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1 Absract

Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed

by the linear and additive models that are standard in quantitative genetics. Therefore, developing

statistical learning models for predicting phenotypic values from all available molecular information

that are capable of capturing complex genetic network architectures is of great importance. Bayesian

kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence

is to create a spatial distance-based relationship matrix called kernel. Although, the set of all SNP

genotype configurations on which a model is built is finite, past research has mainly used a Gaussian
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kernel. We sought to investigate the performance of a diffusion kernel, which was specifically

developed to model discrete marker inputs, using Holstein cattle and wheat data. The predictive

ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic

relationship kernels in the Holstein data, but outperforming the latter in the wheat data. However,

the difference in performance between the diffusion and the Gaussian kernels was negligible. It is

concluded that the ability of a diffusion kernel of capturing total genetic variance is not better than

that of a Gaussian kernel, at least for these data. Although, the diffusion kernel as a choice of basis

function may have potential for use in whole-genome prediction, our results imply that embedding

genetic markers into a non-Euclidean metric space has very small impact on prediction.
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2 Introduction

Prediction of yet-to-be observed phenotypes for complex quantitative traits in agricultural species

[1, 2] or for disease status in medicine [3] exploits connections between phenotypes, genealogies

and DNA variations potentially representing functional diversity of organisms. Systems biology

approaches have uncovered abundant epistasis in model organisms including the mouse and the rat

[4], Drosophila melanogaster [5], and Saccharomyces cerevisiae [6], and Loewe [7] proposed an evo-

lutionary systems biology framework to arrive at a better understanding of molecular interactions,

given that epistatic interactions between mutations are commonly observed. Therefore, it seems

reasonable to argue that genotypes and phenotypes may be connected in forms that are not well

addressed by the linear and additive models that are standard in quantitative genetics. Bayesian

regularized parametric linear additive smoothers, e.g., [8, 9] may not be fully adequate for cap-

turing genetic signals under epistatic scenarios [10, 11]. Further, attempts to account for epistasis

by including interactions in a linear model produces a highly parameterized model structure, pos-

sibly yielding a poor predictive ability in cross-validation, which does not scale well if high-order

interactions are included in the model.

Genetic risk prediction in medicine relies on using genomic information for predicting the chance

of contracting a disease, e.g., in personalized medicine for preventive treatment and clinical health

care. Prediction of genetic risk derived from pre-selected marker variants is mainstream in this

domain, as opposed to prediction based on fitting whole genome markers simultaneously, as done

with great success in animal and plant breeding [8, 9, 10, 11]. However, the variants so detected

are typically not useful for genetic risk prediction because they explain only a small fraction of the

total genetic variance as estimated from covariances between relatives, e.g., using twin and family

studies. Moreover, it has been shown that a large number of variants that do not reach genome-wide

statistical significance contribute to the total additive genetic variance [12].

Development of statistical models for predicting phenotypic outcomes from all available molec-

ular information that are capable of capturing complex genetic network architectures is therefore

important. Arguably, a good predictive model should account for most of the genetic variability,

as well as reflecting underlying genetic architecture properly. Also, a predictive model should be
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flexible with respect to type of input data, e.g., high-throughput chip-based genotypes or whole

genome sequences, and mode of gene action.

An appealing alternative is provided by a kernel-based parametric method known as BLUP (Best

Linear Unbiased Prediction) of genetic effects, developed in the 40’s-50’s by C. R. Henderson, an

animal breeder [13]. BLUP can also be viewed as a regression of a phenotype on a pedigree-based

relationships matrix A (when the model is additive) and it has been used for genetic improve-

ment of livestock species for decades. This method was recently extended to incorporate SNPs

(Single Nucleotide Polymorphisms) by replacing A by some genomic relationship matrix G [14],

although there is no impediment to using A and G together [15]. BLUP is suited for handling a

massive amount of genetic information because the computational burden can be proportional to

the number of data points rather than to the number of predictor variables (e.g., markers), and

this is particularly so if a common weight is assigned to a each marker. Recently, kernel-based

non-parametric models e.g., [15, 16, 17, 18] have been proposed. A non-parametric treatment can

accommodate nonlinear dependence of phenotypes on predictor variables without explicit modeling.

This suggests that these procedures can potentially pick up various forms of gene action without

posing richly parametrized structures that require making strong distribution and genetic architec-

ture assumptions a priori [10, 15]. For example, Long et al. [16] used a computer simulation and

found that the predictive ability of a non-parametric smoother was superior to that of a parametric

linear counterpart when non-additive effects were strong. These authors also gave evidence that

non-parametric smoothing is competitive to linear smoothing even when additivity accounts for

most of the total genetic variability.

Kernel ridge regression [19], a kernel generalization of standard ridge regression [20], is also a

non-parametric smoothing method. Ridge regression has received some attention in quantitative

genetics in the context of mixed linear models [10, 15, 21, 22, 23, 24], and the non-parametric

version is carried out by constructing a spatial distance-based relationship matrix called kernel, as

opposed to using additive genomic relationship kernels A or G, which only embed correlations due

to additive genetic effects of individuals. The choice of a kernel is equivalent to modeling covariance

structure among individuals, and phenotypes are regressed on this kernel to obtain estimates of

non-parametric regression coefficients.
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A simulation study [18] found that in the presence of non-additive effects, a spatial distance-

based kernel can outperform an additive genomic relationship kernel in predictive performance,

but this has not been explored enough with real data. Further, while the set of all SNP genotype

configurations on which a model is built is finite, past research has employed spatial distance-based

kernels with infinite, unbounded domains, such as the Gaussian. Our first objective in this study

is to compare a spatial distance kernel with a non-spatial distance kernel. Secondly, we assess

the performance of a non-Gaussian spatial distance kernel by deploying kernels on graphs as the

choice of a basis function, a procedure that is suitable for discrete input data structures. Instead

of encoding SNP data in a continuous Euclidean space, as it is the case of the Gaussian kernel, we

investigated kernels on a non-Euclidean space. We examined a diffusion kernel proposed by Kondor

and Lafferty [25], Smola and Kondor [26] and Lafferty and Lebanon [27], which is a kernel defined

for functions on discrete spaces, such as a graph. A brief review on ’kernels on graphs’ is given

by [28] and “graph kernels” are discussed in [29]. As it is shown later, the diffusion kernel can be

viewed as a discretization of the Gaussian kernel. We also tested the sensitivity of applying the

same bandwidth parameter to autosomes and allosomes in the spatial distance kernels.

