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Abstract

A Discrete Fourier Transform (DFT) changes the basis of a group algebra
from the standard basis to a Fourier basis. An efficient application of a
DEFT is called a Fast Fourier Transform (FFT). This research pertains to a
particular type of FFT called Decimation in Frequency (DIF). An efficient
DIF has been established for commutative algebra; however, a successful
analogue for non-commutative algebra has not been derived. However,
we currently have a promising DIF algorithm for CS,, called Orrison-DIF
(ODIF). In this paper, I will formally introduce the ODIF and establish a
bound on the operation count of the algorithm.
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Chapter 1

Introduction

1.1 Motivation and outline of the project

Let M be a 5-dimensional vector space over C, and let A be a linear transfor-
mation acting on M. We would like to apply A to elements in M efficiently.
Clearly, A can be written as a 5 x 5 matrix. However, if we choose a basis of
M blindly, the matrix representation of A might be a full matrix. Therefore,
in the worst case, it takes 5 x 5 multiplications and 4 x 5 additions to apply
A to an element in M. Let S be such a blindly chosen basis, and denote the
matrix representation of A in the basis S by [A]s. Then, for v € M, [A]s[v]s
might look like the following:

Figure 1.1: Worst case scenario: [A]g[v]s.

Suppose, however, that there exists a basis g of M that can be parti-
tioned into subsets 1, B2, ... B¢ in such a way that the subspace spanned
by each f; is closed under (invariant under) the action of A. For now, let
¢ =3, |B1| =1, and |B2| = |B3| = 2. Therefore M decomposes into a direct
sum of three invariant spaces:
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M = span(p1) ® span(Bz) & span(Ps).

Then [A]g is a block diagonal matrix, with each block having dimension
|Bi| < |Bi|. Hence [A][v]s would look like the following:

} B
B2

|
b

Figure 1.2: [A]g[v]g.

Under B, one can thus apply A to any element of M with at most

1 +2x2+2x2=9 multiplications and
\ﬁ/ \B,-/ T/
1 2 3

0 +1x2+1x2=4 additions.
M S
B1 B2 B3

Thus the existence of a basis like B is good news. Because f respects M'’s
decomposition into spaces that are invariant under the action of A, one can
analyze A’s action locally. It should be clear that the smaller |B;| is for each
i, the smaller the number of operations that an application of A to an ar-
bitrary vector requires. Hence it is indeed best if each p; spans the finest
invariant subspace possible. We call an invariant space that does not con-
tain any proper invariant subspace an irreducible space.

If A is diagonalizable under some other basis p’, then each vector of
B’ spans a 1-dimensional vector space invariant under A (also known as
eigen-space). A 1-dimensional invariant subspace is indeed irreducible, so
B’ is a basis that respects M’s decomposition into irreducible subspaces.

Suppose, however, that we want to analyze the actions of two linear
transformations A and B simultaneously. Then we would like to use a ba-
sis that respects a decomposition of M into subspaces that are irreducible
under the actions of both A and B. In our research, we consider the action
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of not just one or two linear transformations acting on a vector space, but
many more. In fact, we will be considering the action of all of the elements
in a group algebra CG = {} e c58;¢5 € C, g € G}

Let us define a CG-module. This definition can be found in (1). A CG-
module is a set M together with

1. abinary operation '+'on M under which M is an abelian group,

2. an action’e’ of CG on M that satisfies

(a) forallae CGandm,n € M,ae(m+n)=aem+aen

(b) foralla,b € CGandm € M, (a+b)em = aem+bem and
ae(bem)=abem.

(c) forallc € C,coem = cm.

Note that M is a vector space over C. Also, notice that if g € G, a
map Dy : m +— g emis a C-linear transformation on M. Thus, under
any basis v of M, D, can be expressed as a matrix [Dy], of dimension
dim(M) x dim(M) over C. The map Dy : g +— [Dg], is called a represen-
tation of G. If N is another CG-module that is isomorphic to M, then there
exist bases in M and N such that Dj; = Dy. If M is irreducible, we call Dy,
an irreducible representation of G. Because the representation of G com-
pletely determines the structure of the CG-module, sometimes the module
itself is called a representation of CG. In order to avoid confusion, however,
we do not use the term "representation.” this way.

CG is a vector space with the standard basis that consists of the ele-
ments in G. Our research considers the case in which G = §,,, and M =
CS;. In particular, suppose that we want to study the linear transforma-
tions induced by the actions of CS,, on the elements of CS,,. Thus we want
to use a basis that respects CS,,’s decomposition into subspaces that are ir-
reducible under the action of all elements in CS,,. We call a CS,;-invariant
subspaces a CS;,-submodule; we call it a left(right) CS;,-module if the action
is defined from left(rightﬂ The basis that we described above is therefore
a basis that respects CS,’s decomposition into irreducible CS,,-modules
(also called CS;-irreducibles). Such a basis is called a Fourier basis. For-
tunately, Fourier bases exist for any group algebra CG. The Fourier trans-
form is a change of basis from the standard basis to a Fourier basis. When

In most cases, facts that apply to left CS,-modules also apply to right CS,;-modules.
Therefore throughout this chapter, we will focus on left CS,-modules.
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G is finite, we call the transform a discrete Fourier transform (DFT), and
call the change of basis matrix a DFT matrix.

However, in real world application of CS;;, raw data is often in the stan-
dard basis (13). Hence the existence of a Fourier basis is not so helpful if the
change of basis from the standard basis to a Fourier basis requires so many
operations that we are better off studying the action of CS,, in the standard
basis. Therefore , we would like to implement the change of the basis to a
Fourier basis as efficiently as possible. An efficient application of a DFT is
called a fast Fourier transform (FFT.)

Fast Fourier Transform

One way to apply a DFT efficiently is to factor the DFT matrix into multiple
sparse matrices. This amounts to changing the basis in steps; each factor
in the factorization of the DFT matrix will correspond to an intermediate
basis of the FFT.

The theory of FFTs has its origin in the field of signal processing, in
which G = C,. Let w denote a primitive nth root of unity ¢?™/". Suppose
that < x >= C,, and let the standard basis be S = {1,x,...x""'}. Then
consider a vector Y v(t)x! in CC,. We apply a DFT matrix of CC, to

[ o(t)x!]s to obtain the vector form of Y7 v(t)x in Fourier basis.

1 1 1 1 .. 1

1 w w? wk AU Zg(l)g

1 w2 Wt w2k w2(n=1) 0(2)

1 wf w?f wkf wn=1f o(f)

1 =1 2m=1) k-1 (n=1)? v(n—1)

Figure 1.3: [DFTc, ][0~} v(t)x!]s.

Co
€1
2
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Cn—1
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We see that
n—1
cr =Y o(hw'. (1.1)
=0

We can obtain the factorization of the DFT matrix by breaking down the
computation of ¢y, ... c,_1. There are two ways to break down the compu-
tation. Decimation in f decimates f by writing f as f; + fom for some
integer m that divides n. Decimation in ¢, on the other hand, decimates ¢
by writing t as t; + tos for some integer s that divides n and directly break-
ing down the expression of (1.1). (11) and (4) discuss this more extensively.
From the terminology of the Fourier transform in signal processing, the
vector space CC, under a Fourier basis is called the frequency domain, and
the same space under the standard basis is called the time domain. So each
f respresent a coordinate in the frequency domain, and each t represent
a coordinate in the time domain. Therefore we call the first way of FFT as

decimation-in-frequency (DIF) and the latter as decimation-in-time (DIT) .

The purpose of this research is to compute the runtime of a certain
type of decimation in frequency FFT called the Orrison-DIF (ODIF) on
CS,.. The ODIF is a promising algorithm which was pioneered by Michael
Orrison. However, the mechanism of the algorithm has never been de-
scribed formally. In Chapter 2, I will provide a rigorous presentation of the
ODIFE. In Chapter 3, I will present all of the structural facts about CS,, that
are required in computing the runtime of the ODIF. The last chapter uses
the tools built in Chapter 3 to provide the formula for the operation count
of the ODIFE.

I will conclude this chapter with the tools required for understanding
Chapter 2.

1.2 Key tools in analyzing FFTs

In this section, I will present Wedderburn’s Theorem, which allows us to
see the Fourier Transform as a ring homomorphism. Most of the key ideas
presented here can be found in (2). Let us begin with some theorems that
are instructive in understanding the general strucuture of CG. As men-
tioned in Section 1.1, a Fourier basis exists for every CG. That is, there
exists a basis f of CG that can be partitioned into subsets B, ... B, such
that each B; spans an irreducible CG-module. Thus CG decomposes into
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a direct sum of irreducible CG-modules. In fact, this applies to any CG-
module:

Theorem 1.1 (Maschke) Every CG-module is a direct sum of irreducible CG-
modules.

Next, consider a representation D of G corresponding to M. If B is a
basis that respects the decomposition of M into irreducible CG-modules,
[D(g)]p is clearly a block diagonal matrix, where each block in the diago-
nal is the representation of G in an irreducible CG-module contained in M.
Therefore, the above statement is equivalent to saying that every represen-
tation of G is equivalent to a direct sum of irreducible representations of
G.

Some left CG-modules might contain multiple irreducible left CG
-modules that are isomorphic to each other. We call the span of all left
isomorphic irreducible submodules in a given left CG-module a left CG-
isotypic space. The decomposition of any left CG-module M into left CG-
isotypic space is unique (2). In particular, the following applies to CG.

Theorem 1.2

o CG is the direct sum of minimal two-sided ideals: CG = 69?’ Ij. Each Ijisa
CG-isotypic space both under the right and left actions of CG.

o The decomposition of CG into minimal two-sided ideals is unique.

o If1 = e1+ - +ey withej € Ij then the ejs are pairwise orthogonal
primitive idempotents in the center of CG (centrally primitive idempotents).
Moreover, e; is a unit element in the algebra I;.

o Every minimal left ideal (left irreducible CG-module) L is contained in ex-
actly one I;. If the dimension of L is d;, I; is a direct sum of d; mutually
isomorphic left ideals.

e Every isomorphism type of an irreducible CG-module is present in CG.

Again, for details, consult (2). The implication of the second and the
third part of the theorem is significant. They indicate that the centrally
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primitive idempotent e; acts as an identity in the irreducible left CG-modules
contained in [;, and acts as zero in the left irreducible CG-module contained
in [;if i # j. In particular, this means that ¢; acts as an identity in any left ir-
reducible module isomorphic to the left irreducible CG-modules contained
in I;, and acts as zero in any left irreducible CG-module of different isomor-
phism type. Thus, for any left CG-module M, e;M is a CG-isotypic space
in M containing left irreducible CG-modules isomorphic to the irreducible
CG-modules in ;. The action of ¢; from the left projects the elements in
CG to the left CG-isotypic space correponding to e;.

It should be noted that, although the decomposition of a CG-modules
into isotypic subspaces is unique, its decomposition into irreducible CG-
modules may not be unique. Consider, for example, the action of CZ; on
a 3-dimentional vector space V over C. Let x be the generator of Z,. Then
D : CZ, — C**3 defined by

1 1
D(id) = 1 D(x) = -1
1 —1

is a representation of CZ,. C3 then decomposes into two CZ,-isotypic
spaces: the 1-dimensional space N; that is spanned by [1,0,0]7, and the
2-dimensional space N; that is spanned by [0,1,0]” and [0,0,1]7. It is clear
that this isotypic decomposition is unique. However, V can be decomposed
into three 1-dimensional irreducible spaces in infinitely many ways. In
particular, for any choices of two vectors vy, v spanning I, span{v; } and
span{v,} are both 1-dimensional irreducible spaces. The decomposition
into irreducible spaces can be unique if each isotypic space is an irreducible
space itself.

1.2.1 Wedderburn’s Theorem

For the theorems that appear in this subsection, consult (2) for proofs.

The motivation behind a discrete Fourier transform was a Fourier basis—
a basis under which the analysis of the left regular action of CG on CG is
easy. The regular action is indeed a proper module action. Therefore, just
like any other module action, the regular action is associated with a repre-
sentation. This representation is called the regular representation. We denote
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the left regular representation by Dp. Let us look at what Dp looks like. We
saw in the Theorem 1.2 that

CG=PdiL;

where each L; is a left irreducible CG-module contained in I;, and d; is the
dimension of L;. Suppose that D; is a representation of G corresponding to
L;. We see that there is a Fourier basis p of CG so that

D,=Epd;D;.

For example, consider CS3. CS3 = L1 & Ly & L) & L3, where Ly, L3 are non-
isomorphic 1-dimensional left irreducible CS3-modules, and Ly, L) are iso-
morphic 2-dimensional left irreducible CS3-modules. Thus, under a spe-
cific Fourier basis under which the representation of CS3 for L, and the
representation of CS3 for L are equal, D, for CS3 is

D1 @ Dy & Dy & D3

where D; is a representation of S3 for L, D; is a representation of Sz for L,
and L}, and Dj is a representation of Sz for Ls. Let v,a € CS3, and denote
ijth entry of [Dy(a)]g by Di(a);;. Then [D,(a)]g[v]s looks like the following:

D] (a) <> }Ll
Dy(a)11 Da(a)r2 o }L
Dy(a)y1  Da(a)2 [ 3 2

Dy(a)1n  Da(a)r2 L) } 7
Dy(a)21 Da(a)x ) 2
D3(61) @ }LS

Figure 1.4: [Dp(a)]p[v]p.

