1 =
1

2
and (1− θ)θξ2 =

(1− θ)2 + θ2

2
,
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we may conclude the following from the above calculations

Ex0 [f(ZN
trap,h)] = Ex0f(y∗) + (1− θ)hEx0 [BN

2 f(y∗)] +
(1− θ)2h2

2
Ex0 [(BN

2 )2f(y∗)]

+O(N3γ‖f‖∇N3 h3)

= f(x0) + θhANf(x0) +
θ2h2

2
(BN

1 )2f(x0)

+ (1− θ)hANf(x0) +
h2

2
(AN)2f(x0)− h2

2
[(1− θ)2 + θ2](BN

1 )2f(x0)

+
(1− θ)2h2

2
(BN

1 )2f(x0) +O(N3γ‖f‖∇N3 h3)

= f(x0) +ANf(x0) +
h2

2
(AN)2f(x0) +O(N3γ‖f‖∇N3 h3).

Thus

‖(Ptrap,h − Ph)f‖0 ∈ O(N3γ‖f‖∇N3 h3),

and the proof is complete.

2.5 Bound on ‖Ptf‖∇
N

n

In this section we will provide a bound on ‖Ptf‖∇
N

n for any nonnegative n. We point

out, however, that for any process XN for which Pt is well behaved, in that ‖Pt‖∇
N

n→0 is

bounded without any N dependence, the following results are not needed, and, in fact,

would most likely be a least optimal bound, as the bound grows exponentially in Nγt.

Note that any system satisfying the classical scaling has γ = 0.

For t ≥ 0 and x ∈ LN , We define

v(t, x)
def
= Ptf(x) = Ex[f(XN

t )].

Theorem 2.19. If ‖f‖∇Nn <∞, then

‖v(t, ·)‖∇Nn = ‖Ptf‖∇
N

n ≤ ‖f‖∇Nn eN
γCnt
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where

Cn = 2
(
‖λ‖∇N1 n R +R(n− 1)‖λ‖∇Nn

)
. (2.33)

We delay the proof of Theorem 2.19 until the following Lemma is shown, the proof

of which is similar to that found in [47], which itself was an extension of the proof of

Lemma 4.3 in [7].

Lemma 2.20. Given a multiset I of {1, · · · , R}, there exists a function qI(x) that is a

linear function of terms of the form ∇N
J v(t, x) with |J | < |I|, so that

∂t∇N
I v(t, x) = Nγ(λ · ∇N)∇N

I v(t, x) +Nγ

|I|∑
i=1

(βi · ∇N)∇I\`iv(t, x+ ζ`i) +NγqI(x),

where βi = ∇N
`i
λ. Further, qI consists of at most R(|I|−1) terms of the form ∇N

J v(t, x),

each of whose coefficients are bounded above by ‖λ‖∇N|I| .

Proof. This goes by induction. For |I| = 0, the statement follows because

∂tv(t, x) = Nγ(λ · ∇N)v(t, x). (2.34)

Note that in this case, there are no βi or q terms. It is instructive to perform the |I| = 1

case. We have

∂t∇N
k v(t, x) = ∇N

k ∂tv(t, x)

= ∇N
k (Nγλ · ∇Nv(t, x))

= Nγ(∇N
k λ · ∇N)v(t, x) +Nγλ · ∇N

k ∇Nv(t, x) +Nγ(N−ck∇N
k λ · ∇N

k ∇Nv(t, x)).

Note that for any g : Rd → R

(∇N
k λ · ∇N)g(x) + (N−ck∇N

k λ · ∇N)∇N
k g(x) = (∇N

k λ · ∇N)g(x+ ζk). (2.35)
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Therefore, with g(x) = v(t, x) in the above, we have

∂t∇N
k v(t, x) = Nγ(λ(x) · ∇N)∇N

k v(t, x) +Nγ(∇N
k λ(x) · ∇N)v(t, x+ ζk).

Now assume that it holds for a set of size ≤ |I|. Then, using the inductive hypothesis,

Lemma 2.18, and equation (2.35) yields

∂t∇N
k ∇N

I v(t, x)

= ∇N
k ∂t∇N

I v(t, x)

= Nγ∇N
k

[
(λ · ∇N)∇N

I v(t, x) +

|I|∑
i=1

(βi · ∇N)∇I\`iv(t, x+ ζ`i) + qI(x)

]
= Nγ

[
(λ · ∇N)∇N

I∪kv(t, x) + (∇N
k λ · ∇N)∇N

I v(t, x+ ζk)

]
+Nγ

|I|∑
i=1

[
(βi · ∇N)∇N

k ∇N
I\`iv(t, x+ ζ`i) + (∇N

k βi · ∇N)∇N
I\`iv(t, x+ ζ`i + ζk)

]
+Nγ∇N

k qI(x)

= Nγ(λ · ∇N)∇N
I∪kv(t, x) +Nγ

[
(∇N

k λ · ∇N)∇N
I∪k\kv(t, x+ ζk) +

|I|∑
i=1

(βi · ∇N)∇N
I∪k\`iv(t, x+ ζ`i)

]
+Nγ

[
∇N
k qI(x) + (∇N

k βi · ∇N)∇N
I\`iv(t, x+ ζ`i + ζk)

]
,

showing the result.

Proof. (of Theorem 2.19 )

Let n ≥ 0. Define

Un(t)
def
= max

x∈LN ,|I|≤n
|∇N

I v(t, x)| = ‖v‖∇Nn .

Each ∇N
I v(t, x) is a continuously differentiable function with respect to t. Therefore,

the maximum above is achieved at some (I∗, x∗) for all t ∈ [0, t1] where t1 > 0. Fixing
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this choice of (I∗, x∗), we have

Un(t) = ∇N
I∗v(t, x∗)

for all t < t1.

Note that

[(λ · ∇N)∇N
I∗v(t, x∗)]∇N

I∗v(t, x∗) =
∑
k

λk(x)(∇N
k ∇N

I∗v(t, x∗))∇N
I∗v(t, x∗)

=
∑
k

N ckλk(x)(∇N
I∗v(t, x∗ + ζk)−∇N

I∗v(t, x∗))∇N
I∗v(t, x∗)

≤ 0,

(2.36)

where the final inequality holds by the specific choice of I∗ and x∗. Also note that for

any `i ∈ I∗ and any choice of x ∈ LN

|∇N∇N
I∗\`iv(t, x)| ≤

R∑
k=1

|∇k∇N
I∗\`iv(t, x)| ≤ R|∇N

I∗v(t, x∗)|. (2.37)

From Lemma 2.20 and equations (2.36) and (2.37), we have

1

2
∂t(∇N

I∗v(t, x∗))2 = (∂t∇N
I∗v(t, x∗))∇N

I∗v(t, x∗)

= Nγ

[
(λ · ∇N)∇N

I∗v(t, x∗) +

|I∗|∑
i=1

(βi · ∇N)∇I∗\`iv(t, x∗ + ζ`i) + qI∗(x
∗)

]
∇N
I∗v(t, x∗)

(2.38)

≤ Nγ

[
‖λ‖∇N1 |I∗| R |∇N

I∗v(t, x∗)|2 +R(|I∗| − 1)‖λ‖∇N|I∗| |∇N
I∗v(t, x∗)|2

]
,

where we have used the fact that each βi = ∇`iλ for `i ∈ I∗. Setting

Cn = 2
(
‖λ‖∇N1 n R +R(n− 1)‖λ‖∇Nn

)
, (2.39)

we see by an application of Gronwall’s inequality that the conclusion of the theorem

holds for all t < t1. That is, for t < t1

Un(t) ≤ ‖f‖∇Nn eN
γCnt.
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To continue, repeat the above argument on the interval [t1, t2), with I∗, x∗ again chosen

to maximize Un on that interval, and note that

Un(t1) ≤ ‖f‖∇Nn eN
γCnt1 ,

so that we may conclude that for t1 ≤ t < t2,

Un(t) ≤ ‖f‖∇Nn eN
γCnt1eN

γCn(t−t1) = ‖f‖∇Nn eN
γCnt.

Continuing on, we see that ti →∞ as i→∞ by the boundedness of the time derivatives

of v(t, x), thereby concluding the proof.

Remark 2.21. In the theorem above, Cn ∈ ‖λ‖∇
N

n .

Combining all of the above results, we have the following theorems.

Theorem 2.22. (Global bound for the Euler method)

For Algorithm 2.1, suppose that the step size h satisfies h < N−γ, and T = nh. Then

‖(P n
E,h − Pnh)‖∇

N

2→0 = O(N2γheC2NγT )

where C2 ∈ O(‖λ‖∇N2 ) is defined in (2.33).

Theorem 2.23. (Global bound for the midpoint tau-leap method)

For Algorithm 2.2, suppose that the step size h satisfies h < N−γ, and T = nh. Then

‖(P n
M,h − Pnh)‖∇

N

3→0 = O([N3γh2 +N2γ−min{mk}h]eC3NγT )

where C3 ∈ O(‖λ‖∇N3 ) is defined in (2.33).

The following immediate corollary to the theorem above recovers the result in [7].
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Corollary 2.6. Under the additional condition h > N−γ−min{mk} in Theorem (2.23),

the leading order of the error of midpoint tau-leaping is O(h2).

Theorem 2.24. (Global bound for the weak trapezoidal method)

For Algorithm 2.3, suppose that the step size h satisfies h < N−γ, and T = nh. Then

‖P n
h − Pnh‖∇

N

3→0 = O(h2N3γeN
γC3T )

where C3 ∈ O(‖λ‖∇N3 ) is defined in (2.33).

Thus, we see that the weak trapezoidal method detailed in Algorithm 2.3 is the

only method that boasts a global error of second order in the stepsize h in an honest

sense. That is, it is a second order method for the multiple scalings regardless of the

relation of h with respect to N . This is in contrast to the midpoint tau leaping method,

Algorithm 2.2, which has second order accuracy only when the step-size h is larger than

N−γ−min{mk}.
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Chapter 3

A connection between two

commonly used couplings

3.1 Introduction

We saw in the introductory chapter that the dynamics of a chemical reaction network

under a Markovian assumption can be modeled with a purely discontinuous stochastic

process X in the form of (1.8)

X(t) = X(0) +
∑
k

Nk(t)ζk (3.1)

built from the counting processes Nk with intensity functions λk(X, s), where λk :

J [0,∞) × R≥0 → R≥0 are non-anticipating. We would like to consider another pro-

cess Z given as

Z(t) = Z(0) +
∑
k

Ñk(t)ζk (3.2)

with Ñk(t) built from a different set of intensity functions λ̃k, and assess the ways to

couple X and Z on the same probability space. Coupling is often useful as a means

to reduce the computational complexity of numerical experiments. For an elementary

example, consider an experiment of throwing a dice and a coin. If the objective of the

experiment is only to sample a fixed number of outcomes, we can reduce the number of
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experiments by using a dice alone; if the outcome of the dice is even, we can take the

outcome of the coin to be heads, and if the dice is odd you take the coin to be tails.

For our case, we will be specifically interested in coupling X and Z of (3.1) and of

(3.2) in order to reduce the variance of X − Z. We can thereby decrease the number

of samples required to estimate its expectation with a desired precision. Rathinam,

Sheppard, and Khammash [60] used a coupling called the common reaction path (CRP)

method to improve upon finite difference schemes for the approximation of parametric

sensitivity.

On the other hand, in the same context of sensitivity analysis, Anderson [4] used

another specific coupling introduced by Kurtz [52] to further reduce the complexity of

finite difference methods. For a reason that will become clear in its construction, we

would like to call this coupling the “split coupling.” Anderson and Higham also applied

the split coupling in the development of a variation of the multi-level Monte Carlo

(MLMC) method [38], which was originally invented for Brownian diffusion processes,

and extended the result to the setting of population processes [8]. Motivation for the

work presented in this chapter is that there is no clear analytical basis of selecting

a coupling, and no studies have been done to analyze relationships amongst different

couplings.