This paper investigates the use of several kinds of kernels in a kernel ridge regression framework

for genome-assisted prediction of quantitative traits. Two data sets representing Holstein cattle and

wheat were employed for this purpose. The paper is organized as follows. In section 2, we describe

the data and introduce basic notions of kernel ridge regression. We then apply the diffusion kernel

to strings of dummy variable marker sequences; the motivation of the non-Euclidean metric space

is followed by an introduction of the diffusion kernel. In section 3, main results are presented. In

section 4, we address the implication of results obtained and make concluding remarks.
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3 Materials and Methods

3.1 Data

Dairy cattle and wheat data were used. The dairy data was provided by the USDA-ARS Animal

Improvement Programs Laboratory (Beltsville, MD) and represented 7,902 Holstein bulls each with

43,134 SNPs (MAF > 0.025) spanning across the whole genome. The target response variable

analyzed was progeny test predicted transmitting ability (PTA) of productive life (PL). PL is a

measure of the observed length of time that a cow stays in the herd, from first calving to culling,

and PTA is an estimate of half of the breeding value of a bull, which is a smoothed average assuming

additive inheritance. PL is lowly heritable, with heritability estimated at 0.1 [30]. The genotype for

each of 42,438 loci on autosomes was coded as 0 (homozygous for allele “a”), 1 (heterozygous), and

2 (homozygous for allele “A”), according to the number of copies of the “A” allele. The remaining

696 loci on the X chromosome were coded as either 0 or 2, representing absence or presence of

the “A” allele respectively. Missing genotypes, due to either low call rates for some SNPs or poor

DNA quality, were imputed via random sampling of genotypes with probabilities corresponding to

observed genotype frequencies at each locus.

The wheat data included 599 inbred lines collected by the International Maize and Wheat

improvement Center in Mexico (CIMMYT). Each line was genotyped with 1279 Diversity Array

Technology (DArt) markers generated by Triticarte Pty. Ltd. These Binary markers take the form

of presence or absence of one of the two possible alleles. The phenotype here was average grain

yield of each line in the first out of 4 environments represented in the data set, scaled to have zero

mean and variance one. Missing genotypes were imputed as for the Holstein data above. This data

set has been also analyzed with support vector regression and neural network methods [17, 31].

3.2 Kernel ridge regression

Our goal is to predict an unobserved response y, e.g., PL in R from a vector genotypes x at a large

number of SNP loci; when p SNPs are considered, x is in Zp3. To this end, we would like to establish
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a function g : Zp3 → R mapping sequences of SNP genotypes onto the real line. A general setting is

yi = g(xi) + εi,

where yi is a response variable on case i(i = 1, 2, · · · , n), xi is p×1 vector of genotypes obtained on i,

g(xi) is a genetic effect interpretable as the conditional expectation function g(xi) = E(yi|x = xi),

and εi is a residual.

We use kernel ridge regression to infer the unknown function g, and select an appropriate kernel

K via a reproducing kernel Hilbert space H of functions on Zp3, and optimize

‖y − g‖2 + λ‖g‖2H, (3.1)

with respect to g, where the first term is the residual sum of squares, and ‖g‖2H is the squared norm

of g under a Hilbert space; λ is a regularization parameter. The representer theorem [32] is used to

find the optimal g.

In a non-parametric regression, the search space is infinite, but the representer theorem allows

confining the search to a specific set of functions. It has been shown [10, 15, 24, 32] that the

optimizer will be in the span of the functions indexed by the observed covariates, and that the

problem simplifies to optimization of

`(α|λ) = ‖y −Kα‖2 + λ‖Kα‖2H

where K = {K(i, j) = K(xi, xj)} is a n × n symmetric positive (semi) definite matrix; α is an

unknown n × 1 vector of non-parametric regression coefficients; and g = Kα, is the function that

minimizes (3.1). By properties of a reproducing kernel, ‖Kα‖2H = α′Kα, so that the function to

be minimized with respect to α is

`(α|λ) = (y −Kα)′(y −Kα) + λα′Kα. (3.2)
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This is equivalent to writing

y = Kα + ε

and then maximizing a penalized likelihood. This penalized likelihood is obtained by assuming

that y|α, σ2
e and that α follows N(0,K−1σ2

α), where σ2
e is the variance of the residuals, and σ2

α is a

variance component.

We review next additive genomic relationship kernels and the Gaussian kernel, and then present

how one can build a kernel on a graph with discrete inputs. Hereafter, we denote K as the kernel

matrix indexed by the observed covariate; and K(i, j) indicates particular elements of K; K is the

infinite dimensional Gaussian kernel, or the 3p × 3p dimensional kernel for the diffusion kernel.

3.3 Additive genomic relationship kernels

Two types of additive genomic relationship kernels were tested in this study. First, an additive

genomic relationship matrix (G1) was constructed following VanRaden (2008)[14] as

G1 =
ZZ′

2
∑
pj(1− pj)

,

where Z = Zij is a n × p matrix of centered SNP marker codes, with the entry for ith individual

and the jth marker taking the form

Zij =


0− 2pj if homozygous for “a”

1− 2pj if heterozygous

2− 2pj if homozygous for “A”.

Here pj is the frequency of allele “A” computed from a base population. The denominator of G1

is a scaling parameter. In practice, the allele frequencies are estimated from the data at hand.
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A second additive genomic relationship matrix (G2) was as in Yang et al. (2010) [12]

G2 =
WW′

p

where W is a matrix of standardized genotypes [33] with its jth column being

w.j =
z.j√

2pj(1− pj)
,

where z.j is the jth column of Z and p represents the number of SNPs.

Since the Holstein data set led to non-positive G1 and G2 matrices, as suggested by Strandén

and Christensen [34], G(i = 1, 2) was modified to G∗i = 0.95Gi + 0.05I, yielding G∗ matrices

that provided valid kernels. The wheat data produced positive definite genomic relationship kernel

matrices.

3.4 Gaussian Kernel

In a Gaussian kernel, the distance between a pair (i, j) of genotypes is represented as a squared

Euclidean norm. Given a positive bandwidth parameter θ, the kernel takes the form

K(xi,xj) = exp(−θd2ij)

=

p∏
k=1

exp(−θ(xik − xjk)2)

where d2ij =
√

(xi1 − xj1)2 + · · ·+ (xik − xjk)2 + · · ·+ (xip − xjp)2, and xik (i, j = 1, · · · , n, k =

1, · · · , p) is the SNP genotype for individual i at SNP k. A small Euclidean distance between two

individuals reflects a strong similarity in state between their genotypes. As θ increases, the kernel

evaluation approaches K(xi,xj) = 0, producing a “sharp” or “local” kernel. On the other hand,

as θ → 0, the kernel approaches 1, i.e., a situation where the two individuals “match” perfectly,

providing a “global” kernel.
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3.5 Non-Euclidean metric space

The SNP data on p loci on some individual often comes as x = (x1, x2, . . . , xp) ∈ Zp3, which is

clearly a discrete space, as there are 3p possible configurations of genotypes (not all of which are

observable). Before defining the diffusion kernel consider the meaning of ’diffusion on a graph’.