Note that the above is equivalent to

D (a) o
Dy(a)11 Da(a)rz
Dy(a)n Ds(a)xn

>
o P
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Thus, under a Fourier basis, we can realize the multiplication of two
elements in CS3 as a multiplication of two matrices. This, in fact holds in
general:

Theorem 1.3 (Wedderburn) As rings,

h
CG = P i (1.2)
i=1

where h is the number of two-sided ideals of CG. Moreover, each C%*4 is iso-
morphic to I; in Theorem 1.2, and each column/row of C%*% is isomorphic to a
left/right irreducible CG-module.

Thus a Fourier transform is not only a change of basis, but a ring iso-
morphism. Following the convention of the signal processing, we say we
view the elements of CG in the time domain when we view them in the
standard basis of CG. Also, we say we view the elements of CG in the
frequency domain when we view them in the matrix basis of the right-
hand-side of (1.2). For any isomorphism ¢ between CG and @, C%*%,
the preimage of the matrix basis under ¢ is a Fourier basis, because each
column /row of C%*4i is isomorphic to a left/right irreducible CG-module.
Thus the isormorphism map ¢ determines a Fourier basis. In this research,
we will be looking at a Fourier basis with a specific property:

Definition : Suppose T is a chain of subgroups Gp < G; < --- < G, = G.
We say that a basis B of CG is right (left)-adapted to a subgroup chain T, if for
any i = 1,...n, B can be partitioned into subsets such that each subset spans a
distinct irreducible CG;-module. Also, given another chain of subgroups S, we
say that a basis is (T, S)-doubly-adapted if the basis is both left-adapted to T and
right-adapted to S. EIAlso, we say that a basis B is left weakly adapted to a chain T
if B can be partitioned into subsets such that each subset spans a distinct left CGy
isotypic space for all Gy in the chain. If a basis is left weakly adapted to a chain T
and right weakly adapted to chain S, we say that the basis is (T, S)-weakly adapted.

Fortunately,

2In fact, for any G there exists a basis that not only respects CG’s decomposition into
irreducible CG;-modules for each G; in the given chain of subgroups, but also has a property
that CG’s representations corresponding to any isomorphic irreducible CG;-modules under
that basis are equal. (2) refers to a basis with this property as an adapted basis. However, in
our research, we will not exploit this second property.
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Theorem 1.4 (The existence of adapted basis) For any CG-module, a T-adapted
basis exists for any subgroup chain T of G.

(2) provides a proof for this theorem. In ODIF, we will focus our at-
tention on the specific Fourier basis that is doubly adapted to the chain of
subgroups S; < S < --- < §,,. We will construct this basis from a series
of intermediate bases that are weakly adapted to shorter subgroup chains.
We will discuss how we can achieve this in the next chapter.



Chapter 2

Understanding the Orrison-DIF

Suppose {W;} is the complete set of the left CS,-isotypic spaces in CS,,. If N
is a minimal left irreducible CS,-module in W;, denote dim(N) by d;. From
Wedderburn’s Theorem,

CS, = P i,

1

Suppose ¢ is an isomorphism map for the above isomorphism. Then each
C%>di jg the image of W; under ¢. Each column of C%*% is isomorphic to
N, and each row of C%*% is isomorphic to a right CS, irreducible module
of dimension d; in W;. The action of CS,, on ¢(N) is defined by the repre-
sentation ¢; : CS,, — Endc(N), which is a map from CS, to Cdixd;,

The discrete Fourier transform is a change of basis in CS;, from the stan-
dard basis to a basis that can be partitioned into subsets such that each
subset spans a left CS,-irreducible space. Because each W; is a left CS,-
isotypic space, such a basis can indeed be partioned into sets { B;}, where
each B; spans W;. Thus a DFT can also be envisioned as a projection onto
the W;s, or left CS,-isotypic spaces. Projecting CS, onto W; is easy— one
must simply multiply each element in CS,, on the left by the centrally prim-
itive idempotent ¢; corresponding to W;. On the other hand, the projection
into right-isotypic spaces can be achieved by multiplying the correspond-
ing idempotents from the right.

However, the projection onto left-CS,-isotypic spaces is not enough
complete the change of basis. In particular, a projection merely decimates
the n!-dimensional space CS,, into d>-dimensional spaces, and we have to
decide the basis within each d?-dimensional space so that it respects the
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CS,-isotypic spaces’ decomposition into CS;,-irreducible modules. Because
there are aninfinite number of ways to decompose multi-dimensional CS,-
isotypic spaces into CS-irreducible modules, this can be a problem. In
order to eliminate this arbitrariness, we choose a specific Fourier basis and
project CS, into 1-dimensional spaces spanned by each vector in the cho-
sen basis.

The Fourier basis of CS, that we will aim for is the basis that is doubly-
adapted to the chain of subgroups

$1 <5< <8y

Recall that a basis that is doubly adapted to the chain above respects the
decomposition of CS,, into left CSi-irreducibles for all k. Therefore, a ¢
associated with this basis has a following property:

The entries in

¢(CS,) = P T

can be partitioned not only into sets such that the preimage
of each set spans a left CS,-irreducible, but also, for all k,
into sets such that the preimage of each set spans a left CS-
irreducible of CS,,.

Throughout this chapter, we will consider CS;, in the frequency domain un-
der such a ¢. We will achieve the doubly adapted basis by projecting CS,,
into each entry in ¢(CS,) = @, C%*%. We will take advantage of a spe-
cific property of CS,, and use series of projections into isotypic space(i.e.
isotypic projections) to decimate CS;, into 1-dimensional spaces. Let us ex-
plain how we can do this.

2.1 Decimation in Frequency and the ODIF

For k < n, a left CS,;-module is a left CS-module; therefore a left CS,,-
irreducible module is decomposable into left CSg-irreducible modules. In
the language of ¢, this implies that the preimage of each column in C%*4
is decomposable into left CSi-irreducible modules. Thus, for each i, we



Decimation in Frequency and the ODIF 13

shall be able to partition the set of entries in each column of C%*% into
subsets such that each subset spans ¢’s image of left CSy-irreducible mod-
ules. Suppose, for example, W, is a 9-dimensional left CS,-isotypic space
containing three left CS,-irreducible modules of dimension 3. Further sup-
pose that a CS;-irreducible M in W, decomposes into a 1-dimensional left
CS;-irreducible Ny and a 2-dimensional left CSg-irreducible N»>. So we can
write
M = N; ® N».

Then we shall be able to partition 3 entries in the column ¢(M) into one
entry corresponding to Nj, and two entries corresponding to N,. (Fig 2.1).
Under ¢, this is equivalent to decimating the 3 x 3 matrix by rows (Fig 2.2).

(1)

Figure 2.1: ¢p(M).

o o o } Ry : CSy-isotypic in containing Nj
* e } R, : CSy-isotypic containing Np

Figure 2.2: p(W,).

Denote the preimage of the top row and the bottom two rows under
¢ by R; and R;, respectively. Each subcolumn of R; in Figure 2.2 is a left
CSj-irreducible module that is isomorphic to N;. The representation D, :
CS, — C3%3 of the left regular action of CS, in M decomposes into a 1-
dimensional representation E; : CSy — C of the left regular action of CSy
on the left CSy-irreducibles of Rj, and a 2-dimensional representation E; :
CSy — C?*2 of the left regular action of CSy on the left CS-irreducibles of
Ry. The restriction D, | CSk looks like the following:
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. [
f e

We are hence able to decimate the rows of ¢(W,) = C3*3 into two sets of
rows by projecting W, into two different left CSy-isotypic spaces. Because
there is one each of N; and N; in M (Nj, N; are multiplicity free in M),
we are able to achieve the decimation of W, = C3*3 into two sets of rows
corresponding to distinct left CSi-irreducibles by

1. first projecting CS,, into W,, a left CS,,-isotypic space in CS,;, and
2. projecting the result into the left CS-isotypic spaces in CS,,.

However, the decomposition of M into distinct CSi-irreducibles by isotypic
projection is impossible if N; and N are not multiplicity free in M. Sup-
pose, for example, that W, is a CS;-isotypic space containing a left CS,-
irreducible M’ of dimension 5, and

M,:Nl@Nz@Né

where N, = Nj (Fig. 2.3).

} N

b,
B

Figure 2.3: p(M').

Since there are three CSy-irreducibles in M’, we wish to decimate
$(W;) = C>° into 3 sets of rows: one set corresponding to Nj, one set
corresponding to N, and one set corresponding to Nj. However, because
N, and Nj are in the same left CSi-isotypic space, projection onto the left
CS,-isotypic space W, followed by projection onto left CSy-isotypic spaces
cannot seperate the rows corresponding to N, from the rows corresponding
to N, (Fig 2.4).
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©o o o o o© }  CSi-isotypic containing Nj

e o o o o

e o o o o . . . . ,
c o o o o CSy-isotypic containing N, and N,
e o o o o

Figure 2.4: p(W},).

Therefore, multiplicity can be a problem if we want to use isotypic pro-
jection by idempotents as a tool to decimate the algebra. Fortunately, any
decomposition of a CS,-irreducible into CS,,_; irreducibles is multiplic-
ity free (2).

The tree in Figure 2.5 is called the Bratteli diagram for S4, and it shows
the decomposition of CS;-irreducible representations for i = 1,2, 3,4. Each
figure (a Young diagram) on the ith level of the tree represents an isomor-
phism type of left/right CS;-irreducible module. An arrow from a diagram
to a diagram below indicates that the irreducible module represented by
the upper diagram is in the decomposition of the irreducible module repre-
sented by the lower diagram. Moreover, for any diagram v, the dimension
of the irreducible that is represented by v is the sum of the dimensions of
the irreducibles representing the diagrams that have arrows going into v.
Note that a diagram on the ith level represents a partition of the number
i. The Brattelli diagram implies that each isomorphism type of left/right
S;-irreducible modules (either left or right) corresponds to a partition of i.
When v is a partition of i, we write v - i. We will therefore use a partition
of n alternatively to mean a CS,-isotypic space. In particular, we will use
a b yiep to denote a right CSy-isotypic space, a t nj5; to denote a left
CS,,-isotypic space.
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Try
[ L[] ] AN T

Figure 2.5: Bratteli Diagram

As shown in the Bratteli diagram, there are two nonisomorphic 1-dimensional
CSy-irreducibles. Therefore the projection of CS,, into two left CS;-isotypic
spaces can decimate the rows of @; C%*“ into two sets of rows. A path
from the root (the partition of 1) to the first partition of 2 corresponds to
the projection onto the first set of rows, and the path from the root to the
second partition of 2 corresponds to the projection onto the second set of
rows. This correspondence can be extended. We can also verify the follow-
ing facts:

e Every distinct path of the same length that originates from a given
Young diagram corresponds to a distinct set of rows.

o If {a; Fiap - (i+1),...} are the diagrams on the path, the set
of rows correponding to the path represents the space obtained by
projecting CS,, into left isotypic spaces corresponding to the dia-
grams on the path For example, in figure 2.6, the bold-faced path
represents projection onto the first left CS;- isotypic space followed
by projection onto the second left CS3-isotypic space and projection
onto the second left CSy- isotypic space in CSy).



Decimation in Frequency and the ODIF

17

/N
/\/H\

//\V”\/\

Figure 2.6: A path in the Bratteli diagram

e The dimension of the left-irreducible module corresponding to a
diagram is the number of paths from the root to the diagram.

Therefore we can distinguish every row of the @; C%*“ =2 CS,, by the
paths from the root to the diagrams at the nth level. This implies the fol-
lowing significant fact.

The rows of @;C“%*% =2 CS, can be completely decimated
(into single rows) by the composition of projections into all
the left CS;-isotypic spaces fori =1,2,...n.

Analogously, the same thing can be said about the columns of @; C*%*% =
CS,.

The columns of @, C%*% = CS, can be completely decimated
(into single columns) by the composition of projections into
all the right CS;-isotypic spaces fori =1,2,...n.

Together,
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The entries of @; C%*% =~ CS, can be completely decimated
(into single entries) by the composition of projections into
all the left CS;-isotypic spaces fori = 1,2,...n together with
the projections into all the right CS;-isotypic spaces for i =
1,2,...n

Centrally primitive idempotents, which project the elements of CS,, to the
corresponding isotypic spaces, therefore seperate the entries in @); C%** =
CS,. For this reason, if T,, is the set of all centrally primitive idempo-
tents of CS,,, U),_; T is called a separating set.E] The sets of entries in
@, C%>4 =~ CS, that separate from each other upon the projections are
called frequencies, or frequency spaces. For example, in Figure 2.2, Ry and
R are frequencies. This gives rise to the name decimation-in-frequency
(DIF). The DIF algorithm that will be described in this chapter was pio-
neered by Michael Orrison. Therefore we will call this algorithm Orrison-
DIF (ODIF).