In this chapter, we will introduce different coupling methods and make an analytical

connection between the split coupling and the CRP coupling. In particular, we will

introduce a new coupling called the “local CRP coupling”, and create a sequence of

local CRP couplings that limits to the CRP coupling in one extreme, and converges

weakly to the split coupling under an appropriate topology in another extreme. The

analysis demonstrates that the split coupling maximizes the ability of the two processes
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to re-couple during the course of a simulation.

3.1.1 Motivation (Sensitivity Analysis)

As we analyze stochastic models, we come across many situations in which we must

compare different, but closely related, stochastic processes. For example, when {Xθ} is

a family of stochastic processes parametrized by θ on a state space E and if f : E → R

is a statistic, one might aim to evaluate

E[f(Xθ+h(t))]− E[f(Xθ(t))]

h
∼=

d

dθ
E[f(Xθ(t)] (3.3)

as a measurement of the sensitivity of Xθ(t) with respect to a parameter θ. More

specifically, in the setting of the previous section, we are interested in the case of

λk(·) = ηk(θ, ·), λ̃k(·) = ηk(θ + ε, ·),

where for each k, {ηk(θ, ·) : Rd → R+} is a parametric family of functions about θ so

that using the notation from the previous section we have

X = Xθ+h, Z = Xθ.

We would then like to empirically evaluate the left hand side of (3.3). In order

to achieve the required confidence interval with as small a number of simulations as

possible, it is essential to couple X and Z tightly to control the variance of X − Z,

and therefore of f(X) − f(Z). Anderson, Rawlings, and Srivastava compared different

coupling methods in the context of finite difference method sensitivity analysis, and

concluded that split coupling is the most versatile and efficient coupling as of today [66].
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3.1.2 Motivation (MLMC)

In [38], Mike Giles introduced the multi-level Monte Carlo (MLMC) method to effi-

ciently approximate expected values of smooth functions of diffusion processes. MLMC

is a method which cleverly uses telescopic sums to reduce the overall computational

complexity required to estimate E[f(X)] for a stochastic process X. If {Zn} are ap-

proximation processes of X (Euler tau-leap processes with different time discretization

parameter, for example) for which larger n implies greater computational complexity in

return for less bias, we may write

E[f(X)] = E[f(X)−f(Zn−1)]+E[f(Zn−1)−f(Zn−2)]+· · ·+E[f(Z1)−f(Z0)]+E[f(Z0)].

Let us denote X = Zn for now. If the pair (Zk, Zk+1) in each term above are

tightly coupled, then we may put most of the computational burden on E[f(Z0)] and

simulate other costly processes only a small number of times. This will decrease the

overall complexity of the simulation, because the tightly coupled terms will contribute

only a small portion to the overall variance of the estimator. For the details of the

algorithm, refer to [38]. However, if each pair is not coupled tightly, then the cost of the

intermediate terms might outweigh the benefit of the tail terms. Anderson and Higham

[8] incorporated the split coupling to establish what seems to be the “correct” analogue

of the MLMC as in [38] for our systems of interest (1.4).

A “good coupling,” however, still appears to depend on situations. Indeed, there

are numerous ways to couple X and Z. Even for the elementary example of the dice

and the coin in the introduction, we can couple the coin and the dice differently by

considering the outcome 1 ∼ 3 as heads instead of using its parity. Our case is obviously

not so simple. In [4], Anderson also reports a case in which the finite difference method
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performed better with the CRP coupling than with the split coupling. This motivates

our study of the connections among different ways of coupling.

3.2 Different Couplings

Throughout this section, let X be the counting process in (1.4) with intensity functions

λk, and Z the counting process (1.4) with intensity functions λ̃k. Let us use ζ for an

element in Rd, where d > 0 is a positive integer.

3.2.1 Split coupling

We will first introduce the split coupling in [53]. Let R and L be càdlàg processes on

Rd, and define

r1(λ, λ̃, R, L)(s) = λ(R, s)− λ(R, s) ∧ λ̃(L, s)

r2(λ, λ̃, R, L)(s) = λ(L, s)− λ(R, s) ∧ λ̃(L, s)

r3(λ, λ̃, R, L)(s) = λ(R, s) ∧ λ̃(L, s)

The split coupling of X and Z is given by the solution of

Xo(t) = X(0)+
R∑
k=1

{
Y3k

(∫ t

0

r3(λk, λ̃k, Xo, Zo)(s)ds

)

+ Y1k

(∫ t

0

r1(λk, λ̃k, Xo, Zo)(s)ds

)}
ζk

Zo(t) = X(0)+
R∑
k=1

{
Y3k

(∫ t

0

r3(λk, λ̃k, Xo, Zo)(s)ds

)

+ Y2k

(∫ t

0

r2(λk, λ̃k, Xo, Zo)(s)ds

)}
ζk.

(3.4)
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Note that Xo and Zo share the same Y3k channel. “o” stands for ordinary, because this

coupling was a good coupling in most of the situations we encountered. In [19], Beth

Wolf cleverly introduces what seems to be the right analogue of the split coupling for

more than three processes. For the coupling of n processes in the form of

{
Xi(t) = Xi(0) +

R∑
k=1

Yik

(∫ t

0

λik(X, s)ds

)
ζk

}
i=1n

, (3.5)

one needs to consider minimums of all 2n subsets of {λik}ni=1 and consequently we need(
n∑
j=1

2n

)
∗R = 2n+1 ∗R

many Poisson processes all together to construct the coupling in [19].

3.2.2 Common Random Number (CRN) coupling

In CRN coupling, we will construct the processes using the idea of thinning; the idea

which we introduced in the first chapter along with the Gillespie algorithm (1.2). Let

us denote

λ0(x, s) =
R∑
k=1

λk(x, s) λ̃0(x) =
R∑
k=1

λ̃k(x, s),

and let {Ui}∞i=0 be a sequence of uniform random variables. Now, if η : RR
≥0× [0, 1]→ Zd

is a function such that

η(c1, ...., cR, u) = ζk if

∑k−1
i=1 ci∑R
i=1 ci

≤ u ≤
∑k

i=1 ci∑R
i=1 ci

,

then ν(c1, ...., cR, U) is a categorical random variable that takes the vector value ζk with

probability ck∑R
i=1 ci

. Now, for a common unit rate Poisson process Y , we consider the

following system:
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Rx(t) = Y

(∫ t

0

λ0(Xr, s)ds

)
Rz(t) = Y

(∫ t

0

λ̃0(Zr, s)ds

)
Xr(t) = X(0) +

∫ t

0

η(λ1(Xr, s), ...., λR(Xr, s), URx(s−))dRx(s)

Zr(t) = Z(0) +

∫ t

0

η(λ1(Zr, s), ...., λR(Zr, s), URz(s−))dRz(s)

(3.6)

The solution to this system exists by construction. In particular, we just construct X

and Z using the Gillespies algorithm with the common set of uniform random variables

Ui. We also note that, while the representations are different, the processes Xr and Xo

are weakly the same, while (Xr, Zr) and (Xo, Zo) are obviously not so. For the details

of the CRN coupling, refer to [66] and [60].

3.2.3 Common Reaction Path (CRP) coupling and local CRP

coupling

In the common reaction path coupling, X and Z are given by the solution of

Xc(t) = X(0) +
R∑
k=1

{
Yk

(∫ t

0

λk(Xc, s)ds

)}
ζk

Zc(t) = X(0) +
R∑
k=1

{
Yk

(∫ t

0

λ̃k(Zc, s)ds

)}
ζk

(3.7)

where the Yk are independent unit rate Poisson processes. Numerical experiments have

shown that this coupling is not very tight (that is, var(Xc(t)− Zc(t)) is large) in many

situations with large value of t [66], [4].
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We postulate that the CRP coupling is not as good because of its inability to fix a

“decoupling” once it occurs. For example, given Xc(t0) and Zc(t0) for some t0 > 0, if∫ t0

0

λ̃k(Zc, s)ds�
∫ t0

0

λk(Xc, s)ds (3.8)

for all k, then by the strong Markov property the time until the next jump of X is nearly

independent from the time until the next jump of Z. Once the process stumbles into

the situation of λk(Xc(s)) � λ̃k(Zc(s)), then the probability of escaping the trap (3.8)

in any finite time can be very small, depending on the choice of the intensity functions.

This does not happen to the split coupling, since the next jump time of X and Z are

always correlated via the purely counting processes with the intensity

λk(X, s) ∧ λk(Z, s).

This motivates us to “reset” the Poisson process at each small time interval, so that

we may overcome the problem of X and Z quickly decoupling from each other. We will

elaborate on this strategy. Let π = {0 = s0 < s1 · · · < sN = T} be a partition of [0, T ].

Also let {Ykm : k = 1, ..., R,m = 0, 1, 2, ... } be a set of independent, unit rate Poisson

processes. Then we define the local CRP coupling over [0, T ] with respect to π as the

solution of

Xπ
c (t) = X0 +

R∑
k=1

∞∑
m=0

Ykm

(∫ t∧sm+1

t∧sm
λk(X

π
c , s)ds

)
ζk

Zπ
c (t) = X0 +

R∑
k=1

∞∑
m=0

Ykm

(∫ t∧sm+1

t∧sm
λ̃k(Z

π
c , s)ds

)
ζk

(3.9)

We remark that, irrespective of π, the marginal distribution of Xπ
c and Xπ

o are the

same as that of X, and the same goes for Zπ
c , Zπ

o and Z. Also, when π is a trivial
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partition with N = 1, the coupling of (3.9) becomes the CRP coupling of (3.7). In the

next section, we will consider the limit of taking N →∞. By doing so, we will make a

connection between the local CRP coupling and split coupling.

3.3 Limit of the local CRP vs the split coupling

Before we begin this section, we would like to clarify some notation. First, when X and

Z are stochastic processes on (Ω,F , P ), with Ω being the set of all càdlàg processes in

Rd, by (X,Z)(s) we mean (X(s), Z(s)), a 2d dimensional vector. Also, when t is a K

dimensional vector of time points, we denote

X(t) = [X(t1), ...., X(tK)]

which is just the time series of X sampled at points t1, ..., tk.

We also make the standing assumption throughout the rest of the chapter that the

intensities λk and λ̃k are continuous function on Rd
≥0. That is, λk(N, s) = λk(N(s)) and

λ̃k(N, s) = λ̃k(N(s)).

3.3.1 Weak convergence at finite coordinates

We first have to articulate on what we mean by taking N to ∞ in the context of the

last section. We first introduce the concept of a mesh, which is a definition that appears

frequently in the construction of an integral.

Definition 3.1. Let π = {0 = s0 < s1 · · · < sN = T} be a partition of [0, T ]. Then let

∆mπ = sm+1 − sm.
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We define the mesh of π as

mesh(π) = max
m
{∆mπ}

We want to take the limit of mesh(π) to 0. First, we will show the weak convergence

of Xπ
c to Xo over finite coordinates.

Proposition 3.1. Let (Xo(t), Zo(t)) be coupled in the way of (3.4), and suppose that

neither X nor Z explode in [0, T ] almost surely. Further, let

πn = {0 = s0 ≤ s1 ≤ · · · ≤ sN(n) = T}

be a sequence of partitions such that mesh(πn) → 0 as n ↑ ∞. Then for any K ∈ Z≥0

and t ∈ [0, T ]K, and any bounded Lipshitz f : (Rd × Rd)K → R,

E[f((Xπn
c , Zπn

c )(t))]→ E[f((Xo, Zo)(t))] as n ↑ ∞ .

Before the proof , we require some additional notation. For a fixed n, let

{Y n
ikm; i = 1, 2, 3 k = 1, ..., R m = 0, 1, 2, ...} (3.10)

and

{Y n
km; k = 1, ..., R m = 0, 1, 2, ...} (3.11)

be two sets of independent unit rate Poisson processes. We do not specify the set (3.10)

and the set (3.11) to be mutually independent. In fact, we will couple the two sets.
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Consider the systems

Xπn
o (t) = Xo(t)+

∞∑
m=0

R∑
k=1

{
Y n

3km

(∫ sm+1∧t

sm∧t
r3(λk, λ̃k, X

πn
o , Zπn

o )(s)ds

)

+ Y n
1km

(∫ sm+1∧t

sm∧t
r1(λk, λ̃k, X

πn
o , Zπn

o )(s)ds

)}
ζk

Zπn
o (t) = Xo(0)+

∞∑
m=0

R∑
k=1

{
Y n

3km

(∫ sm+1∧t

sm∧t
r3(λk, λ̃k, X

πn
o , Zπn

o )(s)ds

)

+ Y n
2km

(∫ sm+1∧t

sm∧t
r2(λk, λ̃k, X

πn
o , Zπn

o )(s)ds

)}
ζk.