Suppose p = 1, and consider a function kx that measures the spread of ’influence’ of the genotype

at this locus over the other possible genotypes by assuming that the ’influence’ diffuses like heat

does. Let kx̃(0, x) = 1x=x̃(x), be the indicator function for genotype x̃ on Z3. We call this the time

0 diffusion, since in this case x̃ has absolutely no influence on other genotypes; that is, the influence

of x̃ does not diffuse out to its neighbors. Now, define the time t diffusion of the ’influence’ of

genotype x̃ on genotype x to be

kx̃(t, x) = kx̃(t− 1, x) +
∑

|x−x′|=1

α[kx̃(t− 1, x′)− kx̃(t− 1, x)] (3.3)

where α is constant rate of diffusion and each summand is the differential gradient of the ’influence’

between genotypes x and x′. This is illustrated in Table 1. As stated above, there is no diffusion

at t = 0. Subsequently, the time 1 diffusion with α = 0.1 when x̃ = 1 is computed as:

k1(1, x = 0) = k1(0, x = 0) + α[k1(0, x
′
= 1)− k1(0, x = 0)]

= 0 + 0.1[1− 0]

= 0.1

k1(1, x = 1) = k1(0, x = 1) + α[k1(0, x
′
= 0)− k1(0, x = 1)] + α[k1(0, x

′
= 2)− k1(0, x = 1)]

= 1 + 0.1[0− 1] + 0.1[0− 1]

= 0.8

k1(1, x = 2) = k1(0, x = 2) + α[k1(0, x
′
= 1)− k1(0, x = 2)]

= 0 + 0.1[1− 0]

= 0.1
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As shown in Table 1, as t increases the ’influence’ spreads over all genotypes more evenly; also, the

larger α is, the faster the diffusion is with respect to time t.

Writing (3.3) in vector form, with kx̃(t, x) = kx̃(t), we get

kx̃(t) = kx̃(t− 1) + αHkx̃(t− 1)

= (I + αH)kx̃(t− 1)

= (I + αH)tkx̃(0)

(3.4)

were I is a 3× 3 identity matrix; kx̃(0) is a constant 3× 1 matrix of initial values, and

H =


−1 1 0

1 −2 1

0 1 −1

 (3.5)

with the first, second, and third rows of the H matrix corresponding to k0, k1, and k2 respectively.

The negative of this matrix is called the Laplacian of a graph Γ given by

0− 1− 2. (3.6)

Let Γ be an undirected graph with vertex set V (Γ). In general, the Laplacian of a graph Γ, L(Γ) is

a V (Γ) dimensional square matrix given by

L(Γ) = −H(Γ)

= −A(Γ) + Λ

where A is an adjacency matrix and Λ is a diagonal matrix with Λii =
∑n

j=1Aij. We can therefore

generalize this ’diffusion’ for any graph Γ by using H(Γ) = −L(Γ) . Under this definition, given

any V (Γ) dimensional vector w,

wtH(Γ)w = −
∑
i∼j

(wi − wj)2 ≤ 0
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which shows that H(Γ) is a negative semi-definite matrix.

The most naive way of constructing a graph on Zp3 is a Hamming graph. For the case p = 1, a

Hamming graph is simply a complete graph of size 3, and has the form

0 − 1

\ /

2

(3.7)

On this graph, the distance from genotype 0 (’aa’) to genotype 2 (’AA’) is the same as that from

0 (’aa’) to 1 (’Aa’). Since genotype ’aa’ has no copies of the ’A’ allele, it may be more reasonable

to assume that genotype ’Aa’ is closer to ’AA’, which has two copies of the ’A’ allele. This can be

viewed from a mutational perspective as well. Genotype 0 (’aa’) requires two mutations to become

genotype 2 (’AA’), while genotype 1 (’Aa’) requires only one mutation. Thus, the graph of interest

would be given by (3.6). The latter is a path graph for SNP data, which will be taken as a minimal

basis for our graph. In a path graph, all vertices are on a straight line, as in (3.6).

A SNP grid of p loci is a p dimensional grid with vertices in Zp3, with two vertices x and x′ being

adjacent if and only if
p∑
i=1

|xi − x′i| = 1.

For example, the graph below is the grid for 2 loci derived from the Cartesian graph product of two

path graphs as in (3.6):

02 − 12 − 22

| | |

01 − 11 − 21

| | |

00 − 10 − 20

(3.8)
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The graph Laplacian for graph (3.8) is a square matrix of dimension 32 × 32:

L(Γ) = −H(Γ)

=



200 −1 0 −1 0 0 0 0 0

−1 301 −1 0 −1 0 0 0 0

0 −1 202 0 0 −1 0 0 0

−1 0 0 310 −1 0 −1 0 0

0 −1 0 −1 411 −1 0 −1 0

0 0 −1 0 −1 312 0 0 −1

0 0 0 −1 0 0 220 −1 0

0 0 0 0 −1 0 −1 321 −1

0 0 0 0 0 −1 0 −1 222


where the subscripts denote the vertices of graph (3.8). When there are p loci, the p-dimensional

grid graph has 3p vertices corresponding to sequences of genotypes, such that two vertices are

adjacent if and only if just one SNP locus differs by 1. Now, suppose p = 3. The Cartesian graph

product of (3.6) and (3.8) yields a 3 dimensional grid graph with 33 vertices, as shown in Figure

1. The diffusion kernel computes a similarity between two vertices on this graph, and projects this

information into a more interpretable space.

3.6 Diffusion Kernel on a non-Euclidean metric space

Consider now the continuous analogue of the diffusion scheme above. This can be done by making

’time’ or ’space’ continuous, and ’time’ will be made continuous first. Let α = θh (θ > 0) and

t = 1/h. By using a small h, we can achieve a discretization of the ’diffusion time’ on a much finer

scale, and the coefficient matrix is

(I + θhH(Γ))1/h (3.9)
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If an infinitesimal scale is considered by taking h→ 0, (3.9) converges to

lim
h→0

(I + θhH(Γ))1/h = exp(θH)

=
∞∑
k=0

θk

k!
Hk = I + θH +

θ2

2
H2 +

θ3

3!
H3 + · · ·+ θn

n!
Hn + · · ·

(3.10)

If a graph Γ with a Laplacian L(Γ) is considered, then exp(−θL(Γ)) is called the diffusion kernel or

heat kernel for graph Γ, where θ is a rate of diffusion [25]. Here putting K = exp(θH) and taking

the derivative with respect to θ gives,

d

dθ
K = HK (3.11)

which is a discrete diffusion equation (heat equation) on a graph with H = −L(Γ). Note that

diffusion kernels always need to be associated with a graph.