The frequencies in the ODIF are a generalization of the frequencies f
in the DIF mentioned in (1.1). Consider CC,, where C, is a cyclic group
generated by x. By Wedderburn’s Theorem,

1%

CC,=Ca---aC,

N ———
n summands
The representation D¢ : C, +— C in the fth C (counting from 0) is de-
fined by D¢ (x) = e*7//" Let m|n. Clearly, Cy, is a subgroup of C, generated
by x"/™. Suppose f = f; + fom, then note that

Df(xn/m) — (6217rf1+f2m /n)”/m

(6217'[ (fi+fam) )1/m
217tf1/m 2if>

eZi TIf] / m

Thus, if f =, f/, the fth C and the f'th C are in same CCy,-isotypic space,
and are hence in the same frequency. Thus the classic DIF as presented
in (4) also breaks down the DFT by the series of projection onto isotypic
spaces.

IThere are other separating sets; one of the well-known separting sets is the Jucy-
Murphy elements (7). However, the FFT in this research uses primitive idempotents.
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2.2 The ODIF Algorithm

Indeed, one may decimate CS,, into n! frequencies by carrying out the se-
ries of projections in any order. However, order is important in facilitating
fast implementation of the ODIF. In particular, our ODIF is roughly imple-
mented as follows.

The ODIF algorithm
Step 1: Define CS,, as a single frequency.

Stepi (i=2,...n—1):

Task1: Project the frequencies at the end of (i — 1)th step into the right CS;-isotypic
spaces. Define the resulting nonzero spaces as the new frequencies.

Task2: Project the frequencies obtained in the task 1 into left CS;-isotypic spaces.
Define the resulting nonzero spaces as the new frequencies

Step n: Project the frequencies at the end of (n — 1)th step into the right CS,-
isotypic spaces.

Because we project the space into both left and right isotypic spaces, we
say that the algorithm is double-sided. Note that we do not need to project
into both left and right CS,-isotypic spaces, since any left CS,-isotypic
space is also a right CS,-isotypic space in CS,. When either Task 1 or Task
2 is omitted from the algorithm, we call the algorithm one sided ODIF (OS-
ODIF). Otherwise, we call the algorithm simply ODIF. As mentioned pre-
viously, projections into right (left) isotypic spaces may only decimate the
CS,;, space into single columns (rows), and there are an infinite number of
choices of basis for a given column (row) when the column (row) has more
than one entry. Hence, the Fourier basis resulting from the OS-ODIF, won't
be unique unless each irreducible representation in the algebra is one di-
mensional. Here, we will focus our attention on the regular ODIFE.

Notice that, after the 1st task of the ith step in the implementation of
the ODIF, CS,, is projected into spaces that consist of intersections of right
CS;-isotypic spaces and left CS;_-isotypic spaces. On the other hand, af-
ter the 2nd task of the ith loop in the implementation of the ODIF, CS,
is projected into spaces that consist of intersections of right CS;-isotypic
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spaces and left CS;-isotypic spaces. This intersection is clearly a (CS;, CS;)-
bimodule. In particular, suppose that Wy I ki, ; is a left CSi-isotypic space
in CS,, containing a left CSy-irreducible Vi, and Wy, b hyjgp is a right €S-
isotypic space in CS,, containing a right CS, irreducible V},. Then W), N Wy
is a collection of all the (CSy, CS;,) bimodule irreducibles isomorphic to
Vi ®¢c Vi, (7). Thus, we can rightfully call W, N W a (CSy, CS;,)-(bi)isotypic
space. At each step in the loop, we are projecting the frequencies in the
previous step into (CSy, CS))-isotypic spaces. The entries corresponding
to the (CSy, CS),)-isotypic space containing Vi ®¢ V}, have row indices cor-
responding to Wy - k and column indices corresponding to W), - h. There-
fore each (CSy, CSy,)-isotypic space corresponds to a unique ordered pair
of partitions (Wi, W;,), and each frequency at each step corresponds to a
unique ordered pair of paths in the Bratteli diagram. After the projections
of previous frequencies into bi-isotypic spaces, we extract a new basis. The
series of the change of basis matrices yields a factorization of the DFT ma-
trix.

Also, if f1 and f are two different frequencies contained in (CS;_1, CS;)-
isotypic space, consider the set of vectors in the next intermediate basis
contained in f; U f,, which result from the projection of f; and f, into
(CS;, CS;)-isotypic spaces. Each vector in this set will lie in either f; or
f2, but not both. In other words, the ODIF carries out a local change of
basis in each frequency contained in (CS;_1, CS;)-isotypic spaces so that
the basis of the next set of frequencies contained in (CS;_1,CS;)-isotypic
spaces respects CS,,’s decomposition into (CS;, CS;)-isotypic spaces. How-
ever, the ODIF implements the change of basis inside each frequency by
breaking the frequency into even smaller spaces and carrying out a local
change of basis in each of them. Next, we will introduce the concept of the
decimation of frequency by double coset spaces.

Decimation of frequency by double coset spaces

As stated previously, the projection of CS,, into a left (right) CSi-isotypic
space can be achieved by multiplying each element in CS,, on the left (right)
by the centrally primitive idempotent of CSy corresponding to the associ-
ated partition of k. If a = k, denote the centrally primitive idempotent
corresponding to this partition by e,«. Then each frequency in a given step
of the ODIF algorithm can be considered as
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(

k
i=1

car )5 (TTewer)

for some k, i, where {a¥)}*_ and {b(*)}_, are unique sequences of parti-

tions such that 2™, b(*) - x. Here, we take advantage of the expression of
the centrally primitive idempotents (1). Because ¢, € CSy, each vector in
the spanning set of each frequency obtained from projections by centrally
primitive idempotents(i.e, if S is the standard basis, ) is contained in a par-
ticular (S, Sj,) double coset space C(S5,gSy,). Therefore, at the each step of
ODIF, we may sort the basis of a given frequency by the double coset spaces
to which they belong. In other words, we can decimate the frequency by
the double cosets.

Suppose, for example, that f is a frequency contained in a (CSy_1, CSy)-
isotypic space and it decimates into fi, f2, ... fo, where f; and f; belong re-
spectively to distinct (Sg_1, Sx) double coset spaces A; and Aj. Then it is
clear that e, f; and e, f; can have nontrivial intersection if and only if A;
and A; are in the same (S, Sx) double coset space. Thus, we should give
a name to the union of all f;s that belong to the same (S, Sx) double coset
space.

A double coset frequency (DCF) contained in a (CS_1,CSy) isotypic
space is an intersection of a frequency in the (CSi_1,CSy) isotypic space
and an (S, Sx) double coset space. Frequencies at each step therefore de-
composes into a direct sum of DCFs. In terms of signal processing, a DCF
can be rightfully called a frequency decimated by time.

Thus, each step in the ODIF is not only the collection of a local change
of basis within each frequency, but also the collection of a change of basis
within each DCF. Indeed, the runtime of the ODIF is largely determined by
the size of each DCF at each step; specifically, the change of basis at each
step of the ODIF will be the direct sum of the change of bases in each DCFE.
In the next chapter, we will discuss this matter in further detail.

Notice that the only property that the ODIF used was multiplicity free-
ness of the restriction diagram of S,,’s irreducibles (Bratteli diagram). There-
fore, this method works for all CG for which its restriction diagram is mul-
tiplicity free. The following example is for G = Cg4, which satisfies this
property. Cy is also abelian, hence the role of double cosets are played by
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one sided cosets.

2.21 Example: Abelian case
Consider CC4. We implement the ODIF on this algebra.

Step 1

The original basis of CCy is {1, x2, x, x*}. The entire space is a CC;-isotypic
space; hence the entire space is one frequency. We decimate this frequency
into DCFs by C;-coset spaces. Denote the jth DCF in the ith step by fi;.
Then

fi1 = span{1,x*}, fi, = span{x, x°}.
Let ¢;; denote the ith centrally primitive idempotent of CC;. From the
formula given in (1) we can easily compute these idempotents: ;o = (1 +

x?) and ex = (1 — x?). We project each DCFs into the CC; isotypic spaces
using these elements. Then

ennfi = span{e121,el1x2} = span{eip, e1n} = span{ey}
enfil = span{ezzl,euxz} = span{exn, —exn} = span{err}
e1nf12 = span{ezx, enxs} = span{eixx, e1nx} = span{enx}

exn fir = span{enx,epx®} = span{enx, —enx} = span{enx}.

The intermediate basis at this step is hence {ei1, €12, €11x, e12x}, and the
new frequencies are ej; f11 U e11f12 and ejpf11 U ejpfi2. In vector form, the
elements of the intermediate basis are (in the same order)

1 1 0 0
0 0 1 1
1171 -1 /"] 0]} 0
0 0 1 -1

Note that, the choice of the basis for each projection of the DCF was
very easy because ey;1 is a multiple of elsz and ey;x is a multiple of eljx3
for all j. The reason for this easy choice is simple: it is because the multi-
plicity of CCs-irreducible modules in each coset space is 1, and each coset
contains only one irreducible corresponding to e; for both j. This renders
each projection of the DCF one dimensional.
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The matrix of the change of basis from the original basis to the new basis
is:

1/2 1/2

1/2 -1/2
1/2 1/2
1/2 —-1/2

Because there are two DCFs (f1; and f1,) of dimension 2, we see two blocks
of dimension 2 x 2 in this change of basis matrix. Each block represents a
change of basis within a DCFE.

Step 2

The frequencies at this step are eq1 f11 U eq1f12 and eq2f11 U e12f12. Because
the two C, coset spaces are both contained in the same (unique) C4 coset
space, these frequencies are also DCFs at this step. Let the first be f,; and
the second be fx. Also, es = F(1+x+ x> +x%), e = (1 —ix — 2% +ix3),
ez = 1(1—x+ 22— %), ess = 1(1+ix — x2 — ix®). We project each DCF to
each of the four CCy-isotypic spaces corresponding to these idempotents.
Then

e1afr1 = span{ejseqr, e1ae11x} = span{2 ey, 2 x €14} = span{eis}.
exafr1 = span{eyeqr, epse11x} = span{0,0} = 0.

esafrn1 = span{esseqr, esaer1x} = span{2 ez, —2 % ez} = span{ez}.
easfrr = span{eserr, esser1x} = span{0,0} = 0.

e1afrn = span{eiser, erse1nx} = span{0,0} = 0.

epafrn = span{epser, exae12x} = span{2 xepq,2i * exn} = span{ey}.
esafrn = span{essern, esserpx} = span{0,0} =0

eaafrn = span{esser, ease1px} = span{2 «eg, —2i* eqn} = span{ess}.

The last basis (the Fourier basis) is hence eq4, €4, €34, 644EI In vector form,
these elements are

1 1 1
—i -1 ]
-1 ]’ 1 1 -1
i -1 —i

S G G WY
<

2Because any CCy-isotypic space is 1-dimensional, this Fourier basis for CCy is unique.
In particular, for any abelian G, any CG-isotypic space is 1-dimensional, and the Fourier
basis of CG is unique.
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The matrix of the change of basis from the second basis to this basis is

2 2
2 2i
2 -2
2 —2i
Again, because there are two DCFs (f21 and f») of dimension 2, we see two

blocks of dimension 2 x 2 in this change of basis matrix. Finally, we have
the factorization of the DFT matrix of CCy :

1 1 1 1 2 0 2 0 1/2 0 1/2 0
1 ¢ -1 —i | _ 102 0 2 1/2 0 —-1/2 0
1 -1 1 -1 | |20 -2 0 0 1/2 0 1/2
1 —i -1 i 02 0 -2 0 1/2 0 -1/2

This factorization is equivalent to the one that can be obtained by Gentleman-
Sande-DIF algorithm (12).

2.2.2 Example: Non-abelian case

Consider CS3. From Wedderburn’s Theorem,
CS3 — 11 D 12 D 13 o C1><1 EBCZXZ ®C1X1[

where the I;s are left CS3-isotypic spaces. Further, I} = L1, I, = Ly & L} =
L, ® Ly, and I3 = L3 where the L;s are left CSz-irreducibles. From the
Bratteli diagram (Fig 2.5), we can see that I; corresponds to the partition
(3) of 3, I corresponds to the partition (2,1) of 3, and I3 corresponds to the
partition (1,1,1) of 3.

Under Wedderburn’s isomorphism ¢ with the doubly adapted basis men-

tioned in 2.1.1,
[ ]

CS; =

o O
o O
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0 0
2.1)

o O
o o

Step 1

The standard basis for CS; is {(1),(12),(23),(123),(132),(13)}. The en-
tire space is a CSy-isotypic space; hence the entire space is one frequency.
Again, denote the jth DCF in the ith step by f;;. We decimate this frequency
into three DCFs by (S», S1) double cosets:

fu=span{(1),(12)},  frz = span{(23),(123)},  fi3 = span{(132), (13)}.