(3.12)

along with

Xπn
c (t) = X0 +

∞∑
m=0

R∑
k=1

Y n
km

(∫ t∧sm+1

t∧sm
λk(X

π
c (s))ds

)
ζk

Zπn
c (t) = X0 +

∞∑
m=0

R∑
k=1

Y n
km

(∫ t∧sm+1

t∧sm
λ̃k(Z

π
c (s))ds

)
ζk

%labellocalCRP (3.13)

Note that the generator of (Xo, Zo) is the same as (Xπn
o , Zπn

o ), so (Xo, Zo) ∼ (Xπn
o , Zπn

o )

irrespective of n. We will first generate (Xπn
c , Zπn

c ) up to a fixed time, and couple (3.10)

to (3.11) in a particular way based on the outcome. We will then show that the coupling

of (Xπn
o , Zπn

o ) and (Xπn
c , Zπn

c ) created thus will satisfy

lim
n→∞

P ( max
i=0,...,K

|(Xπn
o (ti), Z

πn
o (ti))− (Xπn

c (ti), Z
πn
c (ti))| > γ) = 0 (3.14)

for any γ > 0. We can then appeal to a standard Portmanteau type argument. Let

ε > 0, and consider any bounded continuous map f : (E × E)K → R with Lipshitz
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constant L. Then

|Ef((Xo, Zo)(t)− Ef((Xπn
c , Zπn

c )(t)|

= |Ef((Xπn
o , Zπn

o )(t)− Ef((Xπn
o , Zπn

o )(t)|

≤ LE[|(Xπn
o , Zπn

o )(t)− (Xπn
c , Zπn

c )(t)|]

≤ LKγ + L P ( max
i=0,...,K

|(Xπn
o (ti), Z

πn
o (ti))− (Xπn

c (ti), Z
πn
c (ti))| > γ)

(3.15)

We can choose γ < ε/2LK. With this γ fixed, we may choose n large enough so that

the second piece can be bounded by ε/2, and we will achieve the claim.

Let us therefore describe the coupling of (Xπn
c , Zπn

c ) and(Xπn
o , Zπn

o ) which will make

(3.14) possible. For each n, let us prepare the following infinite series of Poisson pro-

cesses:

{Y n
km, Y

n,aug
ikm , i = 1, 2, 3, k = 1, ..., R, m = 0, 1, 2, ...} (3.16)

We will generate (3.10) out of (3.11). We need some notational preparation to proceed.

First, as promised above, we generate (Xπn
c , Zπn

c ) up to time T . Fix this n. We then

define

Tikm
def
= rikm(λk, λ̃k, X

πn
o , Zπn

o )(sm) ·∆m(πn)

T oikm
def
=

∫ sm+1

sm

rikm(λk, λ̃k, X
πn
o , Zπn

o )(s)ds
(3.17)

T ckm
def
=

(∫ sm+1

sm

λ(Xπn
c (s))ds

)
∨
(∫ sm+1

sm

λ̃(Zπn
c (s))ds

)
(3.18)
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We have omitted n from the definitions above to avoid notational overflow, since we will

create the coupling between (3.11) and (3.10) for each fixed n.

Inductively arguing on m, suppose that we have seen (Xπn
o , Zπn

o ) up to time sm in

(3.12). At this point, we are yet to generate Yikm̃ for any m̃ > m. We will define Y n
3km

as the jump process for which

Y n
3km(s) = Y n

km(s) for s ≤ T3km

Y n
3km(s)− Y3km(T3km) = Y n,aug

3km (s) for s ≥ T3km

(3.19)

Next, if λ(Xo(sm)) < λ(Xo(sm)), let Y n
1km be the jump process such that

Y n
1km(s) = Y n

km(s+ T3km)− Y n
km(T3km) for s ≤ T1km

Y n
1km(s)− Y n

1km(T1km) = Y n,aug
1km (s) for s ≥ T1km

(3.20)

and Y n
2km = Y n,aug

2km . If λ(Xπn
o (sm)) ≥ λ(Xπn

o (sm)), then we will interchange the role of

1km with 2km.

Ykm

T3kmY3km

Y aug
3km

Y1km
T1km

Y aug
1km

Y aug
2km

Y2km

Figure 2: A pictorial image of coupling (3.10) to (3.11) in the case of λ(Zo(sm)) <

λ(Xo(sm)).
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We would emphasize that Tikm are values independent from Y n
km. By the Markov

property of Y n
km, {Y n

ikm} constructed this way is a set of independent Poisson processes.

By generating (Xπn
o , Zπn

o ) from this {Y n
ikm}, we establish a coupling between (Xπn

o , Zπn
o )

and (Xπn
c , Zπn

c ). We would like to make few observations before we proceed further.

Lemma 3.2. Fix n, and let m ∈ N. If

R∑
k=1

3∑
i=1

Y n
ikm(Tikm ∨ T oikm) = 1 (3.21)

then there is a unique j ∈ {1, 2, 3} and ` ∈ {1, ..., R} for which

Y n
j`m(Tj`m ∧ T oj`m) = 1.

Note the difference between ∧ and ∨.

Proof. For each (i, k), let

Qik(t)
def
= Y n

ikm

(∫ t+sm

sm

rik(λk, λ̃k, X
πn
o , Zπn

o )(s)ds

)
be a counting process on E. First, (3.21) implies that Y n

j`m(Tj`m ∨ T oj`m) = 1 for some

j and ` and Y n
ikm(Tikm ∨ T oikm) = 0 for all (i, k) 6= (j, `). This in particular means

that Qj`m is the first one among all {Qikm} to jump. This is because, for all (i, k),

rik(λk, λ̃k, X
πn
o , Zπn

o )(s) won’t change from rik(λk, λ̃k, X
πn
o , Zπn

o )(sm) until the first jump

of (Xπn
o , Zπn

o ). If Qj`m marks the first jump at time t = α, Y n
j`m must mark the first

jump at some t0 that can be represented as

t0 = rj`(λk, λ̃k, X
πn
o , Zπn

o )(sm)α. (3.22)

If α > ∆nπn, then by definition Y n
j`m(Tj`m ∨ T oj`m) = 0 and that will be a contradiction.

Hence α ≤ ∆nπn necessarily and t0 ≤ T oj`m. Also, from the (3.22), t0 ≤ Tj`m trivially.
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There is another analogue to the lemma above;

Lemma 3.3. If (Xπn
c , Zπn

c )(sm) = (Xπn
o , Zπn

o )(sm) and∑
k

Ykm

((
3∑
i=1

Tikm

)
∨ T ckm

)
= 1

then there is an unique k0 for which

Yk0m

((
3∑
i=1

Tikm

)
∧ T ck0m

)
= 1

and Yk0m jumps at some time t0 before(
λk0(X

πn
c (sm)) ∨ λ̃k0(Zπn

c (sm))
)

∆m.

Proof. By the construction, and the assumption,

3∑
i=1

Tikm =
(
λk0(X

πn
c (sm)) ∨ λ̃k0(Zπn

c (sm))
)

∆m.

Also, neither Zπn
c nor Xπn

c changes until the first firing of Yk0m, so the claim follows.

Based on the last two observations, we would also like to introduce the following

lemma, which will be useful in proving the proposition 3.1.

Lemma 3.4. Suppose that, for a given path of (Xπn
o , Zπn

o )(w), (Xπn
c , Zπn

c )(w) coupled in

the way we described above,

Hm,n(w)
def
=

R∑
k=1

max

{
3∑
i=1

Y n
ikm(Tikm ∨ T oikm), Y n

km

((
3∑
i=1

Tikm

)
∨ T ckm

)}
≤ 1 (3.23)

Then for all m = 0, ..., N(n),

(Xπn
o , Zπn

o )(sm, w) = (Xπn
c , Zπn

c )(sm, w)
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Proof. We have

(Xπn
o , Zπn

o )(s0, w) = (Xπn
c , Zπn

c )(s0, w).

Trivially. We will omit w in the expressions from now on. Inductively arguing, assume

that

(Xπn
o , Zπn

o )(sm) = (Xπn
c , Zπn

c )(sm). (3.24)

We will show that

(Xπn
o , Zπn

o )(sm+1) = (Xπn
c , Zπn

c )(sm+1)

when (3.23) holds. If Hm,n = 0 for this m, then

(Xπn
o , Zπn

o )(sm+1) = (Xπn
o , Zπn

o )(sm) = (Xπn
c , Zπn

c )(sm) = (Xπn
c , Zπn

c )(sm+1)

and there is nothing to do. Therefore we consider the case in which Hm,n = 1. More

specifically, suppose that for some k0,

max

{
3∑
i=1

Y n
ik0m

(Tik0m ∨ T oik0m), Y n
k0m

((
3∑
i=1

Tik0m

)
∨ T ck0m

)}
= 1.

This means that

max

{
3∑
i=1

Y n
ikm(Ti`m ∨ T oikm), Y n

km

((
3∑
i=1

Tikm

)
∨ T ckm

)}
= 0

for all k 6= k0 by the condition (3.23). WLOG we will also assume

λk0(X
πn
o (sm)) > λ̃k0(Z

πn
o (sm)) (3.25)

for this k0, since the case otherwise works just the same. We will separately analyze the

cases of Y n
k0m

((∑3
i=1 Tik0m

)
∨ T ck0m

)
= 1 and

∑3
i=1 Y

n
ik0m

(Tik0m ∨ T oik0m) = 1, and show

that

Y n
k0m

((
3∑
i=1

Tik0m

)
∨ T ck0m

)
=

3∑
i=1

Y n
ik0m

(Tik0m ∨ T oik0m) = 1
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with (Xπn
o , Zπn

o )(sm+1) = (Xπn
c , Zπn

c )(sm+1) either way.

First suppose that Y n
k0m

((∑3
i=1 Tik0m

)
∨ T ck0m

)
= 1. By lemma 3.3 and (3.24),

Y n
k0m

(T ck0m) = 1 as well. We would like to make assessments about this t0.

1. Consider the case of t0 ≤ T3k0m = λ̃k0(Z
πn
o (sm))∆m(πn). This in particular means

that t0 admits the representation

t0 = λ̃k0(Z
πn
o (sm))β

for some β ≤ ∆m(πn). It follows that

Y n
k0m

(∫ sm+1

sm

λ̃k0(Z
πn
c )ds

)
= 1,

and hence

(Xπn
c , Zπn

c )(sm+1) = (Xπn
c , Zπn

c )(sm) + (ζk0 , ζk0).

By the coupling, Y n
3k0m

(T3k0m) = 1, so
∑R

k=1

∑3
i=1 Y

n
ikm(Tikm ∨ T oikm) = 1 is forced.

By lemma 3.2, we must have Y n
3k0m

(T o3k0m) = 1 as well. We achieve

(Xπn
o , Zπn

o )(sm+1) = (Xπn
o , Zπn

o )(sm) + (ζk0 , ζk0).

2. Consider the case of T3k0m < t0 ≤ T ck0m. Since Y n
k0m

(T3k0m) = 0,∫ sm+1

sm

λ̃k0(Z
πn
c (s))ds = λk0(Z

πn
o (sm))∆m(πn) = T3k0m (3.26)

necessarily. So

(Xπn
c , Zπn

c )(sm+1) = (Xπn
c , Zπn

c )(sm) + (ζk0 , 0)
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is guaranteed. Moreover, t0 admits the representation t0 = λk0(X
πn
o (sm))α where

∆m(πn)

(
λ̃k0(Z

πn
o (sm))

λk0(X
πn
o (sm))

)
≤ α ≤ ∆m(πn).