A Gaussian kernel is obtained by making this diffusion kernel ”space” continuous. The connec-

tion between the two kernels is provided in Appendix A.

3.7 Diffusion Kernel indexed by observed covariates

When a graph Γ is large and asymmetric, the computation of the diffusion kernel K(Γ) can be

forbiddingly hard. For instance, for a SNP grid with 43134 loci, the dimension of K is 343134 by

343134. Symmetry helps, however. If a closed form of K can be arrived at, there is no need to

compute K(x,x′) for all pairs of genotype sequences x,x′. This is indeed the case for the Gaussian

kernel, where the dimension of K is infinite. With Kondor and Lafferty’s result given in [25], we

may obtain the closed form of the diffusion kernel from the sample for our SNP grid.

First one needs to consider the Cartesian graph product for the diffusion kernel of a graph.

Let K1(θ) and K2(θ) be the kernels for graphs Γ1 and Γ2, respectively. The diffusion kernel for

Γ = Γ12Γ2 is given by [25]

K1(θ)⊗K2(θ). (3.12)
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were 2 denotes the Cartesian graph product and ⊗ is the tensor product (infinite dimensional

Kronecker product). Consider a graph with one locus, Γ0, with form 0− 1− 2. Then, we see that

the diffusion kernel of the SNP grid on p loci with bandwidth parameter θ is given by

K⊗pθ =

p⊗
i=1

Kθ(Γ0).

To this end, we just need to compute Kθ(Γ0) = exp(θH) with H in (3.5).

With this result, one can create the H matrix for a SNP grid as follows. Let x and x′ be SNP

data for p loci; ns be the number of loci for which |xi − x′i| = s, and m11 be the number of loci for

which xi = x′i = 1. In other words, n1 is the number of loci at which two individuals differ by 1,

and m11 is the number of loci at which two individuals share heterozygous states. Then

Ksnpgrid
θ (x,x

′
) ∝

(
−2e−3θ + 2

e−3θ + 3e−θ + 2

)n1
(
e−3θ − 3e−θ + 2

e−3θ + 3e−θ + 2

)n2
(

4e−3θ + 2

e−3θ + 3e−θ + 2

)m11

(3.13)

with proportionality constant (e−3θ + 3e−θ + 2)q, where q = n1 + n2 + m11. The last term is a

contribution from heterozygosity. We refer to this as SNP grid kernel, specifically developed to

model SNP data in this study. A proof of this result is given in the Appendix B.

3.8 Diffusion kernel for binary genotypes

Another diffusion kernel tailored for binary genotypes is required for chromosome X of sires or for

the wheat inbred lines. In this setting, instead of (3.6), the path graph for one locus (p = 1) is

0− 2

and the corresponding graph Laplacian is given by

L(Γ) = −H(Γ)

=

 1 −1

−1 1

 (3.14)
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as opposed to (3.5). For two loci (p = 2), the Cartesian product of graphs Γ1(0− 2) and Γ2(0− 2)

yields the graph

00 − 01

| |

10 − 11

(3.15)

where the first digits ∈ V (Γ1) and the second digits ∈ V (Γ2). Then, the associated graph Laplacian

is

L(Γ) = −H(Γ)

=



200 −1 −1 0

−1 201 −1 0

−1 0 210 −1

0 −1 −1 211


where the subscripts denote the rows and columns of vertices of graph (3.15). Specifically, we

compute Kθ = exp(θH) with H defined in (3.14) and perform the tensor product p times. With

this, the kernel is given by

Khypercube
θ (x,x′) ∝

(
1− exp(−2θ)

1 + exp(−2θ)

)d(x,x′)

(3.16)

where d(x,x′) is the Hamming distance, that is, number of coordinates at which x and x′ differ

[25]. Following Kondor and Lafferty [25], this diffusion kernel for binary markers will be referred to

as the hypercube kernel.

3.9 Combining SNP grid kernels and hypercube kernels

In the Holstein data, we additionally combined the two kernels derived from autosomes and from

chromosome X to see the influence of applying a same value of the bandwidth parameter to different
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types of chromosomes. This is giving by

Kall = Ksnpgrid#Khypercube. (3.17)

where # is a Hadamard product of matrices. In general, given a set of n individuals, we may parti-

tion SNPs into several subsets, say x = (x1,x2, ....,xr). If Ki is the diffusion kernel corresponding

to subset xi, then the diffusion kernel for all sets can be computed as

Kall = K1#K2# · · ·#Kr.

This result also holds for the Gaussian kernel, but not necessarily so for every kernel, e.g., the

exponential kernel defined with the Euclidean distance (||xi − xj||) does not hold this property.

3.10 Bayesian treatment of kernel ridge regression

Once the choice of the kernel is determined, (3.2) can be maximized by taking the derivative of

`(α) with respect to α to obtain

α̂ = (K + λI)−1y

where λ is a regularization parameter. Here, implementation of kernel ridge regression was casted

in a Bayesian framework with λ = σ2
ε

σ2
α
, where σ2

ε and σ2
α are the residual variance and the variance

attached to α respectively. Then [35, 36], note that

exp(−1

2
`(α)) = exp

{
−1

2
[(y −Kα)′(y −Kα) + λα′Kα]

}
∝ exp

(
− 1

2σ2
ε

(y −Kα)′(y −Kα)

)
exp

(
− 1

2σ2
α

α′Kα

)
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This is proportional to p(α|y, σ2
e , σ

2
α) ∝ p(y|α, σ2

e)p(α|σ2
α), i.e., the posterior density of α (given

σ2
e and σ2

α) for the linear model

y = Kα + ε

with ε ∼ N(0, Iσ2
e) and with prior α ∼ N(0,K−1σ2

α). Minimizing `(α) will maximize exp(−1
2
`(α)),

so α̂ is the conditional posterior mode of α. One may change the basis K using the eigenvalue

decomposition K = ΛΨΛ′, where Λ is the matrix of eigenvectors of K and Ψ is a diagonal matrix

whose diagonals are the eigenvalues, as shown in de los Campos et al. [35], such that, for δ = ΨΛ′

one gets, in a fully Bayesian model,

 y = Λδ + ε,

p(ε, δ, σ2
ε , σ

2
α) ∝ N(ε|0, Iσ2

ε )N(δ|0,Ψσ2
α)p(σ2

ε , σ
2
α)