From the formula given in (1), ey, = 1(1+4(12)) and
e = (1 — (12)). We project each DCF into (CS,, CS; )-isotypic spaces:

e fin = span{epn)(1),ep)(12)} = span{e)(1)}
e fiz = span{e)(23),e)(123)} = SPﬂ”{e(z (23)}
e fis = span{e)(132),e1)(13)} = span{e()(132)}
e fui = span{eqq)(1),eq,1)(12)} = span{en1)(1)}
eqq)fiz = span{eqq)(23 ) 11)(123)} = span{eq,1)(23)}
eqnfizs = span{en1)(132),e(11)(13)} = span{e1)(132)}.
The intermediate basis at this step is hence
{6(2)(1>13(2) (23>re(2)(132>/€(1,1)(1)/6(1,1)(23)/6(1,1)(132)}-
In vector form, these bases are
1/2 1/2 0 0 0 0
1/2 -1/2 0 0 0 0
0 0 1/2 1/2 0 0
0 ’ 0 112 |7 —-1/2 |7 0 ! 0
0 0 0 0 1/2 1/2
0 0 0 0 1/2 -1/2

The matrix of the change of basis from the original basis to this basis is
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Because there are three DCFs (f11, fi2, f13) of dimension 2, we see three
blocks of dimension 2 x 2 in this change of basis matrix.

By looking at the idempotents appearing in the basis vectors, we see that

® ¢y fi1Ue fi2 Ue() f13 is the frequency space in the next step corre-
sponding to the ordered pair of partitions {(2), (1) }.

e ¢(1,1)f11 Ue,1) fi2Ue,1) f13 is the frequency space in the next step cor-
responding to the ordered pair of partitions {(1,1), (1)}.

Without loss of generality, the first and the second row in (2.1) corre-
spond to the frequency e(;)CS3. The third and the fourth row correspond
to the frequency e(; 1)CSs:

6(2)0:53 =

S e
S e

Step 2
The frequencies at this step are

e)funUep fizUep) fis and e funUeqnfrzUeqn)fis

We decimate each frequency by (Sz,S2) double cosets. The two (S, Sz)
double cosets in S5 are

S2(1)S2 ={(1),(12)}  and  52(23)S; = {(23), (123), (132), (13)}.

Therefore we can see from the basis in the step 1 that the DCFs at this step
are:

f21 = ep)fi1 = spanfe)(1)}
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f2 = e frzUe) fiz = span{e(s)(23),e(2) (132)}
faz = e(1,1)fu1 = span{eq 1) (1)}
faa = ey frzUe) fis = spanfe 1)(23), €(1,1)(132) }.

We project each DCF to an (S;, S)-isotypic space. Each projection will be

fa1e2) = spanie) (e}
faeq,) = span{e)(1)eq)} = span{0} =0
f22e(2) = span{e(z)(23)e(2), €(2)(132)e(p) } = span{e(y)(23)e()}

f22€(1,1) = SP“”{@(z) (23)3(1,1)16(2)(132)6(1,1)} = SP””{E(Z)(ZC)’)B(LU}

fase) = span{eq 1) (1)e)} = span{0} =0

faseqq) = span{eq1)(eq }

faae) = span{eq 1)(23)e), ea,1)(132)e(n) } = spanieq 1)(23)er) }
f24€(1,1) = SP””{E(l,l)(z?’)@(l,l)/6(1,1)(132)6(1,1)} = SPa”{e(l,l)(23)€(1,1)}~
The intermediate basis of this step is hence

{ey (e, ey (Dew,1y, e@)(23)ew), e2)(23)e 1), €(1,1)(23)e(a), e(1,1) (23)e1.1) }-

In vector form, the bases are

1/4 1/4 0 0 0 0
1/4 —1/4 0 0 0 0

0 0 1/4 1/4 1/4 1/4
0 ’ 0 1 1/4 |7 1/4 1 —-1/4 |7 —1/4
0 0 1/4 —1/4 1/4 —1/4
0 0 1/4 —1/4 —1/4 1/4
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The matrix of the change of basis from the second basis to this new basis is

1/4
1/4
1/4 1/4
1/4 —1/4
1/4 1/4
1/4 —1/4

Because there are two DCFs of dimension 1 (f1, f23) and two DCFs of di-
mension 2 (f2, f4), we see two blocks of dimension 1 x 1 and two blocks
of dimension 2 x 2 in this change of basis matrix.

fa1e1,1) = 0 and faep) = 0 imply that S»(1)S2 does not contain any
irreducible corresponding to the ordered pair of partitions {(2), (1,1) } nor
{(1,1), (2)}. By looking at the idempotents appearing in the basis vectors,
we see that

® fne() is the frequency space corresponding to the ordered pair of
partitions {(2), (1,1)}.

® fae) U fare(y) is the frequency space corresponding to the ordered
pair of partitions {(2), (2)}.

e fase(,1) U fase(11) is the frequency space corresponding to the ordered
pair of partitions {(1,1),(1,1)}.

® fae(y) is the frequency space corresponding to the ordered pair of
partitions {(1,1), (2)}.

In the frequency domain, each one of them looks like the following;:
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0 0

~

o O

fase,1) U fase )

Step 3
Note that there is only one (S, S3) double coset in S3, which is Sj itself.
Therefore the four frequencies

foen),  faen)U few), faenn) U faen),  faep)
are DCFs themselves. Hence let
fa1 = foeqny,  fa2 = faep)Ufnen), fi3 = faeqq)Ufueny, fau = fauep).

We project each one of them into (CSy, CS3)- isotypic spaces. The three
idempotents of CS3 correspond to the three partitions of 3; namely,

e = ¢ (1) +(23) + (12) + (123) + (132) + (13))
e = 5(201) ~ (123) - (132)
iy = ¢ (1) — (23) — (12) + (123) + (132) — (13)).

Each projection will be
e f31 = span{0} =0
e(z,1)f31 =

span{%((ZB) +(123) — (132) — (13)), %(—(23) — (123) + (132) + (13))}

e@,11)f31 = span{0} =0

e fr = span{3((1) + (23) 4 (12) 4 (123) + (132) + (13)) }
e fr = span{5(—2(1) + (23) — 2(12) + (123) + (132) + (13)) }

e@,1,1)f32 = span{0} =0
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e3)f33 = span{0} =0
e f3 = span{{5(2(1) + (23) —2(12) — (123) — (132) + (13)) }

e fis = span{g((1) — (23) — (12) + (123) + (132) — (13)) }

6(3)f34 = SPLZ?’I{O} =0
e fa =

SPﬂ”{i(@?’) — (123) + (132) — (13)), i(—(23) +(123) — (132) + (13))}
e(1,1,1)f3a = span{0} = 0.

The last basis is hence

—_

6((1) + (12) + (23) + (123) + (132) + (13)),
1

12( —2(1) —2(12) + (23) + (123) + (132) + (13)),

%(2(1) ~2(12) + (23) — (123) — (132) + (13)),

((1) — (12) — (23) + (123) + (132) — (13))

Nl =

1

5 (—(23) = (123) + (132) + (13)), (= (23) + (123) — (132) + (13)).

NG

In vector form, the basis vectors are:

1/6 —-2/12 2/12 1/6 0 0
1/6 —-2/12 —-2/12 -1/6 0 0
1/6 1/12 1/12 -1/6 —1/4 -1/4
1/6 |’ 1/12 | —1/12 |7 1/6 "1 —1/4 1/4
1/6 1/12 -1/12 1/6 1/4 —1/4

1/6 1/12 1/12 -1/6 1/4 1/4
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The matrix of the change of basis from the third basis to this last basis is

1/2 1
-1 1
1 1
1/2 -1
-1
-1

Because there are two DCFs of dimension 1 (fs1, f34) and two DCFs of di-
mension 2 (f32, f33), we see two blocks of dimension 1 x 1 and two blocks
of dimension 2 X 2 in this change of basis matrix.

We will conclude this section by presenting a theorem that reveals im-
portant properties of the frequencies in the ODIF. The theorem, in partic-
ular, allows us to know the number of the frequencies at each step and
their dimensions. Let P(n) be the number of distinct CS,-isotypic spaces
(or equivalently, number of partitions of #). Then the number of distinct
(CSy, CSy)-isotypic spaces is P(k) x P(h). Also, denote the jth partition of n
corresponding to a left CS,-isotypic space by a; +- n, and the jth partition of
n corresponding to a right CS;-irreducible by b; - n. Moreover, denote the
(CSk, CSy)-isotypic space in S, corresponding to as = kiep @c by = Hyigne
by Wa,kp,-n, and let P, pn be the number of irreducible (CSj, CSy)-
bimodules in W, i p,i-4. If k, 1 is self implied, I denote W, -« p,-n by Wo_p,,
and Py i b+-n by Pa,p,-

Theorem 2.1 Suppose that we have just completed the first task of the ith loop in
the algorithm. The intermediate basis at this step respects CS,’s unique decompo-
sition into (CS;_q,CS;) isotypic spaces. Let {Vs,:1<s < P(i—1),1<t<
P(i),1 < p < Pyy(i—1)pti) be the set of all distinct irreducible (CS; 1, CS;)-
bimodules under some decomposition of the isotypic spaces into irreducible bimod-
ules, where Vs, and V4 are in Wy, for all p,q. Then the set of distinct fre-
quencies at this step can be indexed by

{f(asl—ifl,bﬂ—i),m | S S S P(Z — 1),1 S t S P(l),]. S m S dim(%,t,p)} (22)

where dim(f(, p)m) = Pap- Als0, fia pym O Vsrp is 1-dimensional for all
s, t,m,pand
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Pas by
Faspiym = B Fraspym N Vorp)- (2.3)
p=1
Furthermore,
dim(vs,t,p)
@ f(as,bt),m = Was/bt (2~4)
t=1

and, each f,_p , can be expressed as

i—1
Wllb(i) N ( ﬂ (Wa(é),l N Wl,b“))) (2.5)
/=1

Where {a() }1[:11 and {b\}}_, are unique sequences of partitions such that al*), b(*) -
L.

Likewise, suppose that we have just completed the second task of the ith loop in the
algorithm. The intermediate basis at this step respects CS,,’s unique decomposition
into (CS;, CS;) isotypic spaces. Let {Visp 21 <s,t <P(i),1 < p < Pyripri}

be the set of all distinct irreducible (CS;, CS;)-bimodules under some decompo-
sition of isotypic spaces into irreducible bimodules, where Vs, and Vs, are in
W, i, for all p,q. Then the set of distinct frequencies at this step can be indexed by

{f(asl—i,btl—i),m 01 S S S P(Z),l S t S P(Z),l S m S dim(%,t,p)} (26)

where dim(fq, p)m) = Pap Als0, flapym N Vstp is 1-dimensional for all
s, t,m, pand

Pas,bt
ftapym = B Fiaupym N Vtp)- 2.7)
p=1
Furthermore,
dim(Vslt,m

@ f(as/bt)rm = Wafnbt (2'8)
t=1
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and, each f, 1, can be expressed as

i
ﬂ (Wa“),l n W1,b<é>) (2.9)
(=1

Where {a)}i_, and {b()}i_ are unique sequences of partitions such that a\"), b(*) -
L.

Proof: The key behind this proof is the fact that the Bratteli diagram is
multiplicity free. We proceed by induction. Consider the case i = 2. The
frequency in the first task of step 2 results from projecting the standard ba-
sis to (CS1,CS,) isotypic spaces. Every irreducible (CS;,CS;)-bimodule
is one-dimensional. Thus dim(f,2p+21) is precisely the number of irre-
ducible (CS;,CS;) bimodules in the (€S, CS,)-isotypic space correspond-
ing to (as, bt), or P,_p,. These satisfy (2.2). (2.3), (2.4) are satisfied trivially.
(2.5) follows because the entire CS, is the (CS;, CSy)-isotypic space, and
each frequency at this step is CS, N Wq)1-q 12 for some f. The statements
from (2.6) through (2.9) follows from an argument analogous to the follow-
ing inductive step.

Assume that the statements from (2.2) through (2.9) are true for i =
k —1, and suppose that we are about to implement the first task of the
kth step. Denote the jth partition of k — 1 by a; = (k — 1), and denote
jth partition of k by b; F k. Consider the new frequencies contained in
W, - ODIF obtains this by the projection of the previous frequencies into
W(1)k1,5,- By the inductive hypothesis, an old frequency takes the following
form:

i—1
ﬂ (Wa<f>,1 N Wl,b“))
=1

where {a(") 1[:11 and {p(") 1[:11 are unique sequences of partitions such that
al), b I ¢. Thus, the new frequency takes the following form:

i—1
W(l)l—l,bt N ( m (Wa(/f>,1 N Wllb(f))).
/=1

So (2.5) follows. Suppose further that |’ is a set of ordered pairs of ele-
ments from {1,...,P(k—1)}, and thata (CSy_1, CSy) irreducible bimodule
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in W,_j, is isomorphic as (CSk_1, CSx_1)-module to

@ le g2

(rj2)€l’

where V; i, € WahF(k_l),asz(k_l) (soV; ), £V ,pforallp=1,... P ).

1]2 " aj ;)
Notice that we can assert this because the Bratteli diagram is multipllicizty
free.

