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Abstract

A connected graph on three or more vertices is said to be irre-
ducible if it has no leaves, and if each vertex has a unique neighbor
set. A connected graph on one or two vertices is also said to be
irreducible, and a disconnected graph is irreducible if each of its con-
nected components is irreducible. In this paper, we study the class
of irreducible graphs. In particular, we consider an algorithm that,
for each connected graph Γ, yields an irreducible subgraph I(Γ) of
Γ. We show that this subgraph is unique up to isomorphism. We
also show that almost all graphs are irreducible. We then conclude
by highlighting some structural similarities between I(Γ) and Γ.

1 Introduction

This paper is concerned with the class of graphs known as irreducible graphs.
A connected graph on three or more vertices is irreducible if it has no leaves,
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and if each vertex has a unique neighbor set. A connected graph on one
or two vertices is also said to be irreducible, and a disconnected graph is
irreducible if each of its connected components is irreducible.

Irreducible graphs played a pivotal role for Neel and Orrison in [3] in which
they studied the linear complexity of graphs. If Γ is a graph, then its
linear complexity L(Γ) is a measure of the minimum number of arithmetic
operations needed multiply the adjacency matrix of Γ with an arbitrary
vector of the appropriate size. It was shown in [3] that if Γ is a connected
graph, then it has a connected, induced, and irreducible subgraph I(Γ) such
that

L(Γ) = L(I(Γ)) + (|V (Γ)| − |V (I(Γ))|).
This fact was then used to find or give bounds for the linear complexity of
several well-known classes of graphs.

The construction in [3] of I(Γ) is based on an algorithm, which we call the
Reduction Algorithm, that requires a fixed ordering of the vertices of Γ. In
this paper, we show that the isomorphism class of I(Γ) is independent of the
chosen ordering of the vertices of Γ (Theorem 4). We also show that almost
all graphs are irreducible (Theorem 5). We then conclude by highlighting
some structural similarities between I(Γ) and Γ (Propositions 9, 10, 11).

Throughout the paper, we assume familiarity with the basics of graph the-
ory. See for example [5]. Furthermore, all graphs considered are finite,
simple, and undirected. Lastly, we will denote the vertex set of a graph Γ
by V (Γ), and denote the neighbor set of a vertex v in Γ by NΓ(v).

2 The definition and preliminaries

In [3], a graph Γ was defined to be irreducible if it was a connected graph
that remained unchanged after undergoing the following, which we call the
Reduction Algorithm:

Let Γ be a connected graph on at least three vertices with vertex set
V (Γ) ⊆ {v1, . . . , vn}. Let R(Γ) denote the induced subgraph of Γ obtained
by removing the vertex vj ∈ V (Γ) with the smallest index j such that

1. vj is a leaf, or

2. there exists some vi ∈ V (Γ) such that i < j and NΓ(vj) = NΓ(vi).

If no such vertex exists, then we define R(Γ) to be Γ. For convenience, we
also define R(Γ) = Γ if Γ consists of only one edge or one vertex.



When this single-element reduction is repeated we construct, in the process,
a sequence of induced subgraphs: Γ, R(Γ), R2(Γ), . . . . Let k be the first
natural number such that Rk+1(Γ) = Rk(Γ). We define I(Γ) to be Rk(Γ).

It is clear that I(Γ) is connected, contain no leaves, and the neighbor sets
of distinct vertices will be distinct. It is therefore an irreducible induced
subgraph of Γ. In the context of [3], Neel and Orrison focused primarily on
connected graphs. The definition of irreducible can be naturally extended
to disconnected graphs: we call a disconnected graph irreducible if each of
its connected components is irreducible.

Note that in an irreducible graph all vertices v with deg(v) ≥ 1 will have
distinct neighbor sets, and the only leaves will be in connected components
consisting of two vertices connected by an edge.

We may easily adapt the Reduction Algorithm to disconnected graphs by
applying the algorithm to each connected component individually. Because
irreducibility questions which involve disconnected graphs rest entirely on
associated irreducibility questions involving the connected components, we
will restrict our focus to connected graphs for the remainder of this paper.