Once a prior is assigned to σ2
e and σ2

α, a MCMC scheme can be used to infer all unknown parameters,

including λ. Scaled inverse chi-square prior distributions were assigned to σ2
e and σ2

α, each with 3

degrees of freedom and a scale parameter equal to 1. Samples from posterior distributions were

obtained by the Gibbs sampler in [35], and each of the analysis was based on 100,000 MCMC

samples with the first 60,000 samples discarded as burn-in. After burn-in, samples were thinned

at a rate of 10, resulting in 4000 mildly correlated samples for posterior inference. Convergence

was monitored by inspecting trace plots of each of the two variance parameters. A bandwidth

parameter θ yielding high predictive ability is needed as well. However, sampling of the bandwidth

parameter in MCMC sampling requires computation of kernels at each iteration, which is very

demanding given the number of individuals and SNPs considered in our study. For this reason,

evaluation of the diffusion kernel was performed over a fixed grid of values of θ. The range of θ

considered provides average values of K(x,x
′
) that were evenly spaced, approximately, between

0.13 to 0.99. Computation of kernels and Gibbs sampling was carried out in Fortran and in R

(http://www.R-project.org), respectively.
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3.11 Assessment of predictive ability

The predictive abilities of RKHS models with either a diffusion kernel or a Gaussian kernel were

assessed by cross-validation. A subset of 5403 bulls born from 1952 through 2003 was used as

training set for the Holstein data. A testing set of 2499 bulls born from 2004 through 2006 was used

to evaluate predictive ability. For the wheat data, a 10 fold cross-validation scheme was applied

by assigning 599 lines randomly to one of 10 disjoint subsets. Each set was used for validation in

turn, while the other 9 subsets were used to train the model. To illustrate, we estimated α in the

Holstein data using the training set y = (y1, · · · , y5403)′ and their corresponding SNP genotypes

x1, · · · ,x5403, and then predicted responses in the testing set as:

ŷtest = 1µ̂train + Ktest↔trainα̂train

where ŷtest is the 2499 × 1 vector of predicted responses of bulls in the testing set; 1 is a 2499× 1

vector of ones; µ̂train is the posterior mean of the intercept estimated from the training set; Ktest↔train

is a 2499 × 5403 matrix with elements k(j, i)test↔train representing the allelic similarity between

bulls in the testing (j = 1, · · · , 2499) and training (i = 1, · · · , 5403) sets, with the same bandwidth

parameter employed in the training set, and α̂train is the vector of posterior means of 5403 non-

parametric regression coefficients obtained from the training set. In the equation above, Ktest↔train

was either the diffusion or the Gaussian kernel.

In a Bayesian setting, however, one can embed all steps above in a convenient way. Prior to

Gibbs sampling, first we construct a full kernel matrix containing both training and testing data

sets. We treat the responses of testing set individuals as unobserved, and these values are predicted

via a predictive distribution. This is easy to incorporate in the Gibbs sampling scheme. Pearson’s

correlation between the predicted values (mean of the predictive distribution) and the observed

PTA, Cor(ŷtest,yPTA), and predictive mean-squared error (MSE) defined as
∑2499

i=1 (ŷtesti −yPTAi )2/n

were computed to evaluate the predictive ability of the two kernels. Here, ŷtesti is the mean of

the predictive distribution of response i in the testing data set, which is the ith element of the

Ktest↔trainα̂train.
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4 Results

To illustrate the effect of the bandwidth parameter (θ) on the SNP grid kernel, Figure 2 depicts

histograms showing how θ controls similarities among individuals based on evaluating the kernel on

the SNP data. The larger θ is, the stronger the prior inter-correlation structure. It is important to

note that the diagonal elements in our SNP grid kernel matrices are not necessary equal to one, as

opposed to what happens in a Gaussian kernel; here, K is a correlation matrix. Table 2 shows the

average of diagonal, K(xi, xi), and off-diagonal, K(xi, xj), elements for diffusion, Gaussian and two

additive genomic relationship kernels at varying bandwidth values. The mean values of the diagonal

elements of the 4 diffusion kernels shown in Figure 2 (see Table 2) were 0.369, 0.693, 0.874, and

0.952 for θ = 10, 11, 12, and 13, respectively. This is because in equation (3.13), even when x = x′,

so that n1 = n2 = 0, m11 (the number of ’Aa’ genotypes shared by x and x′) may not be zero.

This implies that our diffusion kernel accounts for the degree of heterozygosity in a sample. From

the perspective of the kernel as a smoothing function, the diffusion kernel performs smoothing for

all elements based on heterozygosity as well as on allelic similarity. As explained below, the larger

heterozygosity, the weaker the smoothing, leading to a smaller penalty; this is not so, however, in

the Gaussian kernel. In the kernel computation, each factor in (3.13) is < 1, and in particular, the

factor corresponding to m11 is the largest. Henceforth, if the sample contains few heterozygotes, our

K will be large in value. Consequently, the penalty from the optimizer function f , ||fH|| = αTKα,

will tend to be big. This is interpretable as imposing stronger smoothing for samples with low

heterozigosity. As for the “correlation” with itself, an individual with low heterozygosity will have

diagonal elements close to one, as in the case of a Gaussian kernel. Therefore, in addition to the

’distance’ between genotypes of two individuals, the diffusion kernel takes into account the extant

heterozygosity, while the Gaussian kernel incorporates only the former. Also, the two kernels differ

in their definition of distance. The diffusion kernel on the SNP grid is based on the Manhattan

distance, while the Gaussian kernel is defined on the Euclidean distance. The Manhattan distance

is the distance between two points measured by the the sum of the absolute differences of their

coordinates.

As shown in Table 2, the average of off-diagonal elements of the diffusion kernel was lower than
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that of diagonal elements. This is because the first two terms of (3.13) will be different from zero

(n1, n2 > 0) for a pair of individuals. Diffusion kernel evaluations between itself were always larger

than kernel evaluated between pairs, that is, diagonal elements had the largest values for each row of

K. In the Gaussian kernel, diagonal elements are always equal to 1 and a smaller θ value produces

a stronger prior correlation. The first type of additive genomic relationship kernel (G1) had the

average diagonal and off-diagonal elements close to 1 and 0 respectively, as expected. Similarly, G2

had an average off-diagonal close to 0 but it had smaller average diagonal elements than those of

G1.