Now, consider a specific decomposition of W,_;, into P,_p, isomorphic
irreducible (CSi_1,CSy)-bimodules. We denote these irreducible bimod-

ules by M,, wherer =1,...,P, p,:
Pas,bt

Weon, = P M, (My, & M,, Vry,r).
r=1

Also consider their decomposition into irreducible (CSx_1, CSi_1)
-bimodules:

1%

M= @ VI (VL =V, v (2.10)

. 1.]2 J12
(j2)€]

Meanwhile, by the induction hypothesis, under some decomposition

P, ..
1%

W“/y“fz = @ Viijop
p=1

where, forall j1, jo, m, f( 0,1, ),m’S projection onto each Vj, ;, , is 1-dimensional.
Also, again by the induction hypothesis, f(aj1 ) m 18

k—1

N (W01 DWWy 40)
/=1

where {a()}¥~1 and {p")}¥_1 are unique sequences of partitions such that
a¥ ) - k. Note that, for any x,y, The number of irreducible

(CS,, CSy)-bimodules contained in the decomposition of V;, ;, , N W, pw)
depends only on the isomorphism type of V;, ;, ..
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If 7 is the number of irreducible (CS,, CS,)-bimodules contained in the
deicomposition of Vi j,p N Wa<X>,b<y>A , then le,jAz,p N W, p 18 isomorphic to
17V (i.e. direct sum of 7 copies of V), where V is an irreducible (CS,, CS,)-
bimodule. Then for any other pair of integers £ < x,7 <y,

V.

g NV Wa po0 NV Waw p00 Z (VAW 40))-

Thus the number of irreducible (CSg, CSy)-bimodules contained in the
decomposition of Vj, j, » N W, 40 N W) ) also depends only on the iso-
morphism type of V; j, ,. It is therefore easy to see that

k-1

dim(Vj, jpp N ( N (Wan 0 W1,b<é>)>)
=1

depends only on the isomorphism type of V; ;, ,. By the inductive hypoth-
esis on (2.6), dim(Vj, j,p O f(4; a,)m) = 1. Hence, for all (j1,j2) € J" and for
all » and p,

1= dim(Viy jop 0 fla apym) = dim(Viyjpp ( ﬂ (W0 10 Wl,,,<f>)))
= dim(V. ( ﬂ 1M Wl,w))))

= dim(vjl,jz N f(ajl,ujz),m)'

Also, for each specific ordered pair (fy,/2) in J', f(aﬁ ag)m V]Er])z = 0if

(1, 12) # (j1, j2). Therefore

B (r)
fajagm "M = D (flapapm O Vip)
(juj2) €T’
B )
f(a]1 alz) m fll]‘;
= 1.

Thus, the projections of f(uh/ajz)/m onto the M, are disjoint 1-dimensional
spaces , and the projections of f(ﬂjlfﬂjz)/m onto the W,_j, are disjoint P,_p,-
dimensional spaces.
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A nonzero projection of f(“h a,),m ONto W, i, is precisely a frequency
contained in W,_y,. Thus, (2.3) holds from the argument above. Also, there
are dim(W,_y,)/Pa.p, = dim(M,) many distinct frequencies in W,_;,, be-
cause each distinct nonzero frequency in W,_;, is of dimension P,_j,. Thus,
this set of frequencies can be rightfully denoted by {f( 5)w 1 < w <
dim(M,)}. (2.2) follows. Also, it follows that

dim(M,) Pyg by dim(M,)
@ f(as,bf),w = @ @ f(as,bt),wﬂMT
w=1 r=1 w=1
Pao,
= PpMm
r=1
= Was,bt.

Thus, (2.4) holds. The statements from (2.6) through (2.9) follow from a
similar argument. [J

Recall that the choice of the basis in the example of CS3 was natural
because irreducibles at each step were multiplicity free in all double coset
spaces. If there exists an irreducible with multiplicity in a double coset,
DCFs projected onto an isotypic (e.g e, DCF) will not be one dimensional.
For example, suppose that a double coset space CS;gSk1 contains an irre-
ducible corresponding to an ordered pair of partitions (a - k,b - (k+ 1))
with multiplicity 2. Then by Theorem 2.1, each frequency contained in
(a,b) will have a 2-dimensional intersection with the double coset space
CSkgSk+1. (Also recall from Theorem 2.1 that there are as many frequen-
cies in (a,b) as the dimension of an irreducible corresponding to (a,b)).
Consider any DCF contained in S¢Sk 1, whose corresponding pair of par-
titions (a F k, b’ I k) is such that b’ - k has a directed edge to b - (k + 1)
in the Bratteli diagram. Then the projection of this DCF to a right CSj -
isotypic space corresponding to b will have exactly dimension 2. So we will
have to make a decision regarding the basis that spans this 2-dimensional
space. Unfortunately, many double cosets in S, for larger n (> 4) con-
tain irreducible bimodules with multiplicities. This fact was shown first by
Eric Malm '05. The team of Brad Froehle and Marie Jameson '07 used the
Gram-Schmidt method to determine the basis for the multiple dimensional
projection of DCFs. In Chapter 3, we will computate the multiplicity of
each irreducible bimodule in each double coset. In Chapter 4, we shall also
mention a particular construction of an intermediate basis in recent joint
work with Mike Hansen "07.
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2.3 Orrison-DIF and Clausen-DIT : Matrix-form and
Sum-form

This section is dedicated to a comparative study of the ODIF, in which I
compare the ODIF to a particular decimation in time (DIT) algorithm de-
veloped by Michael Clausen. This comparative study has not only inferred
a reason for choosing DIF over DIT for our study, but also reveals a connec-
tion between DIT and DIF.

A comparison between the ODIF and Clausen’s decimation in time
(Clausen-DIT) highlights the importance of distinguishing two ways of
presenting FFT algorithms: sum-form and matrix-form. The ODIF is pre-
sented in matrix form, and Clausen-DIT is presented in the sum-form. Each
way of expression has its own advantages and disadvantages, hiding and
disclosing different types of information. In particular, the matrix-form
is particularly useful for studying the decomposition of modules, and the
sum-form is more suitable for inventing techniques that can speed up the
algorithm. Many researchers of the FFT prefer the sum-form in develop-
ing their algorithms. However, with this presentation of the algorithm, the
underlining decompositions of the algebra are completely concealed. How-
ever, if one can convert the sum-form to the matrix-form and vice versa, one
will be able to know the algebraic significance of the techniques, allowing
for much deeper articulation of the algorithm and understanding of the
subject. For example, converting the Clausen-DIT, which is defined below,
to matrix-form revealed that the Clausen-DIT is equivalent to the OS-ODIF
from module theoretic standpoint. Let us first present the Clausen-DIT.

2.3.1 The Clausen-DIT

Let {D;}"_, be the set of all irreducible representations of S,, and suppose
a is an element in the algebra CS,,. Let {g; j—1 be the transversals of the left
Sn—1 cosets in S;,. Then every a € CS,, can be written as a = 27:1 gjaj with
aj € CS,_1 (each a; is a formal sum of elements in S,,_1 ). Further, let ¢, :
CS, — @, C4*4 be a Wedderburn’s isomorphism with respect to the left
adapted basis under which the representations of CSy for all isomorphic
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CSy-irreducibles are equal for all k < nﬂ Then
¢u(a) = PDi(a)
i

[Snzsn—l}

= DDl L gw)

j=1
[Sn3sn—1]

= Z% @Di(g]‘)(Di l Snfl)(aj)
j= i

Therefore, we can compute ¢, (a) recursively as follows:
The Clausen-DIT algorithm

1. Apply the DFT of CS, to a; for all j using the Clausen-DIT to obtain
D; | Sy-1(a;) foralli,j.

2. Multiply D; | S,—1(a;) by precomputed D;(g;) for each i, j.

Since the fomulation above is in the form of a sum, we say that the algo-
rithm is in a sum-form.

From a module theoretic standpoint, Clausen’s algorithm does the fol-
lowing actions in order:

e decimates CS,, into left-coset spaces {Cg;S,—1;j =1,...[Su: Su_1]}.

e applies DFTs, | to each left-coset space C¢S,—1 and projects the result
to the right-CS,,_1-isotypic spaces.

e projects the results from the second step to the right-CS,-isotypic
spaces.

This fact is not so easy to see in the sum-form. However, we will show
that this is exactly what is happening, by converting the algorithm into a
factorization of the DFT matrix (matrix-form).

Lemma 2.1 Assume that the ordering of the standard basis in CS,, respects CS,,’s
decomposition into left S; coset spaces for all S; in the subgroup chain S; <
So-++ < Sy. Then Clausen’s Algorithm is equivalent to the factorization of the
DFT into the matrices defined recursively as

DFTsn = [Al - A[S,,:Sn,ﬂ] (1[5:5117]] ® DFTSHJ),

where each Aj is a matrix of dimension |S,| x [Sy : Sy 1], which can be con-

structed from ¢,(g;) = @D; Di(g;)-

3This is the Clausen’s adapted basis mentioned in Chapter 1.
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Proof: Let [gja;] g;S, 1 be the vector form of g;a; over C in the standard basis
of ¢;Sy—1. Note that, as [S,_1|-dimensional vectors over C, [g;a;]¢s, , =
[a;]s,_,- Also, the entries of

EB Di(gj)(D; | Su-1)(a;)

are precisely that of ¢,,(g;) * ¢n(a;). We can obtain ¢, (g;) * ¢n(a;) in steps.
First, observe that ¢,,(a;) = (@;D; | Sy,-1)(aj) is a direct sum of irre-
ducible representations of CS,_1. Because the blocks in ¢,_1(CS,_1) con-
tain all irreducible representations of CS,_1, we can obtain ¢, (a;) by copy-
ing the blocks in ¢,,_1(a;). Denote this ‘copying map’ from ¢,,_1(CS, 1) to
¢u(CS,—1) by 7. We can then obtain ¢, (g;) * ¢n(a;) by multiplying ¢, (a;)
and ¢,(g;) in the frequency domain. Define a map « : ¢,(CS, 1) —
¢u(CSy) by a(¢n(a)) = ¢n(g;) * pn(a). Thus we can compute ¢, (g;) * Pn(a;)

from [gja;]¢;s, , in following chain of maps:

DFTs, 7 «
[gjaj]gjsn—l ’ ‘Pn—l(aj) — $n (aj) — ¢ (gj) * Pn (aj)

It is clear that «, 7y are both linear transformations. Thus the composi-
tion of maps « o v is a linear transformation that maps a |S,_1 |-dimensional
vector DFTs,_ [aj] to a |S,|-dimensional vector ¢, (g;) * ¢ (a;), and is hence
expressible by a matrix A; of dimension |S,| x [S, : S,_1]. Itis also clear
that the entries of A; are from ¢,(g;), because  only involves copying of
the entries. Thus

(DFTs, | €giSu-1)[gjajl = A;DFTs, ,lajls, , = A;DFTs, ,[gjajlg;s, 1,
and the claim follows. [J

2.3.2 Example

Below, we present the matrix form of Clausen’s algorithm for S3 and S4. Let
Dt be an irreducible representation of Sy. Also, let D(x);; be the ijth entry
of D(x). Then we can see from the Bratteli diagram that

DZ
D) | S2 = D(2), D(z,1)lSz=< ? D(m), Diag) L S2=D(1,1)

Then
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where
D(3)(x)
D(Z,l)(x)ll
D1y (%)
Alx) = (2,1)
() Dz, (%)
D31y (x)22
D110y (x
Also,
D
Pan L 5= < . D@y )
and
D
Diaay |l S5 = ( 21) Dy, )
Then

DFTs,
DFTs, = [B(1) B(14) B(24) B(34)] R
3

DFTs,



Orrison-DIF and Clausen-DIT : Matrix-form and Sum-form

where B(x) is

D(4)(x)
D(Z,l,l)(x)ll
D(Z,l,l)(x)Zl
D(Z,l,l)(x)3l
D11)(x)12 Diap1y(%)13
D11y (x¥)22 Dy (x)2s
D21,1)(x)32 Dia1,1)(x)33
D11y (¥)12 Dy (x)13
D(Z,l,l)(x)ZZ D(2,1,1)(x)23
D1y (x)s2 Dy (x)ss
D (x)u D(Z, x)lz
Doy (x)21 Dppy(x)2
Dy (x)11 Dppy(x)12
Dpoy(x)21 Dpp)(x)2
Diay(x)12 Diay(x)1s
Daiy(x)2 Diay(x)2s
Daiy(x)s2 Day(x)ss
Daiy(x)12 Diay(¥)is
Daiy(x)22 Diay(x)2
Daiy(x)s2 Day(¥)ss
D@, ()11
D1)(x)21
D@, (x)31
D111 (x)

We can then make a following critical observation:

Theorem 2.2 OS-ODIF and Clausen’s algorithm decimate CS,, in the same way,
if the basis for DFTs, , used in the Clausen’s algorithm is doubly adapted.