We define an equivalence relation on the vertices of a connected graph in the
following way: Vertices v and w are equivalent, v ∼ w, if NΓ(v) = NΓ(w).
The equivalence classes will be sets of vertices with the same neighbor sets
in Γ. We denote the equivalence class containing a vertex v by [v]Γ, or
simply [v] when the graph in question is unambiguous. For any nontrivial
equivalence class [v], we call the deletion of a nonempty set S ⊂ [v] from
V (Γ) a reduction of the equivalence class [v]. We will say that an equiva-
lence class [v] is reducible if |[v]| > 1. We say a vertex v is reducible if it is
a leaf or [v] is reducible.

3 Uniqueness and Prevalence

The Reduction Algorithm depends on the ordering of the vertices of the
graph. A natural question is whether this ordering affects the form of the
irreducible graph I(Γ). We will show that, in fact, I(G) is unique up to
isomorphism. We will begin with a series of useful lemmas.

Lemma 1. Let Γ be a graph, R(Γ) a single-element reduction of the graph,
and let u, v ∈ V (R(Γ)). If u ∼ v in Γ, then u ∼ v in R(Γ).

Proof. Since u ∼ v in Γ, NΓ(u) = NΓ(v), and R(Γ) is formed by deleting a
single vertex. Clearly, NR(Γ)(u) = NR(Γ)(v), so u ∼ v in R(Γ).



This yields a second lemma concerning equivalence classes as a corollary:

Lemma 2. Let Γ be a graph, R(Γ) a single-element reduction of Γ, and
u ∈ V (R(Γ)). If [u] was not the equivalence class that was reduced, then
[u]Γ ⊆ [u]R(Γ).

The proof is immediate. A final useful lemma follows:

Lemma 3. Let Γ be a graph. Let u ∈ V (R(Γ)) be a reducible vertex in Γ.
If [u] was not the equivalence class that was reduced, then u is a reducible
vertex in R(Γ).

Proof. If u is a leaf in Γ, it will still be a leaf in R(Γ) since its sole neighbor
cannot have been a reducible vertex. If [u]Γ was reducible, then so is [u]R(Γ)

by Lemma 2.

With these lemmas in hand we may prove the desired result regarding the
uniqueness of I(Γ).

Theorem 4. For any graph Γ, the irreducible graph I(Γ) is unique up to
isomorphism.

Proof. Suppose, for the sake of contradiction, that there exists a minimal
counterexample Γ. Then Γ is a minimal reducible graph containing a pair
of reducible vertices u, v such that I(Γ− u) 6∼= I(Γ− v). Note that we may
speak without ambiguity of the irreducible subgraphs of Γ − v and Γ − u
since Γ is minimal. Clearly, [u] 6= [v].

By Lemma 3, v is reducible in Γ− u, as is u in Γ− v. Thus, Γ− u may be
reduced by deleting v, as can Γ−v by deleting u. In each case this reduction
results in the graph Γ− {u, v}. It follows that I(Γ− u) = I(Γ− {u, v}) =
I(Γ−v), which is a contradiction. Thus, no minimal counterexample exists,
which completes the proof.

Armed with this theorem, we may now speak of the irreducible subgraph
I(Γ) without ambiguity, up to isomorphism.

Another interesting point to consider is whether irreducible graphs are com-
mon, rare, or something in between. In other words, when plucking, at
random, some graph from the vast universe of possible graphs, can we say
anything interesting about the likelihood of that graph being irreducible?
We now show that most graphs, indeed, nearly all graphs, are irreducible.



Let Γ be a graph, and let u and v be distinct vertices of Γ. If NΓ(u) = NΓ(v),
then there exists a nontrivial automorphism of Γ, namely the automorphism
that simply transposes u and v. A graph that has no nontrivial autormor-
phisms is said to be asymmetric. It therefore follows that every leafless
asymmetric graph must be irreducible. Using this fact, we may prove the
following theorem:

Theorem 5. Almost all graphs are irreducible, i.e., the proportion of graphs
on n vertices that are irreducible goes to 1 as n →∞.

Proof. It is well known that almost all graphs are asymmetric (see, for ex-
ample, Corollary 2.3.3 in [2]). On the other hand, it was shown in [4] that if
k is any fixed positive integer, then almost all graphs are k-connected. It fol-
lows, in particular, that almost all graphs are asymmetric and 2-connected.
Since all such graphs are leafless and asymmetric, and hence irreducible,
this completes the proof.

4 Structural characteristics of the irreducible
subgraph

We now consider what, if anything, is structurally preserved during the
application of the Reduction Algorithm.