The right most columns of Table 2 gives the evaluation of the predictive ability of the kernels

measured as correlation between predicted values and observed PTA, and MSE of prediction, for

several different bandwidth parameters (G1 and G2 do not involve this parameter). The predictive

correlation of the diffusion (SNP grid) kernel was best at θ = 11, while with the Gaussian kernel

this was achieved at θ = 10−5. Although the averages of diagonal and off-diagonal elements var-

ied substantially with different bandwidth parameters in the diffusion and Gaussian kernels, the

influence of this variability on predictive correlations was small. Importantly, no major difference

was observed between the diffusion and the Gaussian kernels in terms of predictive performance.

Differences among kernels were very minor, probably due to the fact that the response (PTA) is

already a smoothed mean based on a large number of daughters of a bull. There was a consistency

between the correlation and the MSE, in the sense that the scale of θ with the highest predictive

correlation had the smallest MSE. Predictive performance of G1 was only slightly worse than that

of the spatial distance kernels with the best bandwidth parameters.

Values in parentheses in Table 2 were obtained by combining the SNP grid kernel from autosomes

and the hypercube kernel from allosomes by applying the same bandwidth parameter. Incorporation

of X-chromosome information reduced the average off-diagonal elements slightly, and deteriorated

predictive performance to some extent. On the other hand, the average diagonal and off-diagonal

elements remained the same in G1 and G2, but a minor reduction of their predictive abilities was

observed.

In the wheat data, the superiority of the spatial distance-based kernels over the additive genomic

relationship kernels was clear. Table 3 indicates that the diffusion and Gaussian kernels had the
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best predictive correlations (MSE) at 0.586 (0.685) and 0.582 (0.686), respectively, whereas those

of G1 and G2 were 0.518 (0.709) and 0.521 (0.708). This is likely due to picking up non-additive

genetic variation that this wheat data harbors. With binary markers, the diagonal elements of

the diffusion kernel are always 1, since in equation (3.16) the Hamming distance d(x,x′) is always

zero. As with the Holstein data, no apparent difference was observed between the diffusion and the

Gaussian kernels.
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5 Discussion

Arguably, relationships between phenotypes and genotypes are non-linear and complex [10, 15, 31].

For this reason, ignoring non-additive effects such as dominance and epistasis in a model may lead

to an inferior predictive ability of individual phenotypes. A spatial distance-based kernel non-

parametric regression is capable of mapping genotypes to phenotypes in a way that accurately

reflects underlying, albeit unknown, relationships. These kernel methods incorporate non-linearity

of a predictor set x through a nonlinear transformation of x, subsequently allowing to analyze the

response in terms of features φ(x) in a linear way. This is particularly useful when a response has

a linear relationship with respect to the parameters, but is non-linear on covariates, such as in the

case of polynomial regression.

The predictive ability of kernel-based genetic models depends on the choice of a kernel and

associated bandwidth parameter(s). If the two data points lie in the real line, x, x
′ ∈ R, it seems

reasonable to compute their distance in terms of Euclidean distance. However, SNP genotypes,

coded as dummy variables, take a discrete form. Therefore, it may be worthwhile to consider a

kernel designed to capture the discrete structure of the input variables. The best predictive kernel

and its performance may vary depending on the underlying genetic architecture, QTL numbers

and distribution of effects, data set used and kernel method applied. Here, we investigated the

use of ridge regression with a diffusion kernel to assess if this would enhance predictive ability

over that of the Gaussian kernel and of two additive genomic relationship counterparts. Kondor

and Lafferty [25] obtained promising results when the diffusion kernel was compared with several

kernels in classification problems with a set of discrete predictors, and this kernel has been used

in a microarray based gene function prediction problem [37]. Ober et al. [18] used the Matérn

covariance function, which contains the Gaussian and the exponential kernel as particular cases.

Therein, the smoothing parameter controls the actual form of a kernel, and this is directly driven

by sample data. Although they obtained a Gaussian form as a choice of the covariance function,

the Matérn function is bounded by the Euclidean norm by definition, which may not be suited for

discrete genomic data.

A strength of kernels for structured data is their ability of addressing similarities between two
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data points x, x′ /∈ R [38]. The diffusion kernel defines the distance between two data points on

graphs, namely vertices, and projects this information into a more interpretable space. As shown

in the context of modeling linkage disequilibrium [39, 40], various graph structures can be used

to represent sets of discrete random variables, such as genotypes. Coupled with the representer

theorem, the diffusion kernel allows casting underlying graph structures into a regression on the

real line under a Hilbert space. The main idea behind this kernel is the matrix exponentiation of

the graph Laplacian. The p-dimensional grid graph with vertices representing a vector of genotypes

was chosen for the graph structure. Each grid conveys information on similarity in terms of the

Manhattan distance. Two vertices x and x
′

are connected if xi = x
′
i for all i, except at one

coordinate. In the Holstein data, with n = 7902 and p = 42438, it is unlikely that any of two vertices

present in our data are connected. However, what grid graphs embrace is how many “steps” separate

a vector of genotypes observed in individual i from an observed vector of genotypes in individual j.

Our motivation of applying the diffusion kernel stemmed from the assumption that a non-

Euclidean distance may be able to more clearly represent genomic similarities. We carried out a

matrix exponentiation of two graph Laplacians created from two path graphs (one for SNPs and

one for binary markers) for this purpose. This yields a kernel based on the Manhattan distance

accounting for the heterozygosity that two individuals share. The two spatial distance kernels

resulted in a better predictive performance than the two additive genomic relationship kernels in

the wheat data. This agrees with the previous simulation study of Ober et al. [18], in which the

Gaussian kernel outperformed G1 in the presence of non-additive effects. Superiority of the spatial

distance kernels was less obvious in the Holstein data. This may be due to the phenotype we chose

for this study, since the PTA response variable is a smoothed average using linear mixed models.

As for difference between the diffusion and the Gaussian kernels in terms of predictive ability,

the diffusion kernel had the highest predictive correlation and the lowest MSE with θ = 11 in

the Holstein data, but the difference with the Gaussian kernel was negligible. The same result

was seen in the wheat data. This implies that the Gaussian kernel is robust, even it incorporates

genotypes on the real line such as 1.25 or -12.3. Our objective of properly incorporating genotypes

into a kernel had a small impact on predictive ability of yet-to-be observed phenotypes. Although

certainly the distance between genotypes is not continuous, additional efforts of discretizing the
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Euclidean distance may not needed. Another possible reason, might that genotypes do not reside

in the Euclidean or in the non-Euclidean spaces explored here, but in a manifold [27].