Proof: Suppose v is a vector in a (CSy, CSi) doubly adapted basis B of
CS,, that is contained in Sy (a DFTs, basis). Then v spans the 1-dimensional
vector space given by

k
CSkN (Y Watoi (1ye1 N (Weayer pii))
i=1

where {a)}5_ {p()}k_ are unique series of partitions such that a!), b() |-
i. This implies that for any i < k, v = e,v = ve,). Let {g;};c; be the set of
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transversals of left Sy cosets in S,. The above implies that g;ve,;, = g;v for
all j. Thus, gjv is in a space

k
giCSkN ( ﬂ 1)1,b0)

Also, it is clear that two vectors vq, vy are C-linearly independent if and
only if g;v1, gjv2 are C-linearly independent. Thus if B is a subset of B that
spans

k
CSen ( ﬂ (Way1,0004))-

then g;B’ spans

k
8]’C5km(ﬂ 1)F1,b0)

From the lemma 2.1, |J 15 g]-B is an intermediate basis of CS,, at the kth level
of the recursion (the basis after applying Ijs,.s,) @ DFTs,). Now, suppose J'
is a subset of | such that Ujey 8iSk is a left Sy, 1 coset. Note that Ujey g]-B’
spans a DCF in the OS-ODIF. [J
The conversion from sum-form to matrix-form shows that, from a

module-theoretic standpoint, the difference between DIT and DIF is sub-
tle. The equivalence between the OS-ODIF and Clausen-DIT is significant.
Past results in this research indicate that the regular ODIF is much faster
than the OS-ODIF. On the other hand, the currently fastest FFT algorithm
by David Maslen (10) stems from the Clausen-DIT. This suggests the possi-
bility that the ODIF may be modified to become faster than Maslen’s algo-
rithm.



Chapter 3

Analysis of Permutation
Bimodules

3.1 DCFs and double coset spaces

As stated in Chapter 2, each step of the ODIF is a collection of the change of
bases in each DCF. To this end, the factor in the factorization of the DFT that
corresponds to a particular step in the ODIF will be a block diagonal matrix
@DDCF in the step ENdc (DCF). Therefore knowing the size and the number of
DCFs at each step allows us to predict the exact number of blocks that will
appear in each factorization and their sizes. We use this information to pro-
vide a bound to the runtime of the ODIF algorithm.

Recall that DCF is an intersection of a frequency and a double coset
space. Hence I may write any DCF at the 2nd task of the kth step in the
ODIF as CSxgSk11 M f(at-k pi-k),m- In particular, if {SxgiSk }icr is a collection of
double cosets such that

U Sk&iSk = SkgSki1,

iel

I can also write any DCF in 5;¢Sk+1 as

U (CSkgiSk mf(al—k,b}—k),M)'

iel

We will compute the dimension of this DCFE. As in the previous chapter,
let W,k p-x denote the (CSg, CSy) isotypic space corresponding to the pair
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of partitions (a,b). By Theorem 2.1, f(, ;) has a 1-dimensional intersec-
tion with any (CSg, CSy) bimodule irreducible in the isotypic space W, .
Therefore the dimension of CSxgiSk N f(ak b-k),m 1S precisely the multiplic-
ity of irreducible (CSy, CSy)-bimodules in CS;g;Sk that correspond to the
ordered pair of partitions (4,b). Thus we need to know the following in-
formation in order to know the size of each DCF.

e A precise decomposition of each (S, Sx.1) double coset into (S, Sk)
double cosets.

e The multiplicities of irreducible (CS, CSy)-bimodules in each (S, Sk)
double coset space

3.2 C(lassification of double coset spaces

Throughout this section, let k and & be integers such that k < h < k4 1.
In this section, I will classify all the (S, Sj,) double coset spaces by their
isomorphism types as (CSi, CS;,)- bimodules. This classification plays a
pivotal role in obtaining the desired information mentioned above. I will
begin with the following useful fact.

Theorem 3.1 Any pair of (Sk, Sy,) double coset spaces in S,, of the same dimension
are isomorphic as (CSy, CSy,) bimodule.

Proof: Given a double coset 5;¢S;,, ¢S~ N Sy is a subgroup of Sy isor-
mophic to Sy for some 1 < ¢ < k. I claim that there exists a double coset
representative § in S;¢S;, such that §S,§ ! N Sy = S, and § commutes with
elements in Sy. We call g a canonical double coset representative. Let o de-
note the natural group action of the symmetric group (e.g. (123) e 2 = 3).
Then note that gS,¢~! is a symmetric group with support

gel,ge2,...,geh

which shares ¢ elements with the set {1,2,...k}. Now, for any element
K € S,

[{xgo1l,xge2,...,kgeh}tN{L,2,. ..k} ="

For any set A of size £ in {1,2,...k}, Sy contains an element that can map
Ato{1,2,...¢}. In particular, there exists an element € Sy such that
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{6ge1,0002,...,000h}N{1,2,...k} ={1,2,...¢}.

Thus there exists a double coset representative ¢’ = ¢ such that ¢’'S;¢’~!1 N
Sk = Sy. Also note that, for any element 7 € Sy,

{¢nel,g'ne2,....¢d'neh}={¢ e1,¢e2,...,¢ 0h}.

Because {1,2,...0} C {¢'®1,¢'®2,...,¢' @h},itisevident that there exists
an element o € S; such that g'cei = iforalli € {1,2,...¢}. Thatis, g'c
commutes with elements in Sy. Let ¢'c = §. § is a canonical double coset
representative.

Suppose |Skg1Sn| = |Skg2S|. Without loss of generality, assume that
g1 and g are both canonical double coset representative. Hence 15,8, I'n
Sk = 92518, ' N Sk = Sy, and g1 and g» both commute with elements in ;.
Consider the map

¢ : Skg1Sy — Skg2Sy  defined by  ¢(xg1y) = kgo1.
I will show that this map is well defined. If kg1 = #g17j, then & lx =
g1in g, . Clearly, # 'k € 15,87 N Sk = Sy Now, see that

8 ()58 = (g s g Ny

Because 'k € 1S, 1 NS, # 1k commutes with both g1 and g2. Thus

Rhe= gy gy
Organizing, we get
K&21 = K&21]-
Injectivity follows from similar argument, and surjectivity is trivial. It is

evident that ¢ can be extended to the isomorphism between CS;g1S; and
CSkg2Sh. O

Therefore, the bimodule isomophism type of a double coset space
CSygSy, is determined solely by ¢ such that |¢S,¢~! N Sx| = |S/|. We may
call / the type of the double coset space. With this theorem, we can simplify
the problem of classifying the bimodule-isomorphism-types of all (S, Sp,)
double coset spaces into classifying the (S, Sj,) double cosets by their sizes.
The following theorem determines all possible sizes of (Si, Sj,) double cosets
in 5;,. The theorem was proven independently by the author and Brad
Froehle of the University of Minnesota. For notational reasons, I will present
here Froehle version of the proof.
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Theorem 3.2 For every ¢ such that max(0,k +h —n) < ¢ < k, there exists at
least one double coset of size k!h!/(!. Moreover, every (S, Sy,) double coset in Sy,
is of size k!h!/ ¢! for some { satisfying max(0,k+h —n) < ¢ <k.

Proof : Given a double coset S¢Sy, its size is the same as that of 5;¢S,¢7?,
which is a product of two subgroups of S, namely S and gS,g~!. There-
fore its size is given by |Si||¢Sng | /1Sk N gSng ™| = |Skl|Sk|/|Sk N gSng 1.
As mentioned in the proof of Theorem 3.1, Sy N ¢S,¢ ! is a symmetric sub-
group of Sy isomorphic to Sy for some ¢, with support

{ge1,502,...g0h}N{1,2,...k}.

First, it is obvious that the size of the set above is bounded by k. Now,
because g o i is a distinct elementin {1,2,...n} foralli € {1,2,...h}, the set
above cannot be smaller than max (0, k 4+ h — n). Finally, if ¢ is any number
satisfying max(0,k +h —n) < £ <k, let g be a cycle

C4+1Lh+1D)(C+2,h+2) - (k1 + (k—1)).

Then {ge1,g02,...g0¢H} N1,2,...k = {1,2,...¢}. Note that 0! = 1L
Therefore the theorem states that the range of types of Sy, S;, double cosets
inSyismax(1L,k+h—n) <{<k.O

Fortunately, Brad Froehle and Marie Jameson in their research during
Summer 2006 found a formula to count the number of (S, S;,) double cosets
of certain sizes in S,,.

Theorem 3.3 (Froehle, Jameson) Denote the number of (S, Sy,) double cosets
of size k'h! /€' in S, by m(S, Sy, £)s, . Also, let

(n—"nh)!(n—k)!
(k=0 h—=0!(n—h—k+0)

fk,h,t,n) =

Then
o flhtn) ift#1
m(Sk, Sn, €)s, = { f(k,h,0,0)+ f(k,h,t,1) ift=1
3.21 Example

Consider the double cosets of S4. Theorem 3.2 and 3.2 can be verified.
(S1,S2) double cosets

e Range of the types: £ = 1.



Classification of double coset spaces

47

e Double cosets:

{(1),(12)},{(23), (132)},{(13), (123)},{(34), (34)(12) },
{(234), (1342)}, {(134), (1234)}, { (243), (1432) }, { (143), (1243)},

{(24), (142)},{(14), (124)},{(13)(24), (1423) }, {(14)(23), (1324) }
(Sa, S2) double cosets
e Range of types: 1 < /¢ < 2.

e Double cosets
Type2: {(1),(12)},{(34), (34)(12)}
Type 1: {(23), (132), (13), (123)}, { (23
{(243), (1432),(143), (1243) },{(24), (14
{(13)(24), (1423), (14)(23), (1324) }

4),(1342), (134), (1234)},
2),(14), (124)},

(S, S3) double cosets
e Range of types:1 < /¢ < 2.

e Double cosets
Type 1: {(1),(12), (23), (132), (13), (123)},
{(34), (12)(34), (243), (1243), (1432), (143) }
Type 2: {(234), (1234), (1342), (134), (24),
(124),(13)(24),(1324), (142),(14), (1423), (14)(23) }

(Ss, S3) double cosets
e Range of types: 2 < / < 3.

e Double cosets
Type 3: {(1),(12),(23), (132), (13),(123) }
Type 2:{(34), (12)(34)
(134),(24),(124),(13)(24), (1324), (142), (14), (1423), (14)(23) }

Theorems 3.1, 3.2, and 3.3 together completely classify the (S, Sj,) dou-
ble coset spaces by their bimodule isomorphism type. Armed with this
classification, let us begin answering the two questions set forth in the first
section of this chapter, namely the question regarding the decomposition
of double cosets into smaller double cosets.

4),(243), (1243), (1432), (143)(234), (1234), (1342),
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3.3 Decomposition of double cosets

This section will provide the precise decomposition of each (Sg, Sx41) dou-
ble coset into (S, Sx) double cosets. I will begin with a corollary of Theo-
rem 3.1, which states that the type of a double coset also determines how it
decomposes into smaller double cosets.

Collorary. SygS;,’s decomposition into (S, Sp_1) (or (Sx_1,Sn)) double cosets
is determined uniquely by its type. That is, if SxgSy, and S 3Sy, are double cosets
of the same type, and if SygSy’s decomposition into SxgSy—1 contains m type-£
(Sk, Sp—1) double cosets for some £, then so does the decomposition of SxgSy.
Proof: Every (S, S;_1) double cosets in 5,¢S, takes the form SighS;_1 for
some h € S;. The map in the previous theorem from S;g¢Sj, to SxgS; maps
SkghSy—1 to Sk ghSy_1. Because the map is bijective, every distinct double
coset is mapped to a distinct double coset of same size. The claim follows.
O

Finally, let us begin discussing the specifics of the decomposition of the
double cosets of a given type.

Theorem 3.4 The decomposition of a type { double coset contains only type {
double cosets and type £ — 1 double cosets.

Proof: Consider the decomposition of an (S, Sx) double coset of type ¢ into
(Sk_1, Sx) double cosets. Note

k-1
SkgSk = |J Sk-1(ik)gSk,

for transpositions (ik) in Sy. Recall that the cardinality of

Sk_1 N (ik)gSkg ! (ik) determines the type of the double coset space
Sk_1(ik)gSk. Therefore let us consider (ik)gSxg~(ik). Without loss of gen-
erality, we can choose g to be a canonical representative of the double coset
Sk¢Sk- The support of the group ¢Srg~! is therefore

{1,...,€,w1,...wk,g},

where w; ¢ {1,...k} forall j = 1,...k — £. Then I obtain the support of
(ik)gSkg~1(ik) by replacing i in the set above by k. Hence if i € 1,...¢,
(ik)gSkg 1 (ik) N Si_1 will have £ — 1 supports, and otherwise, it will have
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¢ supports. Next, consider the decomposition of (S, Sxy1) double coset
into (S, Sx) double cosets. Note

SkgSk+1 = U Skg(l(k + 1))Sk

Let us consider g(i(k +1))Sk(i(k + 1))g~!. The support of ¢Sy, 18! is

{1/~ ~~/€/w1/- . -Iwk+17€}/

where w; ¢ {1,...k} forall j = 1,...k + 1 — £. By Theorem 3.1, if we let
g to be canonical, ger = r forall r € {1,...¢}. Then we can assume that
g (k+1) > k. To see why, assume otherwise, so ge (k+1) € {1,...k}.
But only 1,...,/ are the elements of {1,...k} in {ge1,...ge (k+1)} =
{1,...,0,wy,...,wgs1_¢}. Thus g e (k+ 1) € {1,...k} means that g e (k +
1) € {1,...¢}. This is a contradiction.

Thus the support of g(i(k +1))Sk(i(k +1))g~! is given by

{L... . bwy,... wep-e}\(g @)

Soifgeic {1,...0},g(i(k+1))Sk(i(k+1))g~! N Sk has support
{1,...£}\(g®i) = {1,...£}\i. Otherwise, it will have ¢ support. [J

Next, let [Sk, Sy, ¢] : [Sk, Spr, m] denote the number of (Sy, Sy/) double
cosets of type m in the decomposition of an (S, S;,) double coset of type ¢
into (Sy, Sj) double cosets. The following theorem is a direct consequence
of the previous theorem.