Proposition 6. Let Γ be a graph with a connected irreducible induced
subraph H. Then I(Γ) contains an isomorphic copy of H as an induced
subgraph.

Proof. By Theorem 4 we know that I(Γ) is unique up to isomorphism. In
particular, I(Γ) does not depend upon the ordering of the vertices used by
the Reduction Algorithm.

Thus, we may order the vertices of Γ such that the vertices {v1, . . . , vk} =
V (H) are the first k vertices. We now show that V (H) ⊆ V (I(Γ)) by
arguing that no vi can be removed by the Reduction Algorithm with this
vertex ordering.

We proceed by contradiction. Suppose vj is the first vertex of H removed
by the Reduction Algorithm. Since H is irreducible, we know that such a
vj is not a leaf. Thus it must have been removed as part of a reducible
equivalence class; that is, [vj ] is reducible at this stage of the algorithm.
This implies there must be some vertex w ∈ [vj ] listed before vj in the
ordering of the vertices. Thus w ∈ V (H), and we know that NH(w) 6=



NH(vj) since H is irreducible. Since no vertices from H have yet been
removed, N(w) 6= N(vj) at this stage of the algorithm, which forces w 6∈
[vj ], a contradiction.

Since no vertex of V (H) can be removed by the Reduction Algorithm for
this ordering of vertices, H must be a connected induced subgraph of I(Γ).
Thus, for any ordering of the vertices, I(Γ) must contain a connected in-
duced subgraph isomorphic to H, by Theorem 4.

The above result may be extended, but first we need a definition. Recall
that the distance d(u, v) between two vertices u, v in a graph is the length
of the shortest path between them.

Definition 7. Given a graph Γ, and induced subgraphs H1,H2 of Γ, we say
H1 and H2 are separable if and only if min{d(u, v) : u ∈ H1, v ∈ H2} ≥ 2.

In the following theorem, we insist that the irreducible subgraphs have order
3, since otherwise we are commenting on single vertices or edges within Γ
and I(Γ). In this case, we are interested in the possible persistence of larger
irreducible subgraphs in I(Γ), and their interactions or lack thereof.

Theorem 8. Let H1, . . . ,Hm be connected irreducible induced subgraphs of
a graph Γ that are pairwise separable and have order at least 3. Then I(Γ)
contains pairwise separable subgraphs isomorphic to H1, . . . ,Hm.

Proof. Let V (H1) ∪ · · · ∪ V (Hm) = {v1, . . . , vk}. As before, we order V (Γ)
such that {v1, . . . , vk} are the first k vertices. And also as before, we will
show that no vi can be removed by the Reduction Algorithm with this
ordering, and then appeal to Theorem 4.

We proceed by contradiction, and let vj be the first vertex in {v1, . . . , vk}
removed by the Reduction Algorithm. Since all Hi are irreducible, we know
vj cannot be a leaf, and thus must have been removed as a member of the
reducible equivalence class, [vj ]. But, as above, this means there exists some
w ∈ {v1, . . . , vj−1} ∩ [vj ]. We saw in the proof of the previous proposition
that w cannot be in the same Hi as vj . So w ∼ vj , and they are contained
in separable subgraphs H and H ′ respectively, H,H ′ ∈ {H1, . . . ,Hm}. But
NΓ(w) = NΓ(vj) forces H∩H ′ 6= ∅ since H and H ′ are connected graphs of
order at least 3. This contradicts the fact that H and H ′ are separable, and
thus no vi ∈ {v1, . . . , vk} can be removed. This proves that the subgraphs
H1, . . . ,Hm are present in I(Γ).

We recall that I(Γ) is just an induced subgraph of Γ, and thus dΓ(u, v) ≤
dR(Γ)(u, v) for all u, v ∈ V (R(Γ)). So the irreducible subgraphs H1, . . . ,Hm,
which are pairwise separable in Γ, remain pairwise separable in I(Γ).



5 Three observations and some open ques-
tions

We will close with three observations about how the irreducible graph I(Γ)
is closely related to certain graph characteristics of Γ, followed by a brief
discussion of open questions.

First we consider the chromatic number χ(Γ):

Proposition 9. Let Γ be a connected graph. Then χ(Γ) = χ(I(Γ)).

Proof. If Γ is irreducible, the result is immediate. We will show χ(Γ) =
χ(R(Γ)) for any reducible connected graph Γ. This will prove the theorem.