Therefore t0 ≤ (T3k0m + T1k0m) ∧ T ck0m and

Y n
k0m

(T3k0m + T1k0m)− Y n
k0m

(T3k0m) = 1.

By the coupling I have Y n
1k0m

(T1k0m) = 1.

With the assumption set forth in 3.4,
∑R

k=1

∑3
i=1 Y

n
ikm(Tikm ∨ T oikm) = 1 is forced.

By lemma 3.2, we must have Y n
1k0m

(T o1k0m) = 1 as well. We achieve

(Xπn
o , Zπn

o )(sm+1) = (Xπn
o , Zπn

o )(sm) + (ζk0 , 0).

as desired.

Next, suppose that
∑3

i=1 Y
n
ik0m

(Tik0m ∨ T oik0m) = 1. This means that either one of

{Y n
ik0m

(Tik0m∨T oik0m), i = 1, 2, 3} is 1. We can knock out i = 2 from the candidates, since

(3.25) implies Y2k0m(T2k0m ∨ T oik0m) = 0.

1. Suppose that Y n
3k0m

(T3k0m ∨ T o3k0m) = 1. By lemma 3.2, Y n
3k0m

(T o3k0m) = 1 and

Y n
3k0m

(T3k0m) = 1. So

(Xπn
o , Zπn

o )(sm+1) = (Xπn
o , Zπn

o )(sm) + (ζk0 , ζk0).

By the coupling, Y n
km(T3km) = 1. Ykm must have jumped at t0 admitting the

representation

t0 = λ̃k0(Z
πn
o (sm))β < λ̃k0(X

πn
o (sm))β

for some β ≤ ∆m(πn), so

(Xπn
c , Zπn

c )(sm+1) = (Xπn
c , Zπn

c )(sm) + (ζk0 , ζk0)
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as well.

2. Suppose that Y n
1k0m

(T1k0m ∨ T o1k0m) = 1. By lemma 3.2, Y n
1k0m

(T o1k0m) = 1 and

Y n
1k0m

(T1k0m) = 1. It also follows that Y n
1k0m

jumps at t0 admitting the representa-

tion

t0 = (λk0(X
πn
o (sm))− λk0(Zπn

o (sm)))β

for some β ≤ ∆m(πn), and

(Xπn
o , Zπn

o )(sm+1) = (Xπn
o , Zπn

o )(sm) + (ζk0 , 0).

By the coupling Y n
k0m

(T1k0m + T3k0m)− Y n
k0m

(T3k0m) = 1, so Y n
k0m

(T3k0m) = 0. Since

Y n
k0m

(T3k0m) = 0, (3.26) holds again. Also, the coupling dictates Y n
k0m

to make the

first jump at t0 + T3k0m. Since (t0 + T3k0m)/λk0(Xsm) < ∆m(πn), we are sure that

t0 < T ck0m. Altogether, we have

∫ sm+1

sm

λ̃k0(Z
πn
c (s))ds ≤ t0 ≤ T ck0m

and therefore

(Xπn
c , Zπn

c )(sm+1) = (Xπn
c , Zπn

c )(sm) + (ζk0 , 0).

It is not so difficult to see that, when λk and λ̃k are uniformly bounded for all k,

we can make the condition in lemma 3.4 happen with probability greater than 1− ε for

any ε by setting mesh(πn) small enough. We do not have such an uniform bound on

λ. Also, we have to note that we don’t necessarily have (Xπn
c , Zπn

c )(t) = (Xπn
o , Zπn

o )(t)

for all t ∈ [sm, sm+1] even if the condition for the lemma 3.4 holds. If t ∈ [sm, sm+1],
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however, we can have (Xπn
c , Zπn

c )(t) = (Xπn
o , Zπn

o )(t) with an additional condition; that

neither (Xπn
c , Zπn

c ) nor (Xπn
o , Zπn

o ) jump at all in [sm, sm+1] containing t . Put Kn
0 to be

Kn
0 = {m ∈ {0, ..., N(n)− 1} ; {tj}Kj=1 ∩ [sm, sm+1) 6= ∅},

and let us return to the proof of the proposition 3.1.

Proof. (of 3.1) As we remarked earlier, it suffices to show (3.14). Let ε > 0. We will

show that, for large enough n,

P ( max
i=0,...,K

|(Xπn
o (ti), Z

πn
o (ti))− (Xπn

c (ti), Z
πn
c (ti))| > 0) < ε.

We will resort to a variation of localization argument and take advantage of the fact

that X and Z are both nonexplosive. Let M > 0, and let Hm,n be as defined in lemma

3.4. We will define the event on which 3.4 holds. Define

An(t) = {ω : Hm,n(ω) ≤ 1 if m 6∈ Kn
0 and Hm,n(ω) = 0 if m ∈ Kn

0 } . (3.27)

BM,n ={ω : max{sup
s≤T

λk(X
πn
o (s)), sup

s≤T
λk(Z

πn
o (s)),

sup
s≤T

λk(Z
πn
c (s)), sup

s≤T
λk(X

πn
c (s)} ≤M}

(3.28)

I would like to remind ourselves that the number of fires in each path is finite, and hence

that sup is achieved everywhere it appears above. As we saw, An(t) ⊂ {(Xπn
o , Zπn

o )(t) =

(Xπn
c , Zπn

c )(t)}. Therefore

P ((Xπn
o , Zπn

o )(t) 6= (Xπn
c , Zπn

c )(t)) ≤ P (ACn (t))

= P (ACn (t) ∩BM,n) + P (An(t) ∩BC
M,n)

(3.29)
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For the second piece above, we note that

BC
M,n ⊂ {sup

s≤T
λk(X

πn
o (s)) > M} ∪ {sup

s≤T
λ̃k(Z

πn
o (s)) > M}∪

{sup
s≤T

λk(X
πn
c (s)) > M} ∪ {sup

s≤T
λ̃k(Z

πn
c (s)) > M}

(3.30)

Now, recall that the marginal distribution of Xπn
c and Xπn

o are the same as the marginal

distribution of X, and that the same goes for Zπn
c and Zπn

o compared with Z. Therefore,

for all n we have

P (BC
M,n) ≤ 2 ∗

[
P (sup

s≤T
{λk(Xs)} > M) + P (sup

s≤T
{λ̃k(Zs)} > M)

]
. (3.31)

By the monotone convergence theorem and the fact that the processes are all non ex-

plosive, the RHS of (3.31) will tend to 0 as M → ∞. Therefore we can take M large

enough so that the second piece of (3.29) is smaller than ε/2. Let us fix this M , and

look at the first piece.

Let us consider the localized version of H. In particular, let

HM
m,n(w) ≡

R∑
k=1

max

{
3∑
i=1

Y n
ikm(M∆m(πn)), Y n

km (3M∆m(πn))

}
Then it is clear that, for any q > 0,

({Hm,n > q} ∩BM,n) ⊂
(
{HM

m,n > q} ∩BM,n

)
⊂ {HM

m,n > q}

Therefore we can say

P (ACn (t) ∩BM,n)

≤ P (HM
m,n > 1 for some m 6∈ Kn

0 OR HM
m,n > 0 for some m ∈ Kn

0 )

≤
∑
m 6∈Kn

0

P (HM
m,n > 1) +

∑
m∈Kn

0

P (HM
m,n > 0)

(3.32)
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Also, for any p > 0,

P (Poi(p) > 1) =1− exp(−p)(1 + p)

≤1− (1− p)(1 + p)

=p2

(3.33)

and

P (Poi(p) > 0) = 1− exp(−p) ≤ p (3.34)

We note that

P ({HM
m,n > q}) ≤ P (Poi(6RM∆m(πn)) > q)

Now , if mesh(πn) = δn, then P (ACn (t) ∩BM) is at most

P (ACn (t) ∩BM) ≤
∑
m6∈Kn

0

(6RM∆m(πn))2 +
∑
m∈Kn

0

(6RM∆m(πn))

≤ (6RM)2δn
∑
m 6∈Kn

0

∆m(πn)

δn
∆m(πn) + 6RM |Kn

0 |δn

≤ (6RM)2δnT + 6RM |Kn
0 |δn

(3.35)

In the third inequality, I used the fact that ∆m(πn)
δn

< 1, by the definition of mesh. We

can take n large enough so that (3.35) is less than ε/2. For such n,

P ((Xπn
o , Zπn

o )(t) 6= (Xπn
c , Zπn

c )(t)) < ε,

as required.

It is to be hoped that the proposition 3.1 implies the weak convergence of (Xπn
c , Zπn

c )

to (Xo, Zo) in Skorohod’s sense. However, in order to achieve the result we require

{(Xπn
c , Zπn

c } to be precompact in Skorohod topology. The following is a result available

in [32].
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Theorem 3.5. Suppose that {Xn} is a series of processes with in the Skorohod space

of all càdlàg functionsDE[0,∞). Then the law of {Xn} is precompact if and only if the

following two conditions hold:

1. For each η, t there is a compact set Γeta,t on E such that

inf P (Xn(t) ∈ Γη,t) < η

2. For each η > 0 and T > 0 there exists δ > 0 such that

sup
n
P (w′(Xn, δ, T ) ≥ η) < η

where

w′(X, δ, T )
def
= inf

π
max

a,b∈[ti,ti−1]
|X(a)−X(b)|

with π ranging over all partition of [0, T ] with ti − ti−1 > δ.

Unfortunately the conditions in the theorem 3.5 do not hold in general for our

{(Xπn
c , Zπn

c )}. Consider, for example, the following simple linear growth system

0→A (1)

and the corresponding (Xo, Zo), (X
πn
c , Zπn

c ) with

λ1(x) = θx, λ̃1(x) = (θ + ε)x

and the initial condition

Xo(0) = Zo(0) = Xπn

c (0) = Zπn

c (0) > 0.

Then for any β > 0 there is a finite probability α > 0 that in the interval [0, β], Xo

and Zo makes the “first jump” simultaneously. By the argument we made in the proof
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above, for any ε > 0 and σ > 0 there exists some M such that if n > M , then for

probability greater then α − ε, both Xπn
c and Zπn

c make the first jumps in this interval

at times τx and τz respectively with 0 < τx − τz < σ. Note that τx − τz = 0 happens

with probability 0 in our situation. This in particular means that for any σ,

sup
n
P (w′((Xπn

c , Zπn
c ), σ, t0) ≥ 1) ≥ α

And {(Xπn
c , Zπn

c )} fails to have precompact laws.

3.3.2 Weak convergence in product Skorohod topology

We can achieve the convergence of (Xπn
c , Zπn

c ) in a weaker topology. In this subsection,

we would like to prove the following.

Proposition 3.6. Let X and Z be non explosive jump processes in a Skorohod space

of càd làg functions DRd [0,∞) as given in (1.4) with intensities λk(x, s) = λk(x(s)),

λ̃k(x, s) = λ̃k(x(s)), respectively. Consider then the product topology on

D := DRd [0,∞)×DRd [0,∞).

Also, let πn = {snj } be a sequence of partitions of [0,∞) such that

mesh(πn) = max
j<∞

(snj − snj−1)→ 0.

Then for all f : D → R that are bounded and continuous,

E[f(Xπn
c , Zπn

c )]→ E[f(Xo, Zo)].



91

I would note that the function f is allowed to be a path dependent statistic. We

need some preparations. The following is another critical result in [32] regarding the

Skorohod topology.

Theorem 3.7. For each t ≥ 0 and polish space E, define πt : DE[0,∞) → E by

πt(x) = x(t). Then the Borel σ-algebra W of DE[0,∞) is given by

W = σ(πt, t ∈ D).

where D is any dense subset of [0,∞).

Using the result above, we can obtain the generators for D.

Corollary 3.1. The Borel σ-algebra of D is given by

σ(πt × πs, s, t ∈ D).

where (πt × πs)(x, z) = (x(t), z(s)).

Next, I would like to make a corollary to the proposition 3.1.