Theorem 3.5

k ift=m=1
k—¢ ifl=m#1
1 ifm=10-1
0 otherwise

[Skl Skl’é] : [Sk,l, Sk/ m] =

k+1 ifl=m=1
k—0+1 ifl=m#1
1 ifm=4/0—-1
0 otherwise

[Sks Sk41, 4] = [Sk, Sk,m] =

Proof : Consider the decomposition of an (S, Sx) double coset into Si_1, Sk
double cosets. By Theorem 3.2 and Theorem 3.4, it is guaranteed that the
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(Sk, Sk) double coset ot type k decomposes only to (S, Sx—1) double cosets

of type k — 1. Thus,

kik! k(k —1)!

Sttty W A |
k! / (k—1)!

On the other hand, [Sk, Sk, k — 1] : [Sk_1, Sk, k — 1] can be found by re-

moving the contribution of the (S, Sx) double cosets of type k to the cal-

culation of m(Sk_1, Sk, k — 1), and dividing the result by m(Sg, Sk, k —1)s,,

which the number of (Sy, Sx) double coset of type k — 1 (Theorem 3.3). Sim-

plification reveals that

[Sk, Sk,k — 1] : [Sk,l, Sk,k — 1] is given by

[Skl Sk/k] . [Sk_l, Sk/k] =

m(skflr Sk/k - 1)5;1 - ([Sk/ Sk/ k] : [Skfll Sk/ k])m(Sk, Sk/ k)sn
m(Sk, Sk,k — 1)5n

=1.

Because each double coset decomposes into only two types of double
cosets, if we know [Sg, Sk, €] : [Sk_1, Sk, £], we can then compute [Sy, Sk, ¢] :
[Sk—1, Sk, ¢ — 1] by removing the contribution of the (Si_1, Sx) double coset
of type £ in the ambient (Sy, Sx) double coset and dividing the result by the
size of the (Si_1, Sx) double coset of type ¢ — 1:

[Sk, Sk, 4] = [Sk—1, Sk, £ — 1] =

k'k'/f' - (k - 1)'k'/£'([5k, Sk, €] : [Sk,l,Sk,Z])
(k—1)k!/ (£ —1)! '

(3.1)

By way of induction, assume that [Sy, Sk, €] : [Sk_1, Sk, ¢] = k — £. (Note that
[Sk, Sk, k — 1] = [Sk_1, Sk, k — 1] serves as the base case). Substituting this
value into (3.1), we get [Sk, S, ¢] : [Sk—1, Sk, £ — 1] = 1. Likewise, [S, S, £ —
1] : [Sk—1, Sk, £ — 1] is given by

m(Skflr Sk/£ - 1)5,1 - ([Skl Sk/ E] : [Skfll Skrg - 1])m(5k1 Skz g)S,l

m(Sk, Sk,g — 1)5n (32)
Substituting [Sk, Sk, £ — 1] : [Sk—1, Sk, £ — 1] = 1, (3.2) becomes
m(Sk_l,Sk,g - 1)Sn - m(Sk, Skr E)Sn ) (33)

m(Sk, Sk,E — 1)5;1

Simplification reveals that (3.3) is k — £ 4+ 1 when ¢ # 2, and k when ¢ = 2.
The claim follows. The same sequence of computation also verifies the
formula for [S, Ski1, ] : [Sk, Sk, m]. O
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3.4 Representation theory of the double coset space
CSkgSh

In this section, I answer the second question in the Section 3.1; the ques-
tion regarding the multiplicities of irreducible bimodules in double coset
spaces. Suppose that Aj, Ay, ... are the irreducible representations of CS,
and By, By, ... are the irreducible modules of CS;. Recall that any irre-
ducible (CSy, CSy,) bimodule is isomorphic to B; ®¢ A; for some i, j.

Malm-matrix Mg, s, ¢ is a matrix for which the ijth entry is the mul-
tiplicity of B; ®c A; in an (S, S;) double coset space of type £. We orga-
nize the multiplicities of irreducible bimodules in double coset spaces with

Malm matrices.
1 0
1 1
0 1

Figure 3.1: Malm matrix Mg;‘ 550

1
2
1

I will present a method for finding all the Malm matrices Mg, s, , where
k = h or k = h + 1. The following three lemmas and the previous remarks
about double cosets allows me to compute the Malm matrix recursively.

Lemma 3.1 Suppose I is a minimal two-sided ideal in CG. Then I = L; ®¢ R;
for some minimal left sided ideal L; and some minimal right sided ideal R; in I.

Proof : Let
D:[—C"

be the isomorphism as specified by Wedderburn’s Theorem. Denote D~* (Eij) =
vjj. By Theorem 2.7 in (2),

R; = span(vjy, v, ... viy) and L; = span(vij,vaj, ... Uyj)

are a minimal left sided ideal and a minimal right sided ideal in I, respec-
tively for all i and j. Define then a map

4>:I—>Lj®cRi
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by ¢(vey) = vyj ®c vik. The bijection is clear. I will show that this is a
bimodule isomorphism. Let g, € CG, and

n n
gOUyy = Z CaUsy and vy @ h = Z Aoy
a=1 b=1

for all choice of x and y. Notice that we are able to assume this because
L, = Ly and Ry = R; for any choice of 4, b, s, t. Now note that

goep(vn)eh = gev;®cuyeh
= (anzl Calj) O (an; dyvip)
= Zbcadb(va]' ®c Uib;
a,
= ¢ Zbcadhvab)

= ('b(g ® Uy ® h)

This proves the claim. [J

Next, define the Total Malm matrix Mg: S, ot to be the matrix for which
the ijth entry is the multiplicity of B; ®c A; in S,. In other words,

Sn _
Mskrslutot - Z m(Sk’ Sh’ 6) Sn Mskrshr‘e'
max{1k+h—n}<l<k

. g Sy
It is not difficult to compute Mg’ s ;-
Lemma 3.2 Suppose D1, D>, ... are the irreducible representation of S,, A1, Ao, . ..

are the irreducible representation of Sy, B, Ba, ... are the irreducible representa-
tion of Si. Then

Sn — . .
[MZ" s ot)ii = Y[ : Bi] % [Dis 2 Aj].
m
Proof: Let ep, and e4; be centrally primitive idempotents corresponding to
B; and A| respectively. Then the multiplicity of B; ®¢ A; in Sy is
dim(eg,Snea;)

It is visibly clear in the frequency domain that

dim(ep,Snea;) = Y (dim(B;)[Dy : Bj]) * (dim(A;)[Dy : Aj]).0

m
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Lemma 3.3 [Mskq,sk,k—l]ij = [A] : Bl‘] and Msklsk,k = 1.

Proof: Note that Sy_1(1)Sy = Sk is a double coset of type k — 1 (see that
(1)Sk(1) N Sg_1 = Sk_1). From Lemma 3.1, we can write CS; as

PDr=PLieck;
i i

where I; is a double-sided ideal of S;. The left-sided ideal L;, when we
restrict the action from left side to Sx_1, decomposes to direct sum of ir-
reducible representations of Sy_;. In particular, if L; = Bj and L; = A;,
then

PrL = P(L;: LiL]) ®c R;
i ij
=~ P[4 Bl(Li ®c R))
ij
The first claim follows. As for Mg, s, i, the claim is obvious because

A ifi=j
Ai®cAj:{ 0 i)
O
Computation of Malm matrices

Theorem 3.1 implies that, in S,, there are only two types of (S,_1,S,-1)
double cosets and only two types of (S,,—2,S,—1) double cosets: type n — 1
double cosets and type n — 2 double cosets for the former and type n — 2
double cosets and type n — 3 double cosets for the latter. Therefore we can
say

Sn
M 57171,Sn,1,t0f ( n— 1’ n— l’n_l)sn Sn-1,Sp-1,n—1
Sy 1,SpAm—2 —
ntoni m(sn 1/111/ )
Sn
M Sp—2,Sy_1,tot m(sn 2/ n—-1,1 )S MSn 2,Sp_1,n—2
Sy_2,Sy_1n—3 — .
ot m(Sy—2,Su-1,1n —3)

We can thus compute Mg, s,  and Mg, s, x—1 wherek = hork+1 = h.
The range of the types of (S, Sx) double cosets that exists in S, is max{1, h +
k —n} < £ < k. Using the Mg, s, x and Ms, g, x—1 as base case, we can take
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advantage of this information to recursively compute Malm matrices for
all types of (S, S;) double cosets when k < h < k + 1. In particular, we
exploit the fact that the range of the types of (S, Sj,) double cosets in S, 41
is at most one greater than the range of the types of (S, S;) double cosets
in S,,. To see this, suppose we want to compute Mg, s, ¢, and that we al-
ready know Ms, s, » for all £ +1 < m < k. Note that Sj,,_, is a symmetric
group such that the range of the types of the (S, S;) double cosetsis ¢, . . . k.

Therefore
1 S k
Ms, 5,0 = <M e — m(Sk, Sn,1)s,.,_,Ms, s i)~
krOhs m(Sk, Shr£)5;1+k4 Sk, Sy, tot i:;-l htk—¢ ksOhs

Now we know Mg, s, » for all £ < m < k. Note that 5j1¢_/1 is a symmetric
group such that the range of the types of the (S, Sj,) double cosets of type
is £ —1,...k. We can thus repeat the process to find Mg, s, /1.

3.5 The size of each DCF

Finally, we can compute the size of each DCF. Again, each DCF is an inter-
section of a double coset space and a frequency. As in the first section of
this chapter, let {S,;Sk }ie1 be a collection of double cosets such that

U Sk8iSk = SkgSk+1-
iel
Then
U (CSk8iSk N farkpiim)
icl
is a DCF. Recall that the dimension of (CSg;Sx N f(al—k,bl—k),m) is the mul-
tiplicity of the irreducible (CSi, CSi)-bimodule in CS;g;Sk corresponding
to the ordered pair of partitions (a - k,b - k). Suppose that 5,¢Sx.1 is a
double coset of type ¢. We know that {S;g;Sk }ic; consists of [Sk, Ski1, ] :
[Sk, Sk, £] many (Sk, Sx) double cosets of type ¢ and [Sk, Sk+1, 4] : [Sk, Sk, £ —
1] many (S, Sx) double cosets of type ¢ — 1. The multiplicity of irreducible
(CSy, CSy)-bimodules corresponding to the pair of partitions (a F k,b
k) in (Sk, Sk) double coset spaces of type ¢ is given by the entry of the
Malm matrix Mg, g ¢ corresponding to (a = k,b F k). Suppose that the
ijth entry of the matrix corresponds to (2 F k,b - k). Then, likewise,
the multiplicity of (CSg, CSy) irreducible bimodules corresponding to the
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pair of partitions (a = k,b F k) in (Si, Sx) double coset spaces of type
¢ —11is given by the ijth entry of Mg, s, ;1. Therefore, the dimension of
Uier (CSk&iSk N f(a bk, b+ k), m) is given by

[Sks Sk+1, 2] = [Sks Sk €] [Ms, 5, ¢ij + [Sks Sks1, €] = [Sks Sk £ — 1][Ms, s, ¢]i-(3.4)

In the next chapter, I will derive the formula for a crude operation count
of the ODIF using (3.4).






Chapter 4

Crude runtime bound and an
introduction to the tensor basis

We are now ready to compute a crude bound for the operation count of the
ODIF for CS,,. I will compare this crude bound against the experimental
data generated by others who studied the ODIF, and discuss an interesting
problem that arises.

4.1 A crude bound of the ODIF

Recall that each step of the ODIF is a collection of change of bases inside the
DCFs. The change of basis matrix associated with a given DCF will indeed
have size dim(DCF) x dim(DCF). Multiplying the dim(DCF)-dimensional
vector by the matrix of this dimension can be implemented in 2dim (DCF)?
operations. Ignoring the constant 2, the operation count of the ODIF for S,
is given by

i ). Y dim(DCF)%.  (4.1)

i=1 j=12 DCF at jth task of ith step

A ed ~
Steps of the ODIF The two tasks in each step

Let us consider the DCFs at the first task of the kth step. Each DCF
in the double coset space CS;gSk+1 is an intersection of CS,gSk+1 and a
frequency f(4rk pi-k),m for some a, b. Recall from Chapter 2 that an irreducible
(CSk, CSx) bimodule corresponding to (a + k,b F k) is isomorphic to a
k ®c b F k. Thus the dimension of a (CSk, CSy) bimodule corresponding to



58 Crude runtime bound and an introduction to the tensor basis

(a kbl k)is given by dim(a t- k)dim(b - k). We know from Theorem 2.1
that the range of m for f,t prk),m is

{1,...,dim(a t k)dim(b+ k)}.

Hence, the number of DCFs contained in the intersection of any given
(Sk, Sk+1) double coset space and the (CSy, CSy)-isotypic space correspond-
ingto (at kbt k)isdim(at k)dim(bt+ k).