Since R(Γ) is an induced subgraph of Γ, it is immediate that χ(R(Γ)) ≤
χ(Γ).

Now suppose R(Γ) = Γ − v, and c is a proper coloring of R(Γ). Either v
was a leaf, or v was a member of a reducible equivalence class. In either
case, we can build a coloring of Γ from a c with no additional colors.

First, suppose v was a leaf in Γ and NΓ(v) = w. Then to color Γ, color all
the vertices as they were colored by c in R(Γ), and color v with any color
other than the color c assigned to w. This is clearly a proper coloring.

Second, suppose [v]Γ was a reducible equivalence class. Then to color Γ,
color v with the color assigned to some other vertex w ∈ [v]Γ − {v} by
coloring c of R(Γ). This is a proper coloring of Γ since the [v]Γ is an
independent set of vertices, thus w /∈ NΓ(v), and no vertices in NΓ(w) =
NΓ(v) use the color assigned to w by c.

Thus, χ(Γ) ≤ χ(R(Γ)) for any Γ, and therefore χ(Γ) = χ(R(Γ)). It follows
that χ(Γ) = χ(I(Γ)).

Next we consider the girth of these graphs. Recall that girth(Γ) is the
length of the shortest cycle in a graph.

Proposition 10. Let Γ be a graph with girth k 6= 4. Then girth(I(Γ)) = k.

Proof. Since I(Γ) is an induced subgraph of Γ, it is immediate that k ≤
girth(I(Γ)).

Now, an isolated cycle of size k 6= 4 is irreducible since neighbor sets are
unique. (The uniqueness of neighbor sets fails for cycles of length 4.)



Let C be a cycle of minimal length k in Γ. Clearly C must be an induced
subgraph of Γ. This, combined with the irreducibility of C implies that a
graph isomorphic to C is present in I(Γ) by Theorem 6. Thus girth(I(Γ)) ≤
k, which completes the proof.

Proposition 11. Let Γ be a graph, girth(Γ) = 4. Then either girth(I(Γ)) =
4, girth(I(Γ)) = ∞, or girth(I(Γ)) is equal to the length of a minimal cycle
among all other cycles of Γ.

Proof. There are two possibilities for each cycle of length 4 in Γ. The first
possibility is that the cycle will, because of adjacencies to other vertices, be
present in I(Γ). The second possibility for each 4-cycle is that it eventually
becomes isolated enough that the Reduction Algorithm removes one or
more vertices from it.

Again, I(Γ) is an induced subgraph of Γ, so girth(Γ) ≤ girth(I(Γ)). Thus,
if one or more 4-cycles is contained in I(Γ) then the girth remains 4.

Suppose all 4-cycles are broken or removed during reduction. If there are
any other cycles in Γ, they must necessarily have length greater than 4.
Let C be the minimal cycle of length k > 4 in Γ. Cycles of length greater
than 4 are irreducible. C is therefore an irreducible subgraph of Γ, and by
Theorem 6 there must be an induced subgraph of I(Γ) isomorphic to C.
Thus the girth(I(Γ)) = k.

If no cycles remain after the Reduction Algorithm (that is, if all cycles in
Γ had length 4 and were then reduced), then, by definition, girth(I(Γ)) =
∞.

Other graph characteristics seem less hereditary, including both vertex- and
edge-connectivity. Still, one suspects there are still things to be said about
the relationship between Γ and I(Γ) and how it interacts with these and
other graph characteristics.

It may also be fruitful to investigate whether the Reduction Algorithm and
some similar conclusions might be adapted to directed graphs.

Finally, we are interested in investigating how close an irreducible graph is
to being reducible, or vice versa. Construct the graph of all graphs on n
vertices, G, in the following way: Let V (G) be the set of all graphs on n
vertices. We say two graphs on n vertices are adjacent in G if their edge
sets differ by only one edge. Thus, for any Γ on n vertices, NG(Γ) will be
all graphs that can be formed from Γ by the addition or deletion of a single
edge. By Theorem 5 we know that as n grows, nearly all vertices in G will



be irreducible graphs, so perhaps it would be most interesting to investigate
the distance from an arbitrarily selected irreducible graph to the nearest
reducible graph. Is it the case that, despite how rare reducible graphs are,
each irreducible is yet quite close to a reducible graph in G?
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