Corollary 3.2. Let s = {s0 < s1 < s2 < · · · < sm1}, t = {t0 < t1 < t2 < · · · < tm2} and

fi : Rd → R i = 0, ...,m1 gj : Rd → R j = 0, ...,m2

be bounded and continuous functions on Rd, and assume the conditions set forth in the

proposition 3.1. Then

E

[
m1∏
i=0

fi((X
πn
c (si))

m2∏
j=0

gj(Z
πn
c (tj)))

]
→ E

[
m1∏
i=0

fi((Xo(si))

m2∏
j=0

gj(Zo(tj)))

]
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Proof. A standard Portmanteau argument works. Recall again that

E

[
m1∏
i=0

fi((X
πn
o (si))

m2∏
j=0

gj(Z
πn
o (tj)))

]
= E

[
m1∏
i=0

fi((Xo(si))

m2∏
j=0

gj(Zo(tj)))

]
.

Let max{g, f} < M . On the coupled space,

E

[
m1∏
i=0

fi((X
πn
c (si))

m2∏
j=0

gj(Z
πn
c (tj)))−

m1∏
i=0

fi((X
πn
o (si))

m2∏
j=0

gj(Z
πn
o (tj)))

]

≤ 2Mm1+m2P ( max
τ∈{si}∪{tj}

|(Xπn
o (τ), Zπn

o (τ))− (Xπn
c (τ), Zπn

c (τ))| 6= 0)

→ 0.

(3.36)

We now put everything together in order to prove 3.6.

Proof. We would like to show that (Xπn
c , Zπn

c ) satisfies the conditions in theorem 3.5

with respect to the space D. To show that (Xπn
c , Zπn

c ) is precompact, we need to show

that, for any ε > 0, there exists a compact set Cε such that

inf
n
P ((Xπn

c , Zπn
c ) ∈ Cε) > 1− ε.

Marginally, X ∼ Xπn
c and Z ∼ Zπn

c . If P (X ∈ Aε) > 1− ε/2 and P (Z ∈ Bε) > 1− ε/2

for compact Aε, Bε ⊂ D[0,∞), then P ((X,Z) ∈ Aε×Bε) > 1− ε with Aε×Bε compact

in the product topology. Therefore it suffices to show that X and Z both separately

satisfy the conditions in theorem 3.5. Since X is a nonexplosive pure jump process, it

clearly passes the first condition. Also, recall that X is constructed with R channels of
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Poisson processes. Hence for any T > 0 and M > 0,

P (w′(X, δ, T ) > 0) ≤ P (w′(X, δ, T ) > 0 : sup
k=1,..,R,p<T

λk(X(p)) ≤M)

+ P ( sup
k=1,..,R,p<T

λk(X(p)) > M)

= P (w′(Y (MR·), δ, T ) > 0) + P ( sup
k=1,..,R,p<T

λk(X(p)) > M)

(3.37)

where Y (MR·) is a rate MR poisson process. Since X is non explosive, we may take M

large enough to control the second piece, and for this M we can choose δ small enough

to control the first piece. That is, limδ→0 P (w′(X, δ, T ) > 0) = 0. This tells us that X

also passes the second condition. The same procedure works for Z. Now we know that

{(Xπn
c , Zπn

c )} is precompact in the product topology. Together with Corollary 3.2, we

are done since

E

[
m1∏
i=0

fi(Xo(si))

m2∏
j=0

gj(Zo(tj))

]
; {si}, {tj} ⊂ [0,∞), fi, gi ∈ C(Rd) (3.38)

characterizes the law of (Xo, Zo). To see how (3.38) characterizes the law of (Xo, Zo),

suppose that for some other process (X∗, Z∗),

E

[
m1∏
i=0

fi(Xo(si))

m2∏
j=0

gj(Zo(tj))

]
= E

[
m1∏
i=0

fi(X
∗
o (si))

m2∏
j=0

gj(Z
∗
o (tj))

]

∀ {si}, {tj} ⊂ [0,∞), fi, gi ∈ C(Rd).

Note that we can approximate the indicator functions of open sets {Ai}, {Bj} of Rd

with increasing sequence of functions fni , gni , respectively. By the monotone convergence

theorem, we have

E

[
m1∏
i=0

1Ai(Xo(si))

m2∏
j=0

1Bj(Zo(tj))

]
= E

[
m1∏
i=0

1Ai(X
∗
o (si))

m2∏
j=0

1Bj(Z
∗
o (tj))

]

for any open sets {Ai}, {Bj} in Rd. Now we apply a version of monotone class theorem:
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Theorem 3.8. Let H be a linear space of bounded functions on Ω that contains con-

stants, and let L be a collection of subsets of Ω such that if A,B ∈ L then A ∩ B ∈ L,

Suppose χA ∈ H for any A ∈ L. Also suppose that {fn} ⊂ H, f1 ≤ f2 ≤ · · · and

supn fn ≤ c for some constant c imply that f ≡ bp limn→∞ fn ∈ H 1. Then H contains

all bounded σ(L) measurable functions.

For us, we put H to be the set of all Borel measurable functions f : DE[0,∞) ×

DE[0,∞)→ R for which

E[f(X,Z)] = E[f(X∗, Z∗)]. (3.39)

Next,

L = {Any finite intersections of (πt × πs)−1(A); t ∈ [0,∞), A ∈ B(Rd × Rd)}

The corollary 3.2 shows that χU ⊂ H for any U ∈ L. Moreover, the last condition

on H is guaranteed by the monotone convergence theorem. This shows that any σ(L)

measurable function is in H. By the corollary 3.1, this implies that (3.39) holds for any

function f that is borel measurable on DE[0,∞)×DE[0,∞).

There is still much work to be done in the development of new couplings and the

relationship among existing couplings. While the split coupling performs well in many

situations, there has never been any result on what particular statistics it optimizes.

This study, however, revealed at least one source of the advantage of the split coupling.

Recall that the local CRP (3.9) was created in the hope of “resetting” the Poisson

channels at very small intervals to prevent a fast decoupling. This study shows that the

1This stands for bounded pointwise convergence, which means supn ‖fn‖∞ <∞ and limn→∞ fn(x) =
f(x) for each x ∈ Ω.
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split coupling is, in essence, continuously “resetting” the rate of each Poisson channels.

Also, the performance of the couplings have been tested only for the MLMC and for

the sensitivity analysis. While the split coupling does well in reducing the variance of

g(X,Z) = X − Z,

it might not do so well for other functions of g. For future work, we shall investigate and

explore more systematic ways construct the couplings to reduce the variance for many

different types of g.
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Chapter 4

Law of large numbers limit of a

discrete stochastic system with

random delay time

4.1 Introduction

One of the most familiar biological process that involves delay is transcription. We can

simplify the whole process and write this reaction as

D → D +M,

where D and M represent DNA and mRNA, respectively. Let XM(t) and XD(t) be the

population of the mRNA molecules and that of the DNA molecules in the system at

time t, respectively. If we model the process with a continuous time Markov chain as

done in the introduction (1.6) under mass action kinetics (1.7), we would obtain

XM(t) = XM(0) + Y

(∫ t

0

XD(s)ds

)
(4.1)

with Y being an unit rate Poisson process. We claim that there is a technical fallacy in

this choice of the model. The model above is biologically unrealistic in that it implies that

each transcription is processed instantly, while the real transcription process requires
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nontrivial time for its completion. In [20], Schwanhausser reports that the speed of

transcription can be as slow as two mRNA molecules per hour. More particularly,

XM(t) in (4.1) is an overestimate of the actual number of mRNA molecules present

in the system at time t. Instead, the real meaning of XM in (4.1) is the number of

the transcription processes that have initiated before time t. We are therefore in the

position to consider the concept of “Delay.” Further, when we make the problem slightly

more realistic and include T , the transcriptase, into the process, we have to consider the

possible failure of the transcription by the premature detachment of the transcriptase

from the DNA molecule. Such an instance is mentioned, for example, by Ribeiro [64].

We can write this system as

D + T → D∗ (4.2)

D∗ →M +D + T (4.3)

D∗ → D + T (4.4)

where D∗ is a DNA-transcriptase complex. Aside from the example we presented above,

modeling dynamical systems with delay has a wide range of applications. In epidemiol-

ogy the transmission of the disease can be delayed by incubation period, and in ecology

the population growth is modulated by gestation period.

Before we proceed further, we would like to simplify the problem and articulate more

about the modeling of a delay itself. In the previous example, the fact that the products

of (4.2) affect the rate of the delayed reaction (4.4) complicates the problem, as the

entire system ceases to be Markovian once we allow the delayed reaction to feed into
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itself. For example, consider the reaction

A→ B. (4.5)

There are two intuitive ways to include “Delay” into (4.5). Upon the initiation of the

reaction, we may choose A to be immediately consumed, and B to emerge after some

holding time τ . That is, if t∗ is the time of the reaction (4.5), then

XA(t∗) = XA(t∗−)− 1, XB(t∗−) = XB(t∗).

This modeling choice is often termed immediate consumption. We may also choose A

to remain in the system for some holding time τ , and B to emerge instantly afterward.

That is, X(t∗−) = X(t∗). This modeling choice is termed delayed consumption. Barbuti

et al [63] argue explicitly that immediate consumption of reactants is not appropriate for

some biological systems. They describe the system of cell mitosis, in which the model can

overestimate the final cell numbers if it allows the premitotic phase to initiate without

any chance of cancellation. In this chapter, we will consider a delayed consumption

which is subject to a cancellation with a fixed certain probability. We will set up the

problem on the single molecule level using the random time change representation in

(1.6), and demonstrate a technique in taking its law of large numbers limit ODE.

4.2 Kurtz’s classical scaling and Law of Large Num-

bers

There have been multiple efforts made in analyzing systems with delay. Barbuti et al.

[63] created a simulation algorithm for a system with delayed consumption. Schlict [65]
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computed the expectation of the output quantity from a continuous time production that

has a generally distributed delay time. In [36] and [37] , Garcia and Kurtz developed a

scheme based on the theory of Poisson random measure that allowed the computation of

the law of large numbers (LLN) limit of the M/G queueing process and the S.I.R model.

While the LLN limit of the M/G model is not explicitly stated in neither [36] nor [37],

it is easy to extend their techniques to the case of M/G. In this chapter, we will show a

different computation of the LLN for an analogue of M/G model in the setting of CRN.

The following theorem from Kurtz [52] will be the key to our work:

Theorem 4.1. Let ζk ∈ RS, k = 1, ..., R, and let λk : Rs → R+ be a continuous function.

If Yk are independent unit rate Poisson process, then let XN and x respectively be the

solutions of the systems

XN(t) = x(0) +
1

N
Yk

(∫ t

0

Nλk(X
N(s))ds

)
ζk.

and

x(t) = x(0) +
∑
k

(∫ t

0

λk(x(s))ds

)
ζk.

If

F (·) ≡
R∑
k=1

λk(·) · ζk

is Lipshitz, then for any fixed t,

lim
N→∞

sup
s<t
|XN(s)− x(s)| = 0 almost surely.

The theorem (4.1) provides us with the LLN limit for the Continuous Time Markov

Chain models of the population dynamics of chemical reaction networks under “the
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classical scaling”. Under the classical scaling, all the species exists in same scale N , and

the reaction rates scales linearly in N . We would like to use this machinery to compute

the LLN limit for the specific type of systems with interruptible delay.

As a starting example, let us consider the following standard, non delayed kinetic

networks

A
r1→ B (1)

∅ r2→ A (2)

A
r3→ ∅. (3)

As usual, let us first model the system as (1.6). The populations of species A and B at

time t are given by the solutions of the system

XA(t) = XA(0)− Y1

(∫ t

0

r1XA(s)ds

)
+ Y2 (r2t)− Y3

(∫ t

0

r3XA(s)ds

)
(4.6)

XB(t) = XB(0) + Y1

(∫ t

0

r1XA(s)ds

)
− Yc

(∫ t

0

r1XA(s)ds

)
. (4.7)

where Y· are independent unit Poisson process. We would like to introduce a delay into

the reaction (1). In particular, we will require each incidence of (1) to spend a fixed

duration of length τ before its completion. This means that (1) does not consume the

species A immediately, and that (1) can be interrupted by (3) before producing the

species B. In other words, the reaction (1) is subject to premature termination. Thus,

at all time t , the population of A can be decomposed into two groups; (I) the ones who

have initiated the reaction (1), and (II) the ones who have not. We will distinguish the

ones belonging to (I) by identifying them as the intermediate species A∗, and calling the

rest by A. We can therefore say that there is an auxiliary reaction

A
r1→ A∗
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occurring at rate r1XA, in which A is immediately consumed. A∗ then transforms to B

with a fixed holding time of length τ. In terms of chemistry, A∗ can be considered as

activated complex. Let us denote this non-Markovian reaction by

A∗ →
τ
B,

and rewrite the system with new labels.