Incorporation of X chromosome genotypes for building a kernel led to a smaller average diagonal

and off-diagonal elements (to some extent) in spatial distance kernels, but no change was observed

in the additive genomic relationship kernels. In both types of spatial distance kernels, however, the

predictive correlations were worse than when kernels were constructed purely from autosomes. This

suggests that applying specific bandwidth parameters for autosomes and allosomes in the spatial

distance kernels might be important. A similar decline of predictive performance was observed

in the two additive genomic relationship kernels, which do not involve any bandwidth parameter.

Further research is need to investigate what produces this drop in predictive performance, although

if no markers contribute to PL on chromosome X, this would add extra noise.

To the best of our knowledge, this study involves one of the largest data sets employed for

spatial kernel-based genome-enabled selection of agricultural species. The challenge here was the

computation of the diffusion kernel, rather than the Gibbs sampler. Approximately, it took 4 days

to compute one diffusion kernel on a Linux workstation equipped with the Intel(R) Xeon(R) CPU

E5450 3.00GHz and 16GB of RAM. The Gaussian kernel required slightly less time for building, but

with several candidates over a grid of values of the bandwidth parameter θ, this was an expensive

task for both kernels. One useful approach might be that of multiple kernel learning (MKL) [35, 41],

which uses a few kernels with different covariance structure in a single RKHS model. Finally, the

SNP grid graph and the hypercube graph used in this study are naive graph structures for modeling

discrete inputs. Perhaps developing a graph structure that is more suitable for SNP data might

increase predictive correlations.

In conclusion, although the diffusion kernel as a choice of basis function may have potential for

use in whole-genome prediction, the results of this study suggest that the simple Gaussian kernel

is robust enough, and the scope for enhancing predictive ability via kernel refinement is limited.
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Table 1: Example of diffusion on a graph. x = (0, 1, 2) are genotype codes; α = (0.1, 0.2) is the

diffusion rate; kx̃(t, x) is the time t diffusion of the influence of genotype x̃ on genotype x.

α= 0.1 α = 0.2 α = 0.2

x = 0 1 2 x= 0 1 2 x= 0 1 2

k1(0, x) 0 1 0 k1(0, x) 0 1 0 k2(0, x) 0 0 1

k1(1, x) 0.1 0.8 0.1 k1(1, x) 0.2 0.6 0.2 k2(1, x) 0 0.2 0.8

k1(2, x) 0.17 0.66 0.17 k1(2, x) 0.28 0.44 0.28 k2(2, x) 0.04 0.28 0.68

k1(3, x) 0.219 0.562 0.219 k1(3, x) 0.312 0.376 0.312 k2(3, x) 0.171 0.330 0.498

k1(15, x) 0.331 0.336 0.331 k1(15, x) 0.333 0.333 0.333 k2(15, x) 0.324 0.333 0.342
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Figure 1: A SNP grid graph with 3 genotypes (p = 3). It has 33 = 27 vertices.
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Figure 2: Lower triangular elements of four diffusion kernels based on four different bandwidth
parameters (θ).
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Table 2: Averages of diagonal K(xi, xi) and off-diagonal K(xi, xj) kernel elements, predictive cor-

relation, and mean-squared error of prediction (MSE) for the diffusion, Gaussian, and two additive

genomic relationship kernels (G1 and G2) with different values of the bandwidth parameter θ for

the Holstein data. Values in parentheses were obtained by combining the SNP grid and the hy-

percube kernels by applying a same bandwidth parameter. G1 and G2 do not involve bandwidth

parameters. The best prediction within a same kernel is underlined.

Kernel θ k(xi, xi) k(xi, xj) Cor(ŷtest,yPTA) MSE

Diffusion 10 0.369 (0.369) 0.138 (0.134) 0.727 (0.726) 215.93 (216.61)

11 0.693 (0.693) 0.483 (0.477) 0.745 (0.741) 204.36 (208.68)

11.5 0.801 (0.801) 0.644 (0.639) 0.739 (0.732) 207.93 (212.97)

12 0.874 (0.874) 0.765 (0.762) 0.739 (0.728) 210.54 (215.08)

13 0.952 (0.952) 0.907 (0.906) 0.734 (0.725) 211.50 (217.61)

14 0.982 (0.982) 0.966 (0.965) 0.729 (0.723) 214.29 (218.70)

Gaussian 5× 10−5 1 (1) 0.237 (0.225) 0.721 (0.702) 220.675 (233.21)

2× 10−5 1 (1) 0.551 (0.542) 0.736 (0.733) 213.41 (213.95)

1× 10−5 1 (1) 0.749 (0.742) 0.742 (0.736) 210.14 (211.24)

5× 10−6 1 (1) 0.866 (0.861) 0.736 (0.729) 210.24 (214.47)

3× 10−6 1 (1) 0.917 (0.914) 0.734 (0.726) 211.51 (216.42)

1× 10−6 1 (1) 0.971 (0.971) 0.729 (0.724) 214.37 (217.93)

G1 NA 0.992 (1.009) -0.000126 (-0.000128) 0.729 (0.722) 214.36 (219.27)

G2 NA 0.894 (0.909) -0.000113 (-0.00012) 0.730 (0.723) 213.64 (218.31)
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Table 3: Average of diagonal K(xi, xi) and off-diagonal K(xi, xj)

kernel elements, predictive correlation, and mean-squared error of

prediction (MSE) for the diffusion, Gaussian, and two additive ge-

nomic relationship kernels at different values of the bandwidth pa-

rameter θ for the wheat data. The predictive correlation and the

MSE were obtained from a 10-fold cross-validation. Additive ge-

nomic relationship kernels (G1 and G2) do not involve bandwidth

parameters. The best prediction within a same kernel is underlined.