We also know from (3.4) that, if the double coset S¢Sk 1 is of type /,
and if the ijth entry of the Malm matrix for (Sk, Sx) double coset space cor-
responds to (a - k, b I k), the dimension of each DCF in the intersection of
CSkgSk+1 and the (CSy, CSy)-isotypic space corresponding to (a -k, b - k)
is

[Sk, Sk41,4] = [Sk, Sk, 4] [Ms, s,,eij + [Sks Sks1, €] =[Sk, Sk, € — 1][Ms, s, ¢ij-

Denote the value above by R gt prx),¢- Then

dim(DCF)?
DCEF at 1st task of kth step

= Y (m(sk, Sk+1, 1) . dim(DCF)2>

max{0,k+(k+1)—n}<l<k DCFs in type ¢ double coset space

= Y (m(Sk, Sk1,0) Y dim(a 't k)dim(b - k)R%aH(,bH(),g)
max{0,k+(k+1)—n}<l<k atk,bFk

This formula correctly predicts the number of blocks and their sizes in the

factorization of the DFT matrix in (7).

The operation count given in (4.1) is a crude bound because the oper-
ation count of multiplying a dim(DCF)-dimensional vector by a matrix of
dimension din(DCF) x dim(DCF) is bounded from above by 2dim(DCF)?,
and the actual operation count can be much less when the matrix is sparse.
We call this bound the ODIF-full-bound. The ODIE-full-bound is the best
possible bound for the ODIF on the assumption that each block in the fac-
torization of the DFT matrix is full. Python code written by Mike Hansen
computed the ODIF-full-bound for n = 1,...,13. The Figure 4.1 tabulates
the operation count divided by |S,| for the ODIF-full-bound (ODIF,,un4),
an ODIF algorithm implemented by Jameson and Froehle (ODIFjf), the
theoretical bound on Clausen’s DIT algorithm given in (2) (Cpoung), and
Clausen’t DIT implemented in (9) (Cg).
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n | ODIFyound | ODIFjf | Chound@) | CR ) | #?
3 53 53 13 — 9
4 10.5 9.7 31 20 16
5 18.6 15.5 60 40| 25
6 31.4 22.7 102.5 70 36
7 52.6 32.9 161 112 | 49
8 89.9 — 238 168 | 64
9 158.8 — 336 — | 81
10 290.5 — 457.5 — | 100
11 547.8 — 605 — [ 121
12 1060.7 — 781 — | 144
13 2107.0 — 988 — 1169

Figure 4.1: Comparison of (operation count / n!).

While the ODIE-full bound eclipses the experimental version of Clausen’s
DIT for small n, it overestimates the operation count of the experimental
ODIF. This indicates that the change of basis matrices for DCFs can be made
quite sparse. Our current interest is finding the reason for the sparseness
of these matrices. We are hoping that, by obtaining a formula for a specific
intermediate basis at each step of the ODIF, we may obtain some critical
information about this sparseness. I will conclude this document with the
recent progress in developing a formula for the intermediate basis.

4.2 Introduction to the tensor basis

In this section I will briefly introduce the notion of the tensor basis. This
concept is inspired by Mackey’s Theorem, which establishes an isomor-
phism between a double coset space CSxgSy, and CSg Qgsyg-1 CS;,. Amaz-
ingly, from a doubly adapted Fourier basis of CS; and a doubly adapted
Fourier basis of CSj, one can create a spanning set that respects the CS,,’s
decomposition into the DCFs. Let us begin with Mackey’s Theorem, which
motivated the idea. We provide the proof presented in (6), because it is
instructive in understanding the tensor basis.

Theorem 4.1 (Mackey) Suppose G is a group and K, H are subgroups of G. Let
A be a set of (H,K) double coset representatives, and let Hy = gHg ' N K. If
n,m' € Hand gng~' € Hy, let Hy to act on H from the left by (gng™') ey’ =
ny'. Then as a (CK, CH) bimodule,
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CG = @ C(K) @¢(n, CH.
g€eA

Proof: We make a well-defined (CK, CH)-bimodule homomorphism from
CG to C(K) ®¢(p,) CH. Let g’ € G. We can write g’ = xg# for some g € 4,
k € K, and 7 € H. Then define the map

(P :CG — CK ®C(Hg) CH

by ¢(g') = ¢p(xgn) = k @c(n,) 7- We claim that ¢ is well defined. Suppose
%g7 = xg1. Since k1% = gn7 g1, it follows that

KQcH) T = (k%) ¢ (H,) i)
= x Q¢ (K'K) o7y
= K ®c(n,) (&7 '8 1) o7 1
K ®c(Hy) iy
= KQc(H,) -

Thus the map is well defined. It is easy to see that ¢ is also a (CK,CH)-
bimodule homomorphism from CG to C(K) ®¢(p,) CH.

Conversely, we will create a (CK, CH)-bimodule homomorphism from
C(K) ®c(n,) CH to CG. Consider the map 0, : CK x CH — CG defined by
o¢(x,11) = xgn. If we establish that this map is Hg-balanced, then we can
guarantee the existence of the unique (CK, CH )-bimodule homomorphism
g from C(H) ®¢(p,) C(K) to CG such that og(x,17) = g(x,77) (). Let
gng ' € He. If (', 57') € K x H,

oe('gng ') ='gng gn' = «'gnn’ = og(x,y') = og(x,gng " 1)

Thus oy is Hy balanced, and there exists a unique (CK, CH)-bimodule ho-
momorphism g from C(H) ®¢(n,) C(K) to CG such that oy (x,77) = 0g(x, 77).
Define & = @, 0. Then this is a (CK, CH)-bimodule homomorphism from
Dgeca C(K) ®¢(n,) CH to CG which maps k ®cp, 17 to kgr. Note that this
map is the inverse of ¢. This establishes the isomorphism. []

It should also be noted that, the above theorem does not depend on the
choice of the double coset representative. Furthermore, by the way of the
isomorphism ¢, CKgH = C(K) ®¢(p,) CH. The following claim is a direct
corollary of Mackey’s Theorem.
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Theorem 4.2 If 5,85y, is a double coset of type ¢,
CS5r¢Sy = CSk ®cs, CSy,.

Proof: Without loss of generality, let ¢ be a canonical double coset repre-
sentative. Then ¢S;,¢~ 1 NS, = S,.
At last, we introduce the notion of the tensor basis.

Theorem 4.3 Suppose that H and K are subgroups of G and G = Ugea KgH,
where A is a complete set of double-coset representatives. Further suppose Bx and
By are doubly adapted bases for1 = Ko < --- <K, =Kand1 =Hy < --- <
H,, = H, respectively. Then

Bg = {b1gb2 :by € Bg, by € BH}

is a spanning set of CKgH that is right-weakly-adapted to K’s chain and left-
weakly-adapted to H’s chain.

Proof: By clearly spans CKgH. Consider any b1gb, € B,. Letibe any integer
between 0 and 7, and let j be any integer between 0 and m. Suppose that
e; is the centrally primitive idempotent of CK; corresponding to the CK;-
isotypic space containing by, and that e; is the centrally primitive idempo-
tent of CH; corresponding to the CHj-isotypic space containing by. Then
clearly

eiblgbzej = blgbz,
because e;b; = by and bse;. This implies that by gb; is contained in an
(CK, CH)-isotypic space corresponding to ¢; and e;. [J
Currently, we know a little bit more about this spanning set when G = S,,.

Theorem 4.4 Let S;gSy, be a double coset of type £, and let g be a canonical double
coset representative. Denote the right CS,,-isotypic space in CS,, corresponding
tor = m by W,, and the left CS,,-isotypic space in CS,, corresponding to | = m
by |W. Suppose that {a"™)}! _ is a set of partitions such that «™) & m, and
that by is a vector in a doubly adapted basis of CSy, that is contained in (o W)
Also, suppose that {B™ Y. _ is a set of partitions such that ) = m, and that
by is a vector in a doubly adapted basis of CSy, that is contained in N}, gom W If

alm) £ B for any m, then bygby = 0.

Proof : Let ¢, be the centrally primitive idempotent corresponding to
(™). Then note that
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¢ ¢
bl H elX<m) = bl and H e‘B(/é#lfm) b2 == bz.

m=1

Recall that g commutes with S,. In particular, ¢ commutes w1th H/ (m).
Also, e, commutes with e; for any j < m. Now suppose that alm £ b ) for
some m. Then by orthogonality of idempotents,

l 4

blgbZ — (bl H e, m ‘B (0+1—m)
m=1 m:1
4 l
= b1g(H€{X ) Heﬁ[+1 m) bz
m=1 m=1
J4 /
= blg( H H e'B (04+1—m)
m=1 m=1
b10b2

O

Thus b1gb, = 0 unless the path corresponding to the frequency contain-
ing by and the path corresponding to the frequency containing b, are the
same up to the /th level of the Bratelli diagram. There is a strong evidence
that the converse of this statement is true. We will address this matter in
another paper.

Now suppose that ¢ : CG — C(K) ®c(n,) CH is Mackey’s isomor-
phism. Then each b;gb, is a preimage of the smnple tensor by Qc(py) b2-
There is much evidence that nonzero elements in the spanning set of CS,
constructed in the manner of Theorem 4.3 forms a unique orthogonal basis
of CS,,. We call this basis the tensor basis.

421 Example
Consider S3 as an (Sp, S1) bimodule. The doubly adapted basis for S, is

e (1)+(12)
e (1)—(12)
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For S1, (1) is the doubly adapted basis. The canonical double coset repre-
sentatives are (1), (13), (23). Also C(S1,) = C clearly. Hence we can create
the following spanning set of CS3:

o ¢71(((1) +(12)) ®cs,,, (1)) = (1)(1)(1) + (12)(1)(1) = (1) + (12)
(1) = (12)) ®csy ,, (1)) = (1)(1)(1) — (12)(1)(1) = (1) - (12)
(1) + (12) ®csy iy (1) = (1)(13)(1) + (12)(13)(1) = (13) +

(13 )

o ¢71(((1) = (12)) ®cs, ) (1)) = (1)(13)(1) — (12)(13)(1) = (13) —
(132)

o ¢71(((1) + (12)) ®cs, s (1)) = (1)(23)(1) + (12)(23)(1) = (23) +
(123)

o ¢71(((1) = (12)) ®cs, ) (1)) = (1)(23)(1) — (12)(23)(1) = (23) —
(123).

With the basis {(1), (12), (23), (123), (132), (13) }, this spanning set in the
vector form is

1 1 0 0 0 0
1 -1 0 0 0 0
0 0 1 -1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 -1

Next, consider S3 as an (S, S;) bimodule. There are two double cosets:
S2(1)S; and S,(23)S,. The canonical representatives of these double cosets
are (1), (23), respectively. Hence we can create the following spanning set
of CS3:

o ¢ 1(((1)+(12)) ®csy ) ((1) +(12))) = ¢71(2(1) ®cs, (1) +(12))) =
(1) +(12)

o ¢71(((1) + (12)) ®csyy, (1) = (12))) = ¢71((1) ®cs, (1) — (12) +
®es,((12) = (1)) =0

o ¢71(((1) = (12)) ®csy,, ((1) +(12))) = ¢~ (1) ®es, (1) + (12)) +
®es,(=(12) = (1)) =0
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o ¢ (((1) +(12)) ®csyyyy ((1) +(12))) = ¢~ (((1) + (12)) ®c ((1) +
(12))) = (1)(23)(1) + (1)(23)(12) + (12)(23)(1) + (12)(23)(12) =
(23) + (123) + (132) + (13)

o ¢ 1(((1) + (12)) ®csyyyy ((1) = (12))) = ¢~ (((1) + (12)) ®c ((1) —
(12))) = (1)(23)(1) — (1)(23)(12) + (12)(23)(1) — (12)(23)(12) =
(23) + (123) — (132) — (13)

o ¢71(((1) — (12)) ®csyyy ((1) +(12))) = ¢~ (((1) — (12)) ®c ((1) +
(12))) = (1)(23)(1) + (1)(23)(12) — (12)(23)(1) — (12)(23)(12) =
(23) — (123) 4 (132) — (13)

o ¢ 1(((1) = (12)) sy, (1) = (12))) = ¢~ 1(((1) — (12)) ®@c ((1) —
(12))) = (1)(23)(1) — (1)(23)(12) — (12)(23)(1) + (12)(23)(12) =
(23) — (123) — (132) + (13).

With the basis {(1), (12), (23), (123), (132), (13) }, the nonzero elements in
this spanning set in vector form are

2 2 0 0 0 0
2 -2 0 0 0 0
0 0 1 1 1 1
0|’ 0 11|’ 1 1 -1 17| -1
0 0 1 -1 1 -1
0 0 1 -1 -1 1

Note that these vectors are scalar-multiples of the vectors in the intermedi-
ate basis obtained in Section 2.1.4. They are also mutually orthogonal.

Expanding the ideas presented here, Mike Hansen and I have developed
a conjecture for a very systematic method of determining the tensor basis
using combinatorial objects called a Young tableaux. This conjecture has
been confirmed for n = 1, ....8. Moreover, the ODIF implemented with the
tensor basis has been almost as fast as the currently fastest DIF algorithm,
which has been conjectured to run in O(n?|S,|) time. Further details about
this tensor basis will also be discussed in another paper.
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