A
r1→ A∗ (1a)

A∗ →
τ
B (1b)

∅ r2→ A (2)

A
r3→ ∅ (3)

A∗
r∗3→ ∅ (3∗)

The population dynamics of A is strictly Markovian. More concretely, XA is a solution

of

XA(t) = XA(0)− Ya
(∫ t

0

r1XA(s)ds

)
+ Y2 (r2t)− Y3

(
r3

∫ t

0

XA(s)ds

)
, (4.8)

where Y· are independent unit Poisson processes. XA∗ and XB, on the other hand, are

non-Markovian and require more care. First let

R0(t) = Ya

(∫ t

0

r1XA(s)ds

)
,

be the counting process giving the total number of times the reaction (1a) has occurred

by time t. This process counts the total number of A∗ particles that have entered the

system by time t. R0(t) contains both XA∗(t), the number of A∗ particles that are
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currently in the system, and those that already have exited the system. We will further

decompose XA∗ into two groups; (I) those that will complete the reaction (1b) before

the interruption by (3∗), and (II) those that will fail to do so. In the model above, each

particle of A∗ is given a lifetime of length η, a positive random variable with distribution

expo(r∗3). We will denote the first group and the second group respectively by A∗1 and A∗2.

Let us also denote the lifetime of the ith particle of A∗1 by ηi. Therefore those belonging

A∗1 A∗2

Lifetime τ η

Delayed Product B ∅

to the first group are the ones with ηi > τ or equivalently the ones that live long enough

to complete (1b). Based on the logic we built so far, we can say that XB(t) is equal to

the number of A∗ that have entered the system before t − τ and satisfies η > τ . Also,

the A∗ particles in the system at time t are those that are yet to be removed from the

system via (3∗) nor (1b). If Ti is a ith jump time of R0(t), then

XA∗(t) =

R0(t)∑
i=R0(t−τ)+1

1((t− Ti) < ηi) =

∫ t

0

1((t− s) < ηR0(s−))dR0(s)

On the other hand, a particle of A∗ that has entered the system after t − τ does not

contribute to XB(t), since it requires the duration of length τ to produce B. Hence

XB(t) =

R0(t−τ)∑
i=1

1(τ < ηi) =

∫ t−τ

0

1(τ < ηR0(s−))dR0(s)

We would like to know the limit of XA∗(t) and XB(t) in the scaling of (4.1) above.
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To be more precise, if

XN
A (t) = XN

A (0)− 1

N

{
Ya

(
N

∫ t

0

r1X
N
A (s)ds

)
+ Y3 (Nr3t)− Y4

(
Nr4

∫ t

0

XA(s)ds

)}

RN
0 (t) = Ya

(∫ t

0

r1NX
N
A (s)ds

)
,

(4.9)

then we can define XN
B and XN

A∗ analogously as

XN
A∗(t) =

1

N

RN0 (t)∑
i=RN0 (t−τ)+1

1((t− Ti) < ηi), XN
B (t) =

1

N

RN0 (t−τ)∑
i=1

1(τ < ηi)

What will happen to XN
B and XN

A∗ as N → ∞? As promised, we will use theorem

(4.1) to answer this question.

4.3 A system with general delay time

We would like to further generalize our problem.

Proposition 4.2. Consider a CRN with species {Ci}Si=1 for which its scaled population

dynamics is given by XN(·). Suppose that there is, in addition, a non Markovian reaction

A∗ → B (β)

which satisfy the following properties:

1. A∗ is produced by the counting process

RN
0 (t) ≡ Yβ

(∫ t

0

Nλβ(XN(s))ds

)
.

2. The reaction (β) is subject to a premature cancellation with probability (1 − p).

Conditional on the cancellation, the A∗ particle remains in the system for the

duration τ2, a positive random variable with cumulative law F2.
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3. Conditional on the successful completion of (β), the A∗ particle remains in the

system for the duration τ1 ∼ F1.

Let ξi be the Bernnouli random variable that is 1 if the ith A∗ succeeds in producing B,

so that

τ = ξτ1 + (1− ξ)τ2

is the lifetime of any A∗ particle. Let τij be the jth realization of τi. Consider the

solutions of

XN
A∗(t) =

1

N

∫ t

0

1(t− s < τRN0 (s−))dR
N
0 (s)

XN
B (t) =

1

N

∫ t

0

ξRN0 (s−)1(t− s > τ1,RN0 (s−))dR
N
0 (s).

If x : Rt → RS is the solution of the corresponding ODE system for which

lim
N→∞

sup
s≤T
|XN

Ci
(s)− xCi(s)| = 0, i = 1, ..., S

almost surely, then

lim
N→∞

sup
s≤T
|XN

B (s)− xB(s)| = 0, lim
N→∞

sup
s≤T
|XN

A∗(s)− xA∗(s)| almost surely

where

xB(t) =

∫ t

0

λβ(x(s))pF1(t− s)ds (4.10)

and

xA∗(t) =

∫ t

0

λβ(x(s)) {p(1− F1(t− s)) + (1− p)(1− F2(t− s))} ds. (4.11)
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A∗1

A∗2

A∗

τ1 ∼ F1

τ2 ∼ F2

B

∅

Figure 3: Pictorial image of proposition (4.2). A∗ → B with delaytime τ1 happens with probability p, and A∗ → ∅

with delaytime τ2 happens with probability 1− p. It is equivalent to M/G queue with two servers with respective holding

times τ1 and τ2, in which the customers choose the first server by a fixed probability p.

Remark 4.3. For an A∗ particle that entered the system at time s, t−s < τ implies that

the particle is still in the system at time t. Also, if ξ1(t− s > τ1) = 1, then this means

that the corresponding A∗ particle has already produced B and has exited the system by

time t.

Remark 4.4. Note that the case of (4.5) we described in the beginning of this section

is a special case of the proposition above with τ1 fixed,

ξ ∼ Ber(p), p = exp(−r2τ1)

and

F1(x) = 1x≥τ1

F2(x) =
1− exp(−r2x)

1− p
1x<τ1 + 1x≥τ1 .

(4.12)

Under the condition (4.12),

pF1(t− s) = p1(t−s)≥τ1

= p1s≤t−τ1

(4.13)
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and

p(−F1(t− s))1s<t + (1− p)(1− F2(t− s))1s<t

= p1t−s<τ1,s<t + (1− p)
(

1−
(

1− exp(−r2(t− s))
1− p

1t−s<τ1 + 1t−s≥τ1

)
1s<t

)
=

(
p+ (1− p)exp(−r2(t− s))− p

1− p

)
1t−s<τ1,s<t

= exp(−r2(t− s))1t−τ1<s<t.

(4.14)

So

xB =

∫ t−τ1

0

r1xA(s) exp(−r2τ1) ds

xA∗ =

∫ t

t−τ1
r1xA(s) exp(−r2(t− s))ds.

Remark 4.5. It is worthwhile to note that when p = 1 and F1(t) is absolutely continuous

with respect to t, the limit in proposition 4.2 is the same (via Leibnitz’ rule) as the

approximation of E[XB(t)] that Schlicht suggests:

d

dt
xB(t) ∼=

∫ t

0

λβ(xB(t− s))F1(ds)

which in fact is an equality when λ is linear [65]. Schlict also considers a case in which

multiple complexes create B with different delay time. We can in fact easily adopt our

result to the same situation by modifying the proof slightly. We will omit the modified

result, however, to avoid notational overflow.

As for the strategy of the proof of proposition 4.2, we will use the framework of

“thinning” introduced in the introduction. Let us prelude the proof with a lemma

concerning this concept.
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Lemma 4.6. Let Mi : i ∈ Z+ be a sequence of iid random variables with bounded

moments. Also, let RN
0 be a positive, nonexplosive pure jump process with the following

properties:

1. RN
0 (s)−RN

0 (s−) ∈ {1, 0} for all s.

2. For every T , there exists a continuous, non decreasing deterministic process x(·) ≥

0 such that

lim
N→∞

sup
s≤T

∣∣∣∣RN
0 (s)

N
− x(s)

∣∣∣∣ = 0

almost surely.

3. For each s, limN→∞R
N
0 (s) =∞.

Then for any T <∞,

sup
t≤T

∣∣∣∣ 1

N

∫ t

0

MRN0 (s−)dR
N
0 (s)−

∫ t

0

E[M ]dx(s)

∣∣∣∣→ 0. (4.15)

almost surely.

Proof. First, I will show that∣∣∣∣ 1

N

∫ t

0

MRN0 (s−)dR
N
0 (s)−

∫ t

0

E[M ]dx(s)

∣∣∣∣→ 0

for a fixed t. To see this, just simply note that

1

N

∫ t

0

MRN0 (s−)dR
N
0 (s) =

1

N

RN0 (t−)∑
i=0

Mi (4.16)

=
RN

0 (t−)

N

1

RN
0 (t−)

RN0 (t−)∑
i=0

Mi (4.17)
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By the continuity of x and the law of large numbers, the above expression clearly con-

verges to E[M ]x(t).

We want to extend the argument above to the original claim in the proposition 4.3.

For simplicity, put

QN
R (t)

def
=

1

N

∫ t

0

MRN0 (s−)dR
N
0 (s), Qx(t)

def
=

∫ t

0

E[M ]x(s)ds.

Let 0 = t0 < t1 < · · · < tm = T be a partition of [0, T ] for which

max
i=0,...,m−1

sup
s,u∈[ti,ti+1]

|Qx(s)−Qx(u)| < ε/3

We know that there exists N∗(·) which is finite almost surely such that if N > N∗, then

max
i=0,...,m

∣∣QN
R (ti)−Qx(ti)

∣∣ < ε/3.

Fix this N , and w ∈ Ω for which N∗(w) <∞. If s ∈ [ti, ti+1], then since QR
N is increasing,

Qx(ti)− ε/3 < QR
N(ti) < QR

N(s) < QR
N(ti+1) < Qx(ti+1) + ε/3

And trivially Qx(s) ∈ (Qx(ti)− ε/3, Qx(ti+1) + ε/3) as well. Since

(Qx(ti+1) + ε/3)−Qx(ti)− ε/3 < ε,

|QN
R (s)−Qx(s)| < ε.

Since s is arbitrary,

sup
t≤T
|QN

R (s)−Qx(s)| < ε

as desired.

With the lemma above at our disposal, we would like to prove the result in proposition

4.2.
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Proof. of Prop 4.2.

Let {ξi; i ∈ Z≥0} be a sequence of Bernoulli random variables with parameter p, and

let {Uij; i ∈ Z≥0, j = 1, 2} be a sequence of uniform random variables over the interval

[0, 1] such that F−1
j (Uij) = τi1. We would like to split XN

A∗ , as follows. Let A∗1 be a

category of A∗ particle that successfully complete the reaction (β), and the ’species’ A∗2

be the category that exits the system before the completion of (β). Then

RN
01(t) =

∫ t

0

ξRN0 (s)dR
N
0 (s)RN

02(t) =

∫ t

0

(1− ξRN0 (s−))dR
N
0 (s) (4.18)

are counting processes that count the production of A∗1 and A∗2, respectively. We can

therefore write

RN
0 = RN

01 +RN
02,

and define

XN
A∗1

(t)
def
=

1

N

∫ t

0

1(t− s > F−1
1 (URN01(s−),1))dRN

01(s) (4.19)

XN
A∗2

(t)
def
=

1

N

∫ t

0

1(t− s > F−1
2 (URN02(s−),2))dRN

02(s) (4.20)

This way we can also simplify XN
B as

XN
B =

RN
01(t)

N
−XN

A∗1
(t) (4.21)

Since we know the limit of the first term of (4.21), it suffices to obtain the limit of

(4.19) and (4.20). By themselves, further analysis is yet difficult. We will approach

the problem by approximating (4.19) and (4.20). We will approximate (4.19) first. The

approximation of (4.20) works in the exactly same way. Let

π = {0 = p0 < p1 < p2 < · · · < pn = 1}
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be a partition of [0, 1]. Put ∆pi = pi − pi−1,

mesh(π) = max
i≤n
{∆pi}.