Kernel θ k(xi, xi) k(xi, xj) Cor(ŷtest,ytrain) MSE

Diffusion 3 1 0.136 0.586 0.685

3.25 1 0.289 0.580 0.673

3.5 1 0.466 0.577 0.681

4 1 0.752 0.547 0.704

5 1 0.962 0.522 0.721

Gaussian 0.005 1 0.134 0.582 0.686

0.003 1 0.290 0.579 0.697

0.002 1 0.434 0.562 0.697

0.001 1 0.655 0.558 0.703

0.0005 1 0.809 0.556 0.673

G1 NA 2 -0.003 0.518 0.709

G2 NA 2 -0.003 0.521 0.708
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Appendix A

Connection between a diffusion and a Gaussian kernel

Intuitively, consider again (3.4) with a one locus case. In order to make space continuous, an infinite

number of ’fake’ genotypes between and outside of 0 and 2 is needed. That is, instead of the discrete

graph 0−1−2, the interval between 0 and 2, and also outside of it, will be viewed as a ’continuous’

graph containing genotypes such as 1.23 or −10.5, for example. While the fundamental structure of

the graph remains the same, each genotype is connected just to its immediate neighbors, i.e., each

genotype x is connected to only two genotypes, x+dx and x−dx for some infinitesimal dx. Then, H

in (3.5) becomes an infinite-dimensional matrix, and H(x, x′) is−2 for x′ = x and 1 for x+dx, x−dx,

because each genotype is connected to its neighboring genotypes at both sides. With the vector of

genotypes being now infinite-dimensional, x = (−∞, · · · , x−dx, x, x+dx, · · · ,∞), define a function

f that returns an “influence” of genotypes, f = (f(−∞), · · · , f(x−dx), f(x), f(x+dx), · · · , f(∞)).

Approximating dx by h, it can be seen that

1

h2
[H(x, ·) · f ] =

f(x+ h)− 2f(x) + f(x− h)

h2

=
f(x+h)−f(x)

h
− f(x)−f(x−h)

h

h

∼= f
′′
(x),

where f
′′
(x = x0) is the second derivative of f evaluated at x0. Thus, with space continuity, H acts

like a second derivative [25]. Using this analogy back in (3.11), we get

d

dθ
Kθ(x) =

d2

dx2
Kθ(x)

This equation is called the continuous diffusion equation: the first derivative in “time” is equal

to the second derivate in “space”. The solution to this partial differential equation (PDE) with a

Dirac delta [42] initial condition of concentration on x = 0, k0(x) = 1x=0, is given by

Gθ(x) =
1√
4πθ

exp

(
−x

2

4θ

)
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This is a Gaussian density in a one-dimensional space where σ2
e = 2θ is the variance of the distri-

bution. With the initial condition K0(x) = f(x), the solution to this PDE is

Kθ(x) =

∫
R
f(x′)Gθ(x− x′)dx′

where gθ(x, x
′) = G(x−x′) is called a Gaussian kernel with bandwidth θ. Thus, the Gaussian kernel

is the ’space’ continuous analogue of the diffusion kernel as described on the graph. This analogy

works exactly the same in higher dimensions.

Appendix B

Proof of (3.13)

Proof. Consider a graph with one locus, Γ0; this graph has form 0 − 1 − 2. We compute exp(θH)

where exponentiation is defined as the Taylor expansion (3.10), differing from componentwise ex-

ponentiation. For Γ0, H is given by

H =


−1 1 0

1 −2 1

0 1 −1


.

We make use of the eigendecomposition of matrix H = PDP−1 and take note of the fact that

Hn = PDnP−1. Plugging this Hn in (3.10), we obtain exp(θH) = P exp(θD)P−1. Here exp(θD)

becomes simple componentwise exponentiation because D is a diagonal matrix of eigenvalues. For

this specific matrix,

P =


1 1 1

−2 0 1

1 −1 1

 , D =


−3 0 0

0 −1 0

0 0 0


.
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Thus, the kernel for a one-dimensional grid graph is

Kθ = exp(θH)

= P exp(θD)P−1

=


1 1 1

−2 0 1

1 −1 1



e−3β 0 0

0 e−β 0

0 0 1




1 1 1

−2 0 1

1 −1 1


−1

.

=
1

6


e−3θ + 3e−θ + 2 −2e−3θ + 2 e−3θ − 3e−θ + 2

−2e−3θ + 2 4e−3θ + 2 −2e−3θ + 2

e−3θ − 3e−θ + 2 −2e−3θ + 2 e−3θ + 3e−θ + 2



(5.1)

Taking the exponential of eigenvalues always yields a positive real value, so if H is symmetric,

exp(θH) is positive definite, suggesting that the diffusion kernel is a valid kernel. Expression (5.1)

is symmetric and in particular,

Kθ(x,x
′
) =



−2e−3θ + 2 if |xi − x
′
i| = 1

e−3θ − 3e−θ + 2 if |xi − x
′
i| = 2

e−3θ + 3e−θ + 2 if xi = x
′
i, x

′ 6= 1

4e−3θ + 2 if xi = x
′
i = 1

(5.2)

Computing every entry of K is computationally unfeasible and unnecessary. We only need to

compute entries corresponding to the pair of genotypes appearing in the sample. In particular, if

ki(xi, yi) is the contribution of the ith locus, then

Kθ(x,x
′
) =

p∏
i=1

ki(xi, x
′

i),

where ki(xi, x
′
i) is determined by the relation between xi and x

′
i, and can take only one of the four

values specified above. Thus we can write ki(xi, x
′
i) as

(e−3β − 3e−β + 2)δ|xi−yi|=2 + (−2e−3β + 2)δ|xi−yi|=1 + (e−3β + 3e−β + 2)δxi=yi 6=1 + (4e−3β + 2)δxi=yi=1
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where δ is the indicator function. Therefore,

K⊗pθ (x,x′) ∝
p∏
i=1

{
(e−3θ − 3e−θ + 2)δ|xi−x′i|=2 + (−2e−3θ + 2)δ|xi−x′i|=1

+ (e−3θ + 3e−θ + 2)δxi=x′i 6=1 + (4e−3θ + 2)δxi=x′i=1

}

This can be simplified by using the fact that

n1 + n0 + n2 = p,

so that

K⊗pθ (x,x′) = (−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(e−3θ + 3e−θ + 2)n0−m11(4e−3θ + 2)m11

(−2e−3β + 2)n1(e−3β − 3e−β + 2)n2(e−3β + 3e−β + 2)n0−m11(4e−3β + 2)m11 · (e−3β + 3e−β + 2)p

(e−3β + 3e−β + 2)p

∝ (−2e−3β + 2)n1(e−3β − 3e−β + 2)n2(e−3β + 3e−β + 2)n0−m11(4e−3β + 2)m11

(e−3β + 3e−β + 2)p

=
(−2e−3β + 2)n1(e−3β − 3e−β + 2)n2(e−3β + 3e−β + 2)n0−m11(4e−3β + 2)m11

(e−3β + 3e−β + 2)n0+n1+n2

=
(−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(4e−3θ + 2)m11

(e−3θ + 3e−θ + 2)n1+n2+m11

(5.3)

Note that one does not need to count n0.
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