F−1(r)
r

pk

pk+1

p0 = 0

pn = 1

t = 0 t = T

(s, q)

s

Figure 4: A Pictorial image of the setup in the in proof. Vertical axis measures the U (uniform random variable)

value, and the horizontal axis measures the t (time) value. Lifetime of a particle born in the shaded region is ν ∈

[F−1(pk), F−1(pk+1)]. A particle with (U, t) = (s, q) enters the system at time s, and will stay in the system for a

duration of F−1(q). Particles above the curve are in the system by time T , and particles below are not.

We would like to note thatw;
U(w) ∈ [pi−1, pi)

t− s < F−1
1 (U(w))

 ⊂
w;

U(w) ∈ [pi−1, pi)

s > t− F−1
1 (pi)

 (4.22)

w;
U(w) ∈ [pi−1, pi)

s > t− F−1
1 (pi−1)

 ⊂
w;

U(w) ∈ [pi−1, pi)

t− s < F−1
1 (U(w))

 (4.23)

Based on (4.22) and (4.23), we can claim that

XN
A∗1up

(t) =
1

N

n∑
i=1

∫ t

(t−F−1
1 (pi))∧0

1(URN0 (s−),1 ∈ [pi−1, pi))dR
N
01(s)

XN
A∗1low

(t) =
1

N

n∑
i=1

∫ t

(t−F−1
1 (pi−1))∧0

1(URN0 (s−),1 ∈ [pi−1, pi))dR
N
01(s)

(4.24)



111

are respectively upper and lower bound for XN
A∗1

(t). Then by lemma 4.3 and theorem

4.1,

lim
N→∞

sup
s≤t
|XN

A∗1up
(s)− xA∗1up(s)| = 0 lim

N→∞
sup
s≤t
|XN

A∗1low
(s)− xA∗1low(s)| = 0

where

xA∗1up(t) =
n∑
i=1

∫ t

(t−F−1
1 (pi))∧0

pλβ(x(s))∆pi ds

xA∗1low(t) =
n∑
i=1

∫ t

(t−F−1
1 (pi−1))∧0

pλβ(x(s))∆pi ds

(4.25)

We will rearrange these integrals. Let F−1
1 (1) = τmax1 . After tedious reindexing,

xA∗1,up(t) =
n∑
i=1

(∫ t

(t−F−1
1 (pi))∧0

pλβ(x(s))∆pi ds

)

=
n∑
`=1

∫ (t−F−1
1 (p`−1))∧0

(t−F−1
1 (p`))∧0

pλβ(x(s))(p− p`−1,1)ds

≥
∫ t

(t−τmax1 )∧0

pλβ(x(s))p(1− F1(t− s))p ds

=

∫ t

0

pλβ(x(s))(1− F1(t− s))ds

(4.26)

The last equality is from that F1(s) = 1 for s > τmax1 . The inequality comes from the

fact that when

s ∈ [(t− F−1
1 (p`)) ∧ 0, (t− F−1

1 (p`−1)) ∧ 0]

then

1− p`−1 ≥ 1− F1(t− s) ≥ 1− p`.

(4.27)

Likewise,

xA∗1,low(t) =
n∑
i=1

(∫ t

(t−F−1
1 (pi−1))∧0

pλβ(x(s))∆pids

)
(4.28)



112

and

=
n−1∑
`=1

∫ (t−F−1
1 (p`−1))∧0

(t−F−1
1 (p`))∧0

λβ(x(s))p(1− p`)ds

≤
∫ t

(t−F−1
1 (pn−1))∧0

λβ(x(s))p(1− F1(t− s))ds

≤
∫ t

(t−τmax1 )∧0

λβ(x(s))p(1− F1(t− s))ds

=

∫ t

0

λβ(x(s))p(1− F1(t− s))ds

(4.29)

Note that

xA∗1,up(t)− xA∗1,low(t) =
n−1∑
`=1

∫ (t−F−1
1 (p`−1))∧0

(t−F−1
1 (p`))∧0

pλβ(x(s))∆p`ds

+

∫ (t−F−1
1 (pn−1))∧0

(t−F−1
1 (pn))∧0

pλβ(x(s))(1− pn−1)ds

=
n∑
`=1

∫ (t−F−1
1 (p`−1))∧0

(t−F−1
1 (p`))∧0

pλβ(x(s))∆p`ds

≤ mesh(π)

∫ t

t−τmax1

pλβ(x(s))ds

≤ mesh(π)

∫ t

0

pλβ(x(s))ds

⇒ sup
r≤t
|xA∗1,up(r)−xA∗1,low(r)| ≤ mesh(π)

∫ t

0

pλβ(x(s))ds

(4.30)

Taking mesh π to 0, we see that

lim
N→∞

sup
s≤t
|XN

A∗1
(s)− xA∗1(s)| = 0

where

xA∗1(t) =

∫ t

0

λβ(x(s))p(1− F1(t− s))ds (4.31)

Likewise arguing,

lim
N→∞

sup
s≤t
|XN

A∗2
(s)− xA∗2(s)| = 0
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where

xA∗2(t) =

∫ t

0

λβ(x(s))(1− p)(1− F2(t− s))ds. (4.32)

It is now clear that

xA∗ = xA∗1 + xA∗2 and xB(t) =

∫ t

0

λβ(x(s))p ds− xA∗1(t)

satisfy the desired property.

The proposition 4.2 supports Schlict’s result [65]. Nevertheless, we would also like

to remind the reader that the ODE system does not agree with the system of the expec-

tation of the corresponding stochastic system unless the CRN consists only of monomer

reactions. In this light, the law of large numbers problem discussed in this chapter is

completely different from that of [65]. Also, that equation (4.2) is entirely different from

a delayed ODE (under the assumption of immediate consumption) provides more evi-

dence that the stochasticity shall not be ignored even in large scale chemical reaction

networks.

The work of Garcia on the S.I.R model [36] captures the very essence of the proof we

presented in this chapter. Garcia used the Glivenko-Cantelli convergence of the Poisson

random measure to analyze the S.I.R model with randomly distributed infectious period.

In the language of Garcia and Kurtz, what we did is equivalent to taking a Glivenko-

Cantelli convergence of a Poisson random measure on [0, 1] × R≥0 with mean measure

F1 ×m, where m is the Lebesgue measure. Put this way, the technique we presented in

this chapter cannot be considered new.

Also, at this point, the technique in this chapter is yet not applicable to the analysis of

the transcription example in the beginning, since it is difficult to analyze the asymptotic
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behavior of XD∗ . The only Markov component of the system in the example is the

counting process of (4.2), which is given by

XN
D∗tot

(t) =
1

N
Y

(∫ t

0

NXN
D (s)XN

T (s)ds

)
(4.33)

Note that when XN
D is non-Markovian, it is difficult to show the convergence of XN

D∗tot

to an absolutely continuous solution by directly appealing to (4.1). We believe that we

can use Garcia and Kurtz’ method of Glivenko-Cantelli convergence to analyze more

complex CRNs with delay, and this is an avenue for future work.



115

Chapter 5

Miscellaneous results and conclusion

In this final chapter we will provide three miscellaneous results. In the first section, we

will discuss a condition which guarantees the non-explosivity of a class of stochastically

modeled chemical reaction networks. The deficiency of a network is a property of the

topology of a CRN and we will show that a deficiency zero CRN with a strongly con-

nected reaction graph (which admits a product form stationary distribution [6]) does

not blow up in finite time. In the second section, we will discuss MLMC [38] in further

detail, and introduce a package for the automatic generation of MLMC code. Lastly,

we will discuss a way to utilize MLMC for sensitivity analysis, which leads to the most

efficient unbiased estimator for sensitivities available today.

5.1 Finite blowup time for mass action kinetics

In this subsection, we will discuss a condition under which a stochastically modeled CRN

with certain topological properties does not explode in finite time. The importance of

this subject is apparent in our construction of the stochastic model (1.8). As mentioned

in the introduction, if we know the process is non-explosive, then we can construct the

well defined process forward in time with any exact simulation method like Gillespie’s

method, and we can write out the likelihood of a path up to any bounded time. We will
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base our non-explosivity condition on the following three aspects of the graph topology of

CRN. Throughout the text, let us suppose a CRN (S, C,R) with R number of reactions,

d number of species, complexes {νj} ⊂ Rd, and reaction rate constants {rk : k =

1, ..., R} ⊂ R≥0.

Definition 5.1. A CRN is weakly reversible if the corresponding reaction graph is

strongly connected.

Definition 5.2. The deficiency of a CRN is δ = |C| − `− s, where |C| is the number of

complexes(vertices), ` is the number of linkage classes(the connected components), and

s is the number of species(the dimension of the state space).

Definition 5.3. For x, c ∈ Rd
≥0, let us denote cx

def
=
∏d

i=1 c
xi
i , where we interpret 00 = 1.

A state c ∈ Rd
≥0 of a CRN is complex balanced if for each vertex ν,

∑
νk→ν

rkc
νk =

∑
ν→νj

rjc
νj .

where summations are over all reactions that produces ν and over all reactions that ν

produces, respectively. It has been shown by [6] that, weakly reversible, deficiency zero

CRN admitting a complex balanced state has a product-form stationary distribution.

However, the existence of a stationary distribution usually does not guarantee non-

explosivity. For example, consider the following example of a random walk on Z≥0 with

transition rates

qx,x+1 = λ2x, qx,x−1 = µ2x

where 1 < λ
µ
< 2. This process is transient, and it is easily observed that

π(x) =
1

2x

(
λ

µ

)x
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is a stationary distribution of the process. However, the process with invariant distri-

bution is non-explosive if and only if the process is positive recurrent. So the process is

explosive. We will show that a weakly reversible chemical reaction network admitting a

complex balanced state is non-explosive. We will base our argument on [6] and Reuter’s

theorem, which we will state below:

Theorem 5.1. (Reuter’s theorem [15]) Let Q be the infinitesimal generator of the

Markov process over the state space S. The process explodes if and only if there ex-

ists an uniformly bounded, nonzero z ∈ R|S| such that

∑
y∈S

qxyzy = zx

for all x ∈ S.

Theorem 5.2. (Anderson, Craciun and Kurtz [6]) Consider an deficiency zero CRN.

Suppose that the intensity function for the kth reaction from the complex νk at the state

x ∈ S = Zd is given by

λk(x) = rk
θ(x)

θ(x− νk)

d∏
`=1

1x`>νk`

where

θ(x) =
d∏
i=1

xi∏
j=1

θi(j)

and each θi is any positive valued function that vanishes outside the positive quadrant.

Suppose further that the associated mass-action based deterministic system has an equi-

librium state c. Then the stationary distribution of the stochastic model (1.6) of CRN

is given by

π(x) = M
1

θ(x)

d∏
i=1

cxii .

where M is a normalizing constant, so long as π(x) is summable.
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It should be noted, as commented in [6], that the process admits this stationary

distribution only if π(x) is summable. For instance, for Michealis-Menten kinetics, one

might chose parameters so that the product-form stationary distribution as given by

the theorem above does not exist. For a more formalized condition for the appropriate

parameters for the kinetics, we refer the reader to [6]. Now, with the following lemma,

we can connect the above two theorems to make the desired conclusion about non-

explosivity of this class of CRNs.

Lemma 5.3. Consider a Markov process on a state space S with generator Q and a

stationary distribution π. If ∑
y

∑
x

π(x)qxy

is absolutely summable, then the process does not explode.

Proof. Suppose that the network does explode, but

∑
y

∑
x

π(x)qxy

is absolutely summable. By Reuter’s theorem, there exists a uniformly bounded, nonzero

vector z ∈ Z|S|≥0 such that, for all x in the state space S,

∑
y

qxyzy = zx.

Without loss of generality, let

‖z‖ < 1.

Then ∑
y

∑
x

|π(x)qxyzy| ≤
∑
y

∑
x

π(x)|qxy|
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Hence by assumption,
∑

y

∑
x π(x)qxyzy is absolutely summable. Thus by Fubini’s the-

orem, ∑
y

∑
x

π(x)qxyzy =
∑
x

∑
y

π(x)qxyzy

and in particular, ∑
y

∑
x

π(x)qxyzy =
∑
y

zy
∑
x

π(x)qxy = 0.

On the other hand,

∑
x

∑
y

π(x)qxyzy =
∑
x

π(x)
∑
y

qxyzy =
∑
x

πxzx

and we can conclude that
∑

x πxzx = 0. Because π(x) ≥ 0, we must have z = 0

necessarily. This is a contradiction.

We therefore have the following corollary.

Corollary 5.1. If a CRN is weakly reversible, deficiency zero system admitting a com-

plex balanced equilibrium under the ODE deterministic model, it is not explosive as long

as the kinetics model is “appropriate” as set forth in [6] and θ(x)
θ(x−νk)

is bounded.

Proof. Every qxy in the generator corresponds to a λk(x) in the theorem (5.2). Now

simply note that

λk(x)π(x) =
Mrk

θ(x− νk)
∏

cxii .

Since θ(x)
θ(x−νk)

is bounded, λk(x)π(x) < Kπ(x) for some constant K, and
∑
λk(x)π(x) is

absolutely summable. We can apply the lemma 5.3.

The CRN with mass action kinetics satisfies the condition set forth in the corollary.

Indeed, it sounds plausible that we should be able to remove the “deficiency zero”

condition in the corollary above. This is a possible avenue for next research.
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5.2 Implementation of MLMC

While the MLMC scheme we introduced in (3.1.2) is fast and unbiased, there are some

technical issues to be confronted in its implementation. The most important unresolved

issue of all is the number of levels to be used for the algorithm. In [8], Anderson

implemented the MLMC for the system of translation and dimerization

G
25→ G+M,

M
1000→ M + P,

P + P
0.001→ D,

M
0.1→ ∅,

P
1→ ∅.

(5.1)

with different number of levels.

Nothing can be inferred about the number of sample paths to be allocated at each

level without actually simulating the paths and estimating the variance. To counter

this problem we conduct pre-computations to obtain heuristic information about the

variance of each level. More precisely, we take the following steps:

1. Prompt the user for the number of levels, stepsizes hk, and the desired size of

variance σ.

2. Precompute the empirical variance σ̂k at each level, and estimate the computa-

tional cost at each level.

3. Minimize the CPU time under the restraint

σ ≥
∑ σ̂k

nk
(5.2)
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by controlling nk, which is the number of paths to be allocated for the level k.

Note that σ̂k
nk

is an estimator for the variance of the average of nk samples of the

coupled pair at the level k.

We created a package that produces a Matlab code that implements the MLMC

simulation for any CRN. The figure (5) summarizes the runtime of the MLMC for the

approximation of XD(1) in the example 5.1 with the initial condition XG(0) = 1 and

XM(0) = XP (0) = XD(0) = 0.

stepsize and # levels X̂D CPU time (sec) # random numbers generated

h = 3`, ` = 3 ∼ 6 3,714.4 ± 1.0 3,503.3 1.694× 109

h = 3`, ` = 2 ∼ 5 3,714.3 ± 1.0 2,300.1 9.797× 108

h = 3`, ` = 3 ∼ 5 3,713.6 ± 1.0 4,132.6 1.591× 109

h = 3`, ` = 2 ∼ 3 3,714.6 ± 1.0 9,714.8 1.635× 109

Figure 5: Runtime with different number of levels

There are many issues in terms of implementation. For example, notice that the

number of levels and the range of ` greatly affects the runtime and the number of

random variables generated. Also, the number of precomputations to be done to solve

the linear program (5.2) is chosen arbitrary. These are all avenues for future research

towards a better implementation of MLMC.
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5.3 Sensitivity analysis using Girsanov transforma-

tion and MLMC

In this section, we will discuss a way to apply the MLMC for sensitivity analysis using the

Girsanov transformation. Amongst all the known methods for sensitivity analysis, the

Girsanov method is the only method that computes an unbiased estimator for sensitivity

analysis. The method was originally introduced by Plyasunov and Arkin [13]. However,

for long simulated paths, the computational cost of the method was high in comparison

to finite difference methods [4] [19] due to high variance of the estimator. In this section

we aim to skirt the problem by applying the Girsanov method in combination with the

MLMC, which in essence is a variance reduction method.

Let (C,S,R) be a CRN with R reactions, d species, and reaction vectors ζk. Also

suppose that {λθk : J [0,∞)d × R≥0 → R≥0; θ ∈ R≥0 k = 1, ..., R} is a family of positive

continuous functions that are differentiable with respect to θ, and that the process Xθ

as defined in (1.8) under a probability measure P with reaction intensities Zk = λθk is

non-explosive. If f is a continuous function, we would like to compute d
dθ
E[f(Xθ(t))]. In

order to apply MLMC to this problem, we need a sequence of processes that approximate

Xθ, and also couple the consecutive pairs of the approximate processes tightly. If Vi are

the approximating processes, we will compute the target as

d

dθ
EP [f(Xθ(t))] =

(
M−1∑
i=0

d

dθ
EP [f(Vi+1(t))− f(Vi(t))]

)
+

d

dθ
EP [f(V0(t))]

where VM
def
= X.

For now, let us denote V
def
= V1, and focus on the first level. The rest of the levels
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works in exactly same way. Suppose that the counting processes for V have the intensity

{λ̃θk : J [0,∞)d × R≥0 → R≥0 : θ ∈ R≥0 k = 1, ..., R}.

We couple X and V using the split coupling(3.4) with λk = λθk and λ̃k = λ̃θk.

More precisely, consider the process Wθ = (Xθ, Vθ) in R2d
≥0 and define elements in R2d

given by

ζ1k = [ζk, O], ζ2k = [O, ζk] ζ3k = [ζk, ζk]

Then with the notation

rik(λ
θ, λ̃θ, Xθ, Zθ, s) = gθik(Wθ, s),

the process Wθ with the split coupling is given by

Wθ(t) = Wθ(0) +
R∑
k=1

3∑
i=1

Yik

(∫ t

0

gθik(Wθ, s)ds

)
ζik. (5.3)

Next, let q(W (t))
def
= f(X(t))−f(V (t)). Recall from the introduction that we may write

EP [q(W (t))] = EQ[q(W (t))L(θ, t)]

where Q is the measure under which the counting processes Yik are independent unit

rate Poisson processes, and L(t)dQ = dP with L as given in (1.11). Under the Leibnitz

condition, we can commute the expectation with the derivative, and d
dθ
EP [q(W (t))] can

be computed as
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d

dθ
EQ[q(W (t))L(θ, t)] = EQ[q(W (t))

d

dθ
L(θ, t)]

= EQ[q(W (t))
d
dθ
L(θ, t)

L(θ, t)
L(θ, t)]

= EQ[q(W (t))

(
d

dθ
log(L(θ, t))

)
L(θ, t)]

= EP [q(W (t))
d

dθ
log(L(θ, t))]

(5.4)

We remind ourselves that the Leibnitz condition requires the followings:

1. EP [q(Wθ(t))] exists

2. d
dθ

log(L(θ, w, t)) exists for almost sure w and t.

3. There exists a random variable |q(Wθ)
d
dθ

log(L(θ, w, t))| < G with P -finite expec-

tation.

The Leibnitz won’t be true in general for our case, since for λ, λ̃ ∈ C∞,λ(x) ∧ λ̃(x) is

not necessarily in C∞ with respect to θ.

Now, if w ∈ J [0,∞)2d, let N(w, t) − 1 be the total number of jumps of w in the

interval [0, t). Then the likelihood L(θ, w, t) of a path w up to time t can be simplified

to

L(θ, w, t) = exp

(
−
∫ t

0

∑
k,i

gθik(w, s)ds

)
N(w,t)−1∏
j=0

gθwinj(W, sj−1)

logL(θ, w, t) = −
∫ t

0

∑
k,i

gθik(w, s)ds+

N(w,t)−1∑
j=0

log gθwinj(w, sj−1)

(5.5)

where winj is the index of the jth reaction of w and sj is the time of the jth reaction

with a convention that s0 = 0, sN(w,t) = t.
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We can therefore write

d

dθ
log(L(θ,Wθ, t)) =

∑
i,k

− d

dθ

∫ t

0

gθik(Wθ, s) +
∑
j

d
dθ
gwinj(Wθ, j)

gwinj(Wθ, sj)
(5.6)

5.3.1 A special case

If λ and λ̃ are both proportional to θ, then by simple computation we see

d

dθ
log(L(θ, w, t)) =

1

θ

∑
i∈{1,2,3},k∈J(θ)

Ỹik

(∫ t

0

gθik(Wθ, s)ds

)
(w) (5.7)

where Ỹ is a compensated unit Poisson process and J(k) is the set of reactions for which

the rate λ depends on θ. To be more general, if

λθ·k(x, s) = η·k(θ)γk(x, s) (5.8)

and η is differentiable with respect to θ, then

d

dθ
log(L(θ, w, t)) =

∑
i∈{1,2,3},k∈J(θ)

d
dθ
ηik(θ)

ηik(θ)
Ỹik

(∫ t

0

gθik(wθ, s)ds

)
(w). (5.9)

Note that when (5.8) holds, then we do not need to worry about the second part of the

Leibnitz condition condition.

We can in fact do even better. Note if A and B are random variables, the variance

of A − αB is minimized with α = Cov(A,B)
V ar(B)

. We may take advantage of the fact that

M(t)
def
= d

dθ
log(L(t, w)) is a martingale, and correct the coarsest term by −αM(t). In

the next section, we will show a computational result comparing the direct Girsanov

method and the MLMC Girsanov method.

5.3.2 Numerical Example

We consider an example of central dogma with the following parameters;

G
2→ G+M, M

10→M + P, M
θ→ ∅, P

1→ ∅
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where G, M ,P respectively represent DNA particle, mRNA particle, and peptide parti-

cle. Under mass action kinetics model, the rates of reactions λk in this CRN are linear.

Also, by using the intensity property in the introduction,

E

[
Y

(∫ t

0

Z(s)ds

)]
= E

[∫ t

0

Z(s)ds

]
and we can solve E[XM(t)] and E[XP (t)] as a solution of an ODE system. Solving the

system we get

EXP (30, θ) ∼= 79.94
∣∣∣
θ=1/4

J(θ) =
d

dθ
EXP (30, θ) ∼= −318.07

∣∣∣
θ=1/4

.

We measured the CPU time required to estimate the value J(θ) with variance less than

10 using the MLMC-Girsanov method. We summarized the result in the figure 6. Note

the significant gain in runtime.

stepsize and # levels ˆJ(θ) (95% interval) CPU time # random numbers generated

h = 3`, ` = 1 ∼ 2 -315.69 ± 6.06 136.70 sec 2.7 ×108

h = 3`, ` = 1 ∼ 3 -317.87± 5.94 248.85 sec 2.9 ×108

h = 4`, ` = 1 ∼ 4 -319.62 ± 5.74 332.30 sec 4.6 ×108

Direct Girsanov -321.89 ± 6.16 5394.6 sec 2.8 ×1010

Figure 6: Comparison of the Girsanov-MLMC method and the direct Girsanov method,

both with +αM(t) correction

In terms of runtime, the common finite difference method (CFD) in combination

with split coupling [4] eclipses our result above. However, the estimator from the CFD

method is biased, whereas that of the Girsanov method is unbiased. This example

provides still another motivation to further study the MLMC method